0

12
5

文字

分享

0
12
5

【闢謠科普兩不誤】「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」這篇文到底有多少錯?上篇:破解有疑慮的引用文獻及判斷文獻可信度小技巧分享

Jamie Lin_96
・2022/09/17 ・4028字 ・閱讀時間約 8 分鐘

單純只說這篇文章內容錯誤無法說服人,就讓我們一起從有狀況的引用文獻到問題百出的文章內容逐一拆解科普過去吧!

因為內容眾多所以這篇文將會拆成上下兩篇,上篇為引用文獻出了什麼包以及若非專業人士我們怎麼快速判斷發表是否可信?下篇為整篇文章內容有哪些觀點有誤與有哪些相關可信賴發表值得看。

分析這篇文章引用的文獻,破解有問題的引用文獻跟判斷文獻可信度小技巧。圖/科技新報

筆者目前研究領域跟工作狀態:免疫學博士候選人,預計於 2023 年 2 月正式取得博士學位,研究主題為愛滋疫苗與功能性抗體,具備在生物安全等級三級實驗室工作的資格與能力,最近在發表地獄中載浮載沉。

在細緻拆解這篇文章的內容前,我想先來聊聊這篇文章引用的兩篇發表到底問題在哪裡?為什麼我會說有狀況?

第一篇引用文獻的四大問題

這篇文章引用兩篇發表,第一篇是 2021 年 5 月 6 日發布在 medRxiv 上的 The BNT162b2 mRNA vaccine against SARS-CoV-2 reprograms both adaptive and innate immune responses,研究團隊在荷蘭,也是該文中所提的荷蘭研究。

-----廣告,請繼續往下閱讀-----
引用的文獻之一。圖/medrxiv
  • 文獻引用與解讀錯誤
  • 可能該發表從實驗假設到結論都有問題
  • 數據分析與解讀方式可能有問題(其實在審核過程中,研究團隊是有可能需要針對評審質疑的方向加做實驗來證實假設論點為真,進而說服評審)
  • 可能會誤導非該領域的讀者

因為疫情很多研究團隊會將發表先放上 medRxiv 與 bioRxiv,其實不少很扎實的研究之後都投稿上了正式期刊,倘若有投稿上會顯示在 Rxiv 的連結上。

這篇研究到我寫文的當下尚未正式投稿刊登,該研究總樣本數為 16 人其實不多之外,支持該發表論點的主要是這兩張圖,因為研究團隊說疫苗接種後的 IFN-α 濃度有顯著差異。

除了樣本數不高外,對於顯著差異的判斷也隨著時間改變而有所不同。圖/Figure 1H, 1I

但真的有顯著差異嗎?我看完數據後表示存疑。

樣本數少之外可以看到只有一兩個點較高,其他點分佈都非常平均,這樣的狀態下其統計的顯著差異可能來自那一兩個極端值,而非兩組真實有差;如果我是評審我會詢問該團隊移除最高值後期數據是否仍有顯著差異並請他們將 Y 軸改成 log10 scale 來看分佈,如果重新分析製圖後真有顯著差異我才可能會覺得這篇發表的實驗結果可以支持論點。

-----廣告,請繼續往下閱讀-----

第二篇引用文獻號稱 MIT 研究是真的假的?

第二篇研究為 2022 年 4 月 15 日刊出在 Food and Chemical Toxicology 的 Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs,在文中被稱為是 MIT 研究也是「MIT:自然免疫系統失靈」的由來,但這篇文章真的是 MIT 研究且可信嗎?

在文中被稱為是 MIT 研究也是「MIT:自然免疫系統失靈」的由來,但這篇文章真的是 MIT 研究且可信嗎?圖/Food and Chemical Toxicology 

這篇真的很長,拉到最下方的作者貢獻(Author contributions)區可以看到這段話:S.S., G.N and A.K. all contributed substantially to the writing of the original draft. P.M. participated in the process of editorial revisions. 意思是作者序上的前三位作者負責寫這篇文章的草稿,而最後一位作者是通訊作者並且負責整篇文章的投稿與問題回覆

如果對於貢獻、通訊作者、問題回覆等名詞看得一頭霧水,可以參考我之前寫針對期刊投稿與貢獻的科普文,裡面對這些名詞都有簡單定義解釋。

簡單來說這篇發表誰是老大跟屬於哪個機構?答案是這篇研究的通訊作者 Peter A. McCullough,他是一位心臟科醫生並且有許多反疫苗言論[1][2][3],且該發表應歸屬於 Truth for Health Foundation 的研究(在其機構 mission 上寫他們提供以信仰為基礎的療法),完全不能說是MIT的研究,而寫文章的前三位作者分別背景為:

