0

0
0

文字

分享

0
0
0

智慧玻璃:利用電流來變色

李秋容
・2015/04/20 ・857字 ・閱讀時間約 1 分鐘 ・SR值 482 ・五年級

-----廣告,請繼續往下閱讀-----

sn-smartwindowH

智慧玻璃可以改變性質阻擋光和熱,常見的例子有防眩光後視鏡,以及為了保護隱私、節省能源的可變色窗戶。但這些應用花費昂貴,作為能量來源的電池和插入式插座也並不環保,嵌入式太陽能板又會遮蔽掉部分玻璃,於是研究人員發明了一種玻璃,可以從風雨獲得能量來改變顏色。對智慧窗戶來說,又多了一項可替換的能量來源。凱斯西儲大學(Case Western Reserve University)的奈米材料工程師戴黎明(Liming Dai)表示:「這項創新是種新型態的再生能源。」

新型的玻璃利用摩擦起電,使夾在兩層玻璃之間的奈米發電機產生電流,讓原本無色的窗戶染上一層深藍色陰影。奈米發電機的最外層是由負電矽膠材質聚二甲基矽氧烷(Polydimethylsiloxane,簡稱PDMS)做成的奈米稜錐體,水和空氣接觸時會產生正電,當雨滴滴落在玻璃上時就會產生電流。奈米發電機的第二層則用來收集風產生的能量,這層由兩片帶電的透明塑料組成,塑料之間以奈米彈簧線圈隔開,當風推動窗戶時會使兩片塑料接觸,彈簧因壓縮而產生電流。

團隊在《ACS Nano》上發表這項研究,測試結果顯示玻璃最大能產生每平方公尺130毫瓦的能量,電量足以啟動心臟調整器或提供智慧型手機待機時所需電力。喬治亞理工學院(Georgia Institute of Technology)的奈米科學家、同時也是本項研究的作者王鍾(Zhong Wang)表示:「此種輸出電力可適用於許多應用,可以作為家用或商用電力。」他和他的同事將發電機縮小,在2012年開始了第一個研究-利用腳步來點亮人行道,還發明了自我清潔鍵盤以及安全系統的感應器

目前,距離智慧玻璃商業化還有段路要走,因為玻璃還無法儲存電力。對此,戴認為或許可以將不影響透視性的透明超級電容固定在玻璃上。能源板目前的能源轉換率約為60%,接下來團隊希望能提高奈米發電機的產能效率。王認為我們周遭有許多可利用的能源,只是還不懂得如何使用而已。

-----廣告,請繼續往下閱讀-----

參考資料:

  • Smart window changes color with weather. Science [6 April 2015]
  • Yeh, M. H., Lin, L., Yang, P. K., & Wang, Z. L. (2015). Motion-Driven Electrochromic Reactions for Self-Powered Smart Window System. ACS nano.
文章難易度
李秋容
26 篇文章 ・ 0 位粉絲
愛吃愛玩愛科學,過著沒錢的快樂日子。

0

3
1

文字

分享

0
3
1
一卡在手便利無窮,悠遊卡的設計原理——《我們的生活比你想的還物理》
商周出版_96
・2022/12/05 ・2482字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

時事話題

NEWS|在課堂介紹電磁波概念時,有位同學佳琦舉手提問筆者:「老師,用悠遊卡刷進捷運站非常方便,那個背後的原理和電磁波有關嗎?」另一位同學婕妤回答:「應該是悠遊卡會發出電磁波,傳遞訊息到門閘的感應器吧?」

悠遊卡如今早已融入臺灣大都會的生活中,不論是捷運、超商、購物或搭乘公車,悠遊卡在手,便利許多。然而,悠遊卡內並無電池,也不需要插入讀卡機,為何能夠溝通而傳遞資訊呢?

刷悠遊卡進出捷運站,其背後原理和電磁波有關嗎?圖/Pixabay

為何沒裝電池的悠遊卡可以產生電流?

悠遊卡系統主要是應用法拉第電磁感應定律來辨識與傳遞資訊,此與無接觸感應技術有關,該技術稱為「無線射頻辨識系統」(radio frequency identification,RFID)。完整的一套無線射頻辨識系統,是由讀卡機(reader)、電子標籤(tag)和應用程式資料庫電腦系統部分所組成。

運作過程先由讀卡機發射一特定頻率的無線電波能量給電子標籤,藉此驅動標籤內建電路,輸送內部的身分代碼,以開啟溝通之路。

-----廣告,請繼續往下閱讀-----

若以法拉第電磁感應的物理概念解釋,讀卡機產生變動磁場, 同步提供電子標籤變動磁場,驅動電子標籤產生感應電流,也就是讓悠遊卡內部迴路產生感應電流,並讓電子標籤發送身分代碼訊息給讀卡機,也即驅動內部晶片能夠發送訊號,讀卡機依序接收資訊、解讀此身分代碼,再透過應用程式資料庫系統讀取悠遊卡內的晶片資料,完整達成溝通與解讀任務。

電子標籤發送身分代碼訊息給讀卡機,即驅動內部晶片發送訊號。圖/維基百科

每一張悠遊卡都有獨立的電子標籤,當卡片靠近悠遊卡標誌的磁場感應範圍內,即可透過電磁感應的原理,驅使電子標籤內的線圈產生感應電流,此電流供應電子標籤傳送資訊至讀卡機,以解讀晶片資料。

或許讀者會好奇,沒有電池的悠遊卡怎麼產生電流呢?這個問題也需要以法拉第電磁感應定律說明。

依法拉第電磁感應定律,悠遊卡的線圈迴路會因為磁場強弱的變化,以及通過的面積區域角度變化而產生類似電池驅動電流功能的「感應電動勢」,或稱為感應電壓。此感應電壓大小與線圈匝數及每匝線圈中磁場隨時間的變化率有關。匝數愈多,磁場變化率愈大,悠遊卡迴路中的感應電壓愈大,產生的感應電流就愈大。

-----廣告,請繼續往下閱讀-----
當卡片靠近標誌的磁場感應範圍內,即透過電磁感應產生感應電流。圖/《我們的生活比你想的還物理

因此,悠遊卡雖然沒有內建電池,但可以透過電磁波的應用,採用無線射頻辨識系統,在運作時,讀卡機持續發出電磁波,當卡片接近時,其內部線圈產生感應電動勢,再進一步驅動感應電流。此感應電流讓卡片內的晶片發出電磁波,回傳必要的資訊給讀卡機,完成感應過閘的流程。

以臺北、臺中和高雄的悠遊卡來說,採用的是無線射頻辨識系統模式,屬於比較低頻率的電磁波,卡片必須距離讀卡機約 14 公分內,才能讀取卡片的晶片資料。因此若將悠遊卡裝在比較厚的皮夾或兩張磁卡疊在一起,可能無法第一時間完成讀卡,而形成「卡片無法讀取」的「卡卡」現象,建議單純使用悠遊卡過閘,較能順暢通過閘門。

其他如進出家門的感應磁扣、停車場的票卡、信用卡感應支付、國道收費系統 ETC 等,皆是應用無線射頻辨識系統 RFID 的技術,只不過國道收費系統 ETC 的感應器的感應距離約需 60 公尺內,才能順利讀取通過車輛的相關資訊。

台灣高速公路的電子道路收費系統(electronic toll collection, ETC)。圖/維基百科

物理小教室

  • 手機行動支付的物理學原理

手機支付的運作原理也是基於 RFID 發展而出的近場通訊(near-field communication,NFC) 技術。目前近場通訊技術採用頻率為 13.56 MHz 的電磁波,以 106 kbit/s、212 kbit/s 或 424 kbit/s 這 3 種速率傳輸資料,bit 翻譯為位元,是電腦資料的最小單位。

-----廣告,請繼續往下閱讀-----

利用手機支付時,須靠近刷卡機約 4 公分距離內,此時可藉由電磁波傳遞相關資訊,完成付款手續。近場通訊技術不只有用在手機支付, 也可運用傳輸文字、照片、音樂檔案,是目前手機常見的內建功能。

  • 電磁感應的進階說明

電動勢(electromotive force, emf)可以驅動導體內的電荷移動, 產生電流。電池因為內部材料的屬性,會在正負極產生固定的電位差或電壓。電動勢是電池正負極間的電位差,也常稱為電壓,其國際單位制(SI)單位為伏特(V)。

導體內的電流與電壓成正比,假設導線的電阻及電池的內電阻都可略去不計,電路中流動的電流是電壓與電阻相除後的數值。可知電池的電動勢,可以驅動迴路上的電流,讓燈泡發光發熱。