-----廣告,請繼續往下閱讀-----
  • Stephanie Seneff:背景為計算機科學,近年研究興趣與生物較為相關的為現代疾病(如:阿茲海默、自閉症、心血管疾病等)與藥物數據庫的分析,以及營養缺乏和環境毒素對人類健康的影響。其生物相關發表不少有所爭議並被專家批評缺乏證據、推論不正確等[4][5]。(Wikipedia link
  • Greg Nigh:工作為自然療法醫療人員與針灸師。
  • Anthony M. Kyriakopoulos:希臘研究員,最近幾年主要研究牛磺酸。

上述三位作者加上通訊作者全部沒有免疫學背景甚至不是相關研究人員

而更有趣的是該篇發表的主要編輯為 Dr. Jose Luis Domingo,他主要研究方向為環境與食品污染對人類健康的影響,但他的研究其實不少備受批評外,他曾經在 Food and Chemical Toxicology 期刊上徵稿[6],希望有人能夠投稿關於 Covid-19 疫苗對人體有害的稿件,之後便有了這篇號稱「MIT 研究」的發表,但國外也早已有文章批評其是披著科學文獻皮的虛假訊息[7]

講完該發表作者群與編輯的背景與事蹟後,讓我們看一看這篇文章發表在哪個期刊:Food and Chemical Toxicology 食品與化學毒理學期刊;而正統疫苗相關發表會去什麼期刊:生物學、免疫學等相關期刊。每個期刊代表的研究領域不同外,同時也代表該期刊的評審背景,你不可能在食品相關期刊找到免疫學專業的評審,反之亦然。倘若這篇疫苗有害論的發表整體論點清晰佐證明確,那早就應該可以上免疫學相關期刊,不用跑去食品期刊湊熱鬧

可能有人會問:作者與編輯有狀況不代表內文有狀況啊?

-----廣告,請繼續往下閱讀-----

這篇發表我很認真的看完了,簡單來說有兩個致命問題:

  • 引用很多文獻,但是完全沒有任何文獻可以支持他們的論點
  • 數據分析方式錯誤,如果要算該疫苗的不良事件比例分母應該為“總施打人數”,而不是拿別的疫苗的施打人數來做加減乘除

通篇錯誤滿滿,完全可以當作科學寫作與生物統計學的負面教材。

所引用的兩篇文章各有不同的疑慮

「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」這篇文章引用的兩篇發表

  • 第一篇沒有經過同行審查,對我來說數據分析結果存疑,需要進一步的分析與更多專業人士審查後我才會相信
  • 第二篇內把所屬機構寫錯外,作者群與編輯無免疫學背景且內文錯誤滿滿

光就其引用文獻的品質其實就可以直接判斷該文章不合格根本連看都不需要看,而在下篇文章我會深入拆解文章內容並針對其寫到的資訊做科普。

-----廣告,請繼續往下閱讀-----

快速檢閱發表是否可信的小技巧

我常常被人問:Jamie,我沒有免疫學背景,那我該怎麼判斷這篇文章可不可以信任呢?

這裡我想分享幾個簡單的判斷方式:

  • 看作者所屬機構跟學歷背景:大多數的研究人員都會有紀錄學歷、發表、工作機構的頁面如:Google scholar, research gate, ORCID ID 等,而在期刊發表中我們會放上我們所屬機構,如果作者是在該領域相關機構工作學歷也相關,那可信度會高一些。
  • 查詢作者與編輯風評:如果發現大量負面評價,那可以不用看。
  • 看一看實驗 N 值、圖表、XY 軸與單位:每個研究會招募到多少人或是使用多少動物不一定,但通常越多越好,我自己會找有設置可以參考的對照組的發表,如果是跟人有關的最少要有 30 人但案例報告除外,動物實驗方面一組至少要 5 隻起跳,再來我會看該發表圖表的 XY 軸與使用的單位,再來看圖片中數據的分佈,如果發現說有顯著差異但數據分佈很集中只有一兩個數值極高或極低,那我會存疑當作並沒有顯著差異。
  • 看發表內容跟期刊主題是否一致:大部分的期刊都有自己的主題,就像我做愛滋病疫苗研究我可能會投往 AIDS, Frontiers, Genes & Immunity, Cell report 等期刊,但我不會說要去投毒物學期刊,這與我的研究方向完全不符合!如果發表內容跟期刊主題不一致還刊出來,那要不期刊很爛要不後面問題很大,不論哪個都是個警訊。
  • 盡量看有同行審查(peer-reviewed)的期刊發表:有些很優的發表因為疫情需要資訊快速交換所以會先放在未經同行審查的資料庫中之後正式投稿到期刊上,但這對於非相關專業的人來說很難判斷,在此我建議找有同行審查的期刊發表來看,但同樣需注意發表內容跟期刊主題是否一至。
簡單的判斷文章的可信度可以從作者所屬機構跟學歷背景、風評等多種面相來參考。圖/pixabay

疫情開始後其實有非常多關於 Covid-19 相關的垃圾發表,標題跟內文不符或是通篇錯誤,儘管我是相關專業有時候我也覺得很煩躁,但這些技巧是我需要大量查找 paper 時一定會使用的的快速分辨技巧,僅供參考。

【闢謠科普兩不誤】 — 「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」這篇文到底有多少錯?上篇:破解有問題的引用文獻跟判斷文獻可信度小技巧分享 到此結束,下篇正在努力撰寫中,如果有任何疑問歡迎留言發問!

-----廣告,請繼續往下閱讀-----

參考資料

  1. US cardiologist makes false claims about Covid-19 vaccination.
  2. The COVID-19 “Vaccine Holocaust”: The latest antivaccine messaging.
  3. Vaccines are a safer alternative for acquiring immunity compared to natural infection and COVID-19 survivors benefit from getting vaccinated, contrary to claims by Peter McCullough.
  4. Mesnage, R. and Antoniou, M.N., 2017. Facts and fallacies in the debate on glyphosate toxicity. Frontiers in public health5, p.316.
  5. Not Even Wrong: Seneff And Samsel Debunked By The Seralini Crew.
  6. Call for Papers on potential toxic effects of COVID-19 vaccines.
  7. Scientific review articles as disinformation.
文章難易度
Jamie Lin_96
2 篇文章 ・ 3 位粉絲
正在發表地獄中載浮載沈的免疫學博士後,熱愛攝影、做手工藝且永遠管不住好動的手,不是在寫paper、部落格文章就是在推特上筆戰科普

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

3
0

文字

分享

2
3
0
【2023 諾貝爾生理醫學獎】mRNA 疫苗背後的辛酸血淚,為何 mRNA 研究不受待見?
PanSci_96
・2023/11/05 ・5173字 ・閱讀時間約 10 分鐘

mRNA?別浪費時間,不值得做!

天啊,你知道在實驗室搞 mRNA 有多麻煩嗎?連呼吸都要小心耶!

而且在細胞裡的 mRNA 一瞬間就會被分解成碎片,比廢柴還廢,哪可能生成需要的蛋白質?各位泛糰們好,2023 年的諾貝爾生理與醫學獎是由卡塔琳・考里科以及德魯・韋斯曼兩位科學家獲得,他們獲獎的研究,是許多人現在已經很熟悉的 mRNA 疫苗開發技術,但你可能不知道,其實當初 mRNA 打入實驗小鼠體內,引發非常嚴重的免疫風暴,甚至可能打一隻死一隻。

這這這……設計要來救人的藥物,反而致命? 生醫獎得主考里科的同事甚至認為 mRNA 只是個「笑話」,這怎麼回事?

-----廣告,請繼續往下閱讀-----

那個 mRNA 瘋女人來了?

你!渴望力量嗎?啊不,是想要合成 mRNA 嗎?我可以幫你喔!

由於屢屢爭奪印表機使用權僵持不下,故事的兩位主角就此破冰,當時是 1997 年,地點在美國賓州大學醫學院,此時身材高大、外向爽朗的女主角伸出了橄欖枝,正等待回答,男主角卻冷淡地說:「如果你成功了,我會試試。」難道故事就此結束嗎?當然沒有。

先回頭介紹一下考里科。她是匈牙利人,本來家境還不錯,但兩歲時,因為父親公開批評執政的共產黨政府,就此失去了工作,餘生只能打零工,全家住在沒自來水也沒電的磚房裡。遭遇這般變故的卡里科並沒有放棄自己,反而堅持鑽研科學,在匈牙利頂尖的塞格德大學取得了生物化學博士學位,並獲得博士後研究員的工作,投入 mRNA 研究。然而天要降大任,就有人要遭殃,大學的研究中心資金短缺,就把她給解聘了。

卡塔琳・卡里科。圖/wikimedia

為了能讓自己的研究對世界產生影響,1985 年,她決定出國深造,移民美國,但由於政府嚴控資金外流,她把所有積蓄 1,200 美元偷偷縫進女兒的玩具熊裡,才能讓一家人在人生地不熟的紐約暫時安頓。雖然幾乎不會講英文,幸運的考里科很快在天普大學蘇多尼教授的實驗室找到工作,等等,我剛剛說幸運嗎?