然而,一個未接電源的迴路導線圈,可不可能產生電流?可以。若是通過迴路導線圈的磁場變化或磁通量改變,也會產生感應電流,這是發電機的原理,也是物理學家法拉第和冷次的電磁感應概念。

-----廣告,請繼續往下閱讀-----

電磁爐和捷運列車的磁煞車也是運用電磁感應的概念。電磁爐內部的主要構造是由絕緣體包覆的導線環繞的線圈,當交流電通過線圈時, 電磁爐表面就會產生隨時間改變的磁場,這個磁場的變化會同時在鍋子底面產生應電流,再透過電流熱效應加熱鍋子,也加熱食物。

——本文摘自《我們的生活比你想的還物理》,2022 年 11 月,商周出版,未經同意請勿轉載。

商周出版_96
119 篇文章 ・ 360 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

1

10
6

文字

分享

1
10
6
玻璃碎滿地怎麼辦?掃一掃再回收啊!它是「碳中和」的送分題
暐恩咖啡_96
・2021/12/16 ・3220字 ・閱讀時間約 6 分鐘

過去十年是人類史上最熱的日子,且全球海平面上升速度加快至原來的近 3 倍 [1],氣候變遷不是未來式,而是現正「熱」映中。

若地球再升溫攝氏 1.5 度,氣候的變化可能變得無法挽回,而且上升的海平面將會入侵沿海城市與人口稠密的平原區,人類生存將會面臨很大的挑戰,為了避免如此巨大的災難,IPCC 訂定了全球行動基準:2030 年前,全球碳排放量需減半[2],時限只有不到十年的時間。

可是人類的所有的活動,都會或多或少造成二氧化碳排放,難道真的要靠薩諾斯彈個手指消滅一半的人類嗎?粗暴的行為 duck 不必!我們只需要將「碳中和」的概念貫徹於生活中就可以了。

本圖為過去三十年全球表面平均溫度值,可以看出全球溫度明顯上升。圖/WIKIPEDIA

先談談什麼是「碳中和」

碳中和(carbon neutrality),是指通過使用低碳能源取代化石燃料、植樹造林、節能減排等方法,抵銷各種產品或活動造成的二氧化碳排放,實現正負抵消,達到相對「零排放」的做法。

-----廣告,請繼續往下閱讀-----

一般常見的做法有兩種:

  • 建立碳補償系統。例如:透過植樹造林、購買再生能源憑證[註1] ,從大氣中移除因為某項產品或活動造成的碳排放量。
  • 使用低碳或零碳排的技術。例如使用再生能源(如風能和太陽能),而非化石燃料,以避免因燃燒化石燃料而排放二氧化碳到大氣中。
利用風力發電等再生能源來替代火力發電,能夠相對減少碳排放量。圖/Pexels

但無論是碳補償系統或是再生能源產業,都還需要花很長的時間來建設,那麼,有什麼是我們在日常生活中可以落實的?——有的!那就是玻璃回收。

玻璃:完全可再生利用的材質

玻璃是將石英(SiO2,砂的主要成分)混合了定量的碳酸鈉與碳酸鉀後,在 1,500 °C 熔煉爐中燒製而成的,是一種透明、高硬度的材料,具有成分安定的特性,所以許多化學會使用玻璃瓶來盛裝。

但也是因為不易腐化的特性,如果將廢玻璃作為垃圾處理,無論是掩埋或是焚化,都無法很有效的處理廢玻璃,玻璃碎片將成為土壤中難以分解的物質。

-----廣告,請繼續往下閱讀-----

但這也不是什麼難解的問題,因為玻璃是一種可以完全再利用及再生的材質,可以被再製成各類玻璃產品或玻璃原料,具有一定的回收價值。

玻璃主要回收方式有兩種:

  • 原型利用:將使用過的玻璃容器或產品直接回收再利用,不經由粉碎等過程,常見於玻璃容器回收。
  • 粉碎玻璃粒料再利用:將使用過的玻璃產品,回收後經由清洗、粉碎、去除雜質後,製成可供再次熔煉的玻璃粒料,常見於平板玻璃的回收。

其中「原型利用」是最簡單又最能有效減碳的再利用模式,像是台灣菸酒公司及台灣青島啤酒公司針對其所使用的啤酒瓶等容器,透過回收瓶費制度及逆向回收系統,將收回的玻璃酒瓶經清洗與高溫消毒處理後,就可以重複裝填啤酒等產品。

玻璃酒瓶很適合「原型利用」的回收方式,原酒廠只要將瓶子回收、清洗後,就能再次利用了。圖/Pixabay

生產新玻璃,加熱原料「碳排量」極高

若是生產全新的玻璃瓶,在加熱原料時需要燃燒天然氣來達到高溫,這個步驟佔玻璃製造碳排放量的 75% 至 85%,其他的排放量大多是來自於原料之間化學反應的副產物[3]。與之相比起來,「原型利用」幾乎是零碳排的作法,也是最節省成本與材料資源的好方法。

-----廣告,請繼續往下閱讀-----

即使是難以直接再利用的平板玻璃,粉碎後重新煉製成玻璃也能大量減少碳排放量,因為融化碎玻璃所需要的溫度較低,能減少燃料的使用,而且碎玻璃融化時,不會像石英沙等原材料釋放二氧化碳,從而減少碳排放量。

根據歐洲容器玻璃聯盟 (FEVE) 的說法,與完全由原材料製造玻璃相比,熔爐中每使用 10% 的回收碎玻璃,可減少 5% 二氧化碳排放量[3],若再參照我國行政院環境保護署網站資訊,台灣的玻璃製造廠使用的原料中,回收碎玻璃約佔 50%[4],換算下來約能減少 25% 的碳排量。

除此之外,粉碎玻璃粒料還可以作為玻璃瀝青、透水磚等環保建材的材料。然而這種回收難度不高、用途又廣泛的材料,在大多數國家卻仍當作垃圾掩埋,為什麼?

利用回收碎玻璃重新燒製成玻璃產品也能減少許多碳排放量。圖/Pexels

美國玻璃回收率僅 31%,算是放牛班

歐洲是少數妥善回收玻璃的地區,也是全球回收玻璃的領頭羊,所有 27 個歐盟成員國以及英國,已經回收了境內四分之三的容器玻璃,並且每個新的玻璃製品使用了約 52% 的回收材料,而且他們還希望做到更好,當地的玻璃容器業有一個宏大的願景:希望能在 2030 年以前將容器玻璃收率達到 90%。

-----廣告,請繼續往下閱讀-----

與歐洲相比,美國的消費習慣與環保概念仍十分落後,根據美國國家環境保護局(Resources in Traditional Chinese Language)的數據,僅 2018 年美國就把 700 萬噸玻璃當作垃圾掩埋了,佔所有固體城市垃圾的 5.2%,僅有 31% 的玻璃容器被回收。

幸好,還是有部分區域自發性的在為玻璃回收做出貢獻,像是有美國維吉尼亞州阿靈頓郡的玻璃包裝協會,他們正努力趕在 2030 年前將玻璃容器回收比例提高到 50%;而南非的玻璃回收公司(Glass Recycling Company),成功將整個南非的玻璃回收率從 2005-06 年的 18% 提高到 2018-19 年的 42%。

但在其他開發中國家——例如在中國、巴西或印度,沒有公佈明確的回收現況報告或者未來的計畫,然而這些國家也有著巨大的生產力與消費力,環保永續的未來必須要大家一同參與,否則是對寶貴資源的巨大浪費。

垃圾, 废金属, 浪费, 环境污染, 金属, 环境保护, 环境, 玻璃回收利用, R, 所作, 瓶子, 处置
環境是大家共享的,保護環境的責任也是。圖/Pixabay

玻璃是透明的,但不能視而不見地埋起來

從工業革命開始,人類不斷的使用石化燃料、排放溫室氣體,未來十年內,二氧化碳就會達到足以改變氣候的濃度,放縱的消費習慣是該懸崖勒馬了。

-----廣告,請繼續往下閱讀-----

玻璃是必不可少的材料,我們當然可以繼續使用,只需要確保它被正確地回收再利用,而不是被埋進垃圾場裡,就能大大減少製造過程所產生的二氧化碳,邁向循環永續的綠色供應鏈。

就讓我們從玻璃回收再利用開始做起,讓回收玻璃成為「碳中合未來」的敲門磚!