-----廣告,請繼續往下閱讀-----

對不起,我收回。她沒多久就被蘇多尼教授舉報為非法移民,只因她答應了約翰霍普金斯大學另一份薪水比較高的職位,要衰就衰到底,約翰霍普金斯大學隨即撤回了聘書,她跟先生還得花錢請律師來駁回引渡令,更別提因為蘇多尼繼續中傷她,她也找不到其他工作。

圖/giphy

幾經波折,她終於在賓州大學醫學院找到了研究助理教授的工作。但由於她不是醫生,也不是正規職員,無法取得終身職,其他同事根本不把她當同事看,對她投入的 mRNA 研究自然也沒興趣。加上考里科雖然外向開朗,但也口直心快,換句話說,根本就是白目。她只在乎研究,不顧他人顏面,總是直言批評同事研究中的錯誤。她既不能升等、申請研究經費也屢屢失敗,沒辦法從細胞跟生物體中藉由 mRNA 生成治療性蛋白質,獲得數據,那就更沒辦法申請經費。

這時幸運的考里科獲得了一位同事支持,總算做出了一點成果,透過把 mRNA 插入培養皿的細胞裡,使細胞製造出「尿激酶受體」蛋白質。等等,我剛剛又說幸運嗎?對不起,我再次收回。卡里科雖然做出成果,她的熱臉依舊貼上了同事們的冷屁股,即使她主動替許多同事合成 mRNA,也只獲得了「那個 mRNA 瘋女人」的評價。1995 年她的先生因為簽證問題困在匈牙利好幾個月,她則被驗出長了腫瘤,得開刀。這時賓州大學的主管卻要她選擇離開或是接受降級。

為了讓女兒能獲得賓州大學的學費優惠,她嚥下這口氣,接受降薪,職稱變成從來沒人擔任過的——「資深研究調查員」,為什麼沒人擔任過?因為沒人被開除現職之後還願意繼續留在賓州大學裡,她是第一個。

-----廣告,請繼續往下閱讀-----

越是山窮水盡,她越覺得解脫,就在這時她遇上了剛來到賓州大學的韋斯曼。

德魯・韋斯曼。圖/wikimedia

韋斯曼雖然冷淡,但他不是只對考里科冷淡,而是對所有人都很冷淡,他根本不聊八卦,只在乎研究,加上他才來不久,因此根本不知道考里科有多慘,也不在乎別人怎麼說考里科的壞話。韋斯曼早年曾當過安東尼佛奇實驗室的研究員,研究愛滋病,他目睹許多研究員因為無法獲得經費,而遷怒於不願幫忙的佛奇,藉由媒體傳播關於佛奇的負面消息,這讓他極為重視科學研究的誠信與純粹。

韋斯曼雖然對人冷淡,卻是個標準貓奴,他女兒會從收容所把病貓跟棄養貓帶回家,他還曾為了幫貧血的貓打針補充紅血球生成素,差點趕不上重要會議。他也是個偶爾會對同事亂講話的人,但不是因為他也白目,而是因為患有第一型糖尿病,血糖劇烈變化影響了他的認知功能,甚至會突然昏倒。

儘管對 mRNA 沒什麼興趣,正在研究愛滋病毒疫苗的韋斯曼的確用得上 mRNA,而考里科也真的很懂 mRNA。於是,韋斯曼跟考里科這兩支樹枝孤鳥竟然在 1998 年開始合作。幸運的考里科終於……等等?我剛剛說幸運嗎?

-----廣告,請繼續往下閱讀-----

COVID-19 疫情帶來的契機

在解釋 mRNA 如何應用前,我們複習一下分子生物學的重要概念:中心法則 (central dogma),也就是 DNA 轉錄成為 mRNA,再依據 mRNA 編碼,將對應的胺基酸組裝起來成為蛋白質。

分子生物學的中心法則。圖/learngenomics.dev

如果我們可以合成 mRNA,只要修改 mRNA 上的編碼,再將這些 mRNA 送入人體細胞內,直接將細胞當作生產蛋白質的工廠,使人體自己產生正確的蛋白質,不就可以治療遺傳疾病了嗎?!

另外,疫苗也是一個應用方向,mRNA 就像是傳令兵,它帶著敵軍病毒的情報交給如同將領的樹突細胞,產出帶有病毒特徵的蛋白質,進而刺激整個免疫系統備戰,並培養出有長期保護力的記憶型 B 或 T 細胞大軍。

剛剛說到,兩人一開始合作是針對愛滋病疫苗的研發,但是當韋斯曼將 mRNA 打入小鼠後,驚訝的發現這些小鼠會一直生病,甚至死亡,免疫反應強到把本體都幹掉了,如果 mRNA 注射會導致死亡,這故事要怎麼說下去?

-----廣告,請繼續往下閱讀-----
圖/giphy

講到這,我相信大家都明白了,這兩位科學家都不太幸運,但他們還有一個共通點,就是不知道放棄兩個字怎麼寫。

他們想,一般細胞每天也都會製造 mRNA,為什麼這些 mRNA 不會被免疫系統當成入侵者,引發嚴重的發炎反應,造成細胞死亡?

他們後來在實驗中發現注射 tRNA 的小鼠不會有這樣的免疫反應,而 tRNA 與其他 RNA 最大的差異就是有大量的鹼基修飾,難道說關鍵就是修飾?

卡里科擁有非常好的RNA修飾合成的技術,那有沒有可能透過修飾,找到不會引發嚴重免疫反應,卻同時可以順利轉譯出蛋白的 RNA 分子呢?最後他們發現將 RNA 分子中的尿嘧啶核苷「U」修改成為假尿嘧啶核苷分子「ψ」,就能夠躲過免疫反應又可以產生蛋白質,並且在 2005 年時,他們將這個方法應用在猴子身上,修改後的 mRNA 不僅可以躲過免疫系統的攻擊,也能夠有效產生蛋白質。

原來卡里科和韋斯曼找到的方法,其實就是免疫系統透過檢視 RNA 裡修飾的型式或比例,藉此判斷敵我的設計機制,因為通常病毒的 RNA 不會經過修飾,所以當體外合成的 mRNA 注射進入人體中,就會被免疫系統辨識成外來病毒,引發體內的免疫反應。

這時只要將外來的 mRNA 經過足量修飾,就可以「騙」過細胞,讓細胞正式成為你的蛋白質工廠。

雖然卡里科與韋斯曼確信自己已經攻克了 mRNA 應用的難題,但很多的科學家仍然對 mRNA 的應用感到疑慮,這些科學家認為這麼不穩定的分子,不容易量產和使用,2013 年,卡里科從日本參加完研討會回來,甚至發現連自己的研究室被清空,讓給了別的研究員,他們兩人的重大發現彷彿被全世界遺忘。

-----廣告,請繼續往下閱讀-----

不,他們的研究沒有被遺忘,在史丹佛大學的 Derrick Rossi 和 Luigi Warren 在幹細胞研究中,同樣遇到了 mRNA 應用的困難,直到 Rossi 和 Warren 得知了卡里科與韋斯曼的研究,才突破難關,成功透過加入特定 mRNA,將皮膚細胞轉變成多功能幹細胞,之後在 2010 年,Rossi 成立了世界第一家 mRNA 公司,也就是現在我們熟知的莫德納公司的前身。

而在得知莫德納將與英國的 AZ 合作開發血管內皮因子 mRNA 後,卡里科認為在大學繼續待下去也無法應用她在 mRNA 上的長才,於是前往德國,與 BNT 的創辦人烏爾.薩欣會面,並加入成為副總裁,保留兼任老師的資格。那年是 2013 年,BNT 還是個連網站都沒有的小生技公司,卡里科的決定也因此被學校的主管嘲笑。然而快轉到 2019 年,接下來的事大家都知道了。

烏爾.薩欣。圖/wikimedia

2019 年的 12 月 1 日,首例新冠病毒感染個案在中國武漢發生,隔年 1 月 5 日,新冠病毒全基因體解序完成,向全世界發布。2 月,新冠疫情開始往全球散播。