註解

註 1:再生能源憑證是再生能源電力生產的證明,通常以度或千度電量為單位,在憑證上會紀錄這批電力的發電方式、生產地點及生產時間,並透過國家認可的第三方認證,證明你買到的是純綠電,也稱綠電憑證。造成碳排的一方可以購買再生能源憑證,等於是將自己產出的碳排放量交由再生能源業者回收。

參考資料

  1. 聯合國氣候變遷最新報告顯示全球氣溫上升速度快過預期
  2. 碳中和
  3. Nature : Glass is the hidden gem in a carbon-neutral future
  4. 行政院環境保護署 生活廢棄物質管理資訊系統
  5. IPCC https://www.ipcc.ch/sr15/
  6. 認識再生能源憑證
  7. 永續發展從哪裡來能往哪裡去?減碳還不夠,下一站是「碳中和」
  8. 資源回收網- 材質專區
  9. 升溫逼近關鍵的1.5度,IPCC釋出最新氣候報告
  10. 氣候變化:九張圖看懂全球變暖和你我的關係
  11. 維基百科 玻璃
所有討論 1
暐恩咖啡_96
3 篇文章 ・ 0 位粉絲
一入生科 一生科科 我是說熱愛科普啦~ 努力將科學知識 譜寫成大家都能會心一笑的文章

0

2
1

文字

分享

0
2
1
窗殺事件:鳥類的隱形殺手
科學月刊_96
・2020/03/24 ・2499字 ・閱讀時間約 5 分鐘 ・SR值 544 ・八年級

  • 文/王齡敏,獸醫師,社團法人台灣猛禽研究會猛禽救傷站主任。

全球各地的大城市當中,因建築的玻璃與鏡子等設計,經常會發生鳥類飛行時錯認這些是可飛行的路徑,導致撞上而造成傷亡的「窗殺」事件。窗殺可歸納為日間撞擊與夜間撞擊,兩者成因不同。

窗殺事件層出不窮,臺灣也該正視此問題,並研擬出相關的預防措施。

世界各國的窗殺事件

有一種人為的無心傷害,造成每年上億隻野鳥死亡。

這種因撞擊玻璃或建物而導致的傷害稱為窗殺 (bird-building collisions 或 bird-window collisions)。世界各地每年都有多起窗殺案例,舉例來說,美國約有 3 億 6500 萬 ~ 9 億 8800 萬起案例、加拿大約 1600 ~ 4200 萬起及南韓每年約 800 多萬隻野鳥死亡。

有一種人為的無心傷害,造成每年上億隻野鳥死亡。圖/mradsami@Pixabay

雖然北美對野鳥窗殺議題已研究 30 多年,但在臺灣卻很少被提及與討論,相關的研究甚至付之闕如。

-----廣告,請繼續往下閱讀-----

回歸到窗殺的發生原因,為何鳥類特別容易撞玻璃呢?

  • 首先,鳥類(或大部分的動物)無法將玻璃辨識為隔離物或障礙物;
  • 第二,鳥類雖具有翅膀可飛翔並來去自如,但也容易誤判如高樓的玻璃反射影像而撞上。

北美研究窗殺議題多年,美國明尼蘇達州奧杜邦學會 (Audubon Minnesota) 於 2010 年 5 月出版的《鳥類安全之建築指南》(Bird-Safe Building Guidelines),大致將窗殺歸納為日間撞擊與夜間撞擊。

日間撞擊原因有二:

  • 一為玻璃具有穿透性,因此玻璃帷幕或隔音牆等建物,若是位於鳥類可能穿越的路徑上,便會導致窗殺;
  • 二為玻璃的鏡像反射效應,即使透明的玻璃也可能會產生鏡像的效果,更遑論貼有隔熱紙或特別設計為單向透視的鏡面玻璃。

甚至一些半戶外環境,如公廁或游泳池等設立的鏡子,鏡像效果導致鳥類無法分辨影像真偽,以為反射的遠景或山林影像可以飛過,因此一頭撞上,嗚呼哀哉。

-----廣告,請繼續往下閱讀-----

夜間撞擊的原因則為燈塔效應 (beacon effect),當夜間空氣濕度較高,或有霧氣或霧霾時,建築物的燈光會吸引遷徙中的鳥類,導致鳥類迷航而誤撞建物。

欸?原來那邊飛不過去嗎?圖/GIPHY

明尼蘇達的窗殺案例

筆者曾於 2013~2015 年間服務於美國明尼蘇達大學猛禽中心 (The Raptor Center, University of Minnesota),當時聽聞明尼亞波利斯 (Minneapolis) 市中心將興建美國合眾銀行體育場 (U.S. Bank Stadium),並計畫採用大面積的玻璃作為建築設計。