1 月 25 日莫德納公司的 Stephane Bancel 與美國國衛院國家過敏與傳染病研究所所長 Anthony Fauci 進行會議,2 月底莫德納完成 mRNA-1273 疫苗的動物試驗,同時,BNT 開發出二十多隻 mRNA 候選疫苗,從新冠病毒完成基因體解序後的第 66 天,3 月 16 日,世界上第一位 mRNA 疫苗臨床受試者開始施打,這是人類首次能夠在短時間內,製作出對抗新興傳染病的疫苗的時刻。

-----廣告,請繼續往下閱讀-----

而這一切,若不是當年卡里科與韋斯曼的努力不懈,突破 mRNA 的應用限制,使 mRNA 疫苗成為可能,那麼 COVID-19 所造成的死亡人數會遠遠高於現在統計的 695 萬人。

擇善固執還是冥頑不固

在科學研究中,我們常常看到戴著光環的成功案例,但不被失敗擊倒,其實才是科學的真實樣貌。

圖/wikimedia

相較過往,這次諾貝爾奬很「快」頒給了 mRNA 研究,為什麼說快呢?因為諾獎往往是在論文發表後幾十年才會頒布,慎重到必須是寫進教科書等級的實證研究,才有資格。所以研究者不僅研究厲害,也要活得到頒奬,這次能夠這麼快受到諾貝爾奬肯定,代表 mRNA 疫苗確實是終結疫情的重要功臣,有目共睹,實至名歸。

卡里科在獲獎的當下表示,儘管最近幾年得到很多肯定,但其實這一路上並不是一帆風順,所以說獲獎的瞬間還不太相信,甚至覺得這是不是個 Joke,根據法新社報導,卡里科說只有他母親對他很有信心,每年都會聆聽諾貝爾委員會宣布得主,卡里科 Karikó 回應說:「我當時只能苦笑一下,因為我從未得到過研究資助,也沒有一個固定的團隊。我甚至都不是一名正式的教授,因為我被降了職,所以我並不抱什麼期望。我回答她說,『這是不可能的』。」

很遺憾的,卡里科的母親在 5 年前離世,沒能看到她真的獲得諾貝爾獎。

聽完卡里科跟韋斯曼的故事,最後我想問問你,如果你轉生成卡里科,你覺得哪個時刻會讓你最想放棄呢?

  1. 當然是 2013 年,一回國竟然發現連研究室都被清空那時候。
  2. 應該是罹患腫瘤,丈夫又在匈牙利,學校還要開除我那時候。
  3. 光是出生在共產時期的匈牙利,我就想放棄了。

等等,要是你放棄,我們就沒有 mRNA 疫苗了耶,你想清楚啊!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

所有討論 2
PanSci_96
1217 篇文章 ・ 2147 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
2

文字

分享

0
2
2
論文好多看不完?研究生的救星!用 AI 幫你分析統整!
泛科學院_96
・2023/10/14 ・761字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

近期科技界最熱烈討論的新聞,應該就屬韓國有研究單位宣布找到了新的室溫常壓超導體 LK-99 ,聽說可以在一般的高中大學實驗室中完成。這讓我不禁好奇它的製作原理,但,大部分的朋友應該跟我一樣都不是專業材料工程人員,看不懂論文怎麼辦呢?除了等泛科學出影片,別忘了我們有 AI 呀!今天我要來分享一套專門訓練來閱讀論文的 AI —— SciSpace Copilot。

今天的影片簡單的跟大家分享了基於 GPT 技術且針對閱讀學術文章進行特別優化的 AI —— SciSpace ,我只要遇到研究型文章都會特別開這個工具起來使用,其他的大語言模型都無法做到如此細緻。我覺得生成式人工智慧的未來就會到處是這種基於某種目的,比如讀論文,使用某個大模型進行微調 Fine-Tuning 之後的小模型,將會協助我們解決各種問題。

是說現在的研究生做研究的工具真是越來越多,你會想要把這支影片分享給你的指導老師看嗎?
歡迎你把使用的經驗與想法在影片下方留言與我分享!

也歡迎加入泛科學院的頻道會員,或者科學AI的Discord論壇,一起討論交流。

-----廣告,請繼續往下閱讀-----

如果這支影片對你有幫助的話,請幫我在影片下方點個喜歡,或是透過超級感謝展現你的心意,讓我製作更多實用有趣的 AI 教學影片,最後別忘了訂閱泛科學院的頻道,我們下支影片再見囉。

更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

泛科學院_96
24 篇文章 ・ 33 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!