筆者在當地工作期間曾數次路過該體育館改建前的休伯特‧漢弗萊體育場 (Hubert H. Humphrey Metrodome),由於當時對窗殺涉入不深,是無意間與一名猛禽中心的志工聊天而討論到此事,他表示很擔心這棟建築未來對於當地鳥類的衝擊。

-----廣告,請繼續往下閱讀-----

而在筆者先前擔任野生動物獸醫師的職涯中,不時會接獲窗殺案例,但由於占傷病原因的比例並不高,所以過去筆者認為這只是不常見的偶發傷害。直到回國後,於 2017 年起在台灣猛禽研究會(以下簡稱猛禽會)進行猛禽救傷,發現為數不少的猛禽因撞窗而癱瘓,才逐漸意識到窗殺對於野鳥的衝擊。

後來明尼亞波利斯的新體育場於 2016 年落成,當地的研究人員蒐集並分析 2017 ~ 2018 年間的野鳥撞玻璃案例,他們除了合眾銀行體育場外,還監測當地其它 20 棟具窗殺風險的建築。

現已落成的美國合眾銀行體育場。圖/Wikipedia

調查期間共蒐集 1000 多起的鳥類窗擊案例,發現合眾銀行體育場窗擊事件占所有 21 棟建築的第二高位(225 ~ 229 件),其中包括 42 種鳥類(該研究調查到的窗殺鳥種共 75 種)。

-----廣告,請繼續往下閱讀-----

報告中指出窗殺會因季節不同而有所變化,秋季明顯高於春、夏二季(冬季因當地過去研究窗殺機率低,故此研究未將其納入),秋過境期的窗殺比率為春過境期四倍,而候鳥遭窗殺的數量則較高,前五名物種皆是候鳥,分別為白喉帶鵐 (Zonotrichia albicollis)、黃喉蟲森鶯 (Leiothlypis ruficapilla)、橙頂灶鶯 (Seiurus aurocapilla)、黃喉地鶯 (Geothlypis trichas) 與灰綠叢森鶯 (Leiothlypis peregrina),占此研究窗殺比例近 50%。

臺灣也該正視鳥類窗殺事件!

北美許多地區都有類似的研究報告與長期監測活動,但臺灣對窗殺的系統性研究目前仍未開啟,頂多只有一些零星的撞玻璃傷亡鳥類的花邊新聞報導。

筆者於去 (2019) 年起設立臉書社群「野鳥撞玻璃回報」,希望藉由網友的力量蒐集國內關於野鳥窗殺資料。另外,猛禽會也於去年獲得聯華電子主辦的「綠獎」青睞,計畫今 (2020) 年於臺灣北部地區執行野鳥窗殺調查與友善鳥類玻璃教育推廣,希望引起社會大眾、企業與政府對於野鳥窗殺的重視。

該如何避免窗殺?

看到這裡,或許讀者會急著想知道到底如何防止野鳥窗殺。其實江湖一點訣,說破不值錢,原理就在於想辦法讓鳥能「看到」或「看懂」眼前的玻璃(無論窗戶、鏡子或隔音牆等)是無法通過的阻隔物。

-----廣告,請繼續往下閱讀-----

因此,凡是改善玻璃材質,如霧面、雕花或蝕刻圖案等;玻璃上裝飾,如貼或畫上密集圖案或大面積圖案等;與玻璃外布置,如掛上許多垂墜物、植生牆、圍欄和隱形鐵窗等,都有防治效果。

但依筆者經驗,最常見的錯誤防治法就是在面積不小的玻璃上只貼一張猛禽貼紙或鷹眼貼紙,認為鷹的形象可以嚇阻鳥兒不接近,但最後卻發現效果不彰。

大面積玻璃只貼一張猛禽貼紙並無法達到防止鳥類撞擊效果,圖為一隻翠翼鳩在貼有猛禽貼紙的旁側玻璃窗殺死亡。圖/姚正得

其實,這就如同在農田設立稻草人,鳥類會判斷環境中的威脅者,當牠發現貼在玻璃的飛鷹不會動,會判定沒有威脅,自然不當一回事,反而想從沒貼貼紙的玻璃處飛去而導致窗殺。

-----廣告,請繼續往下閱讀-----

因此美國奧杜邦學會曾做過研究,想知道到底要布置多密,野鳥才不會飛撞玻璃。實驗結果顯示,寬 5 公分 × 長 10 公分(約 2 英寸 × 4 英寸)的布置間隔可以防止 90% 以上的窗殺,或許讀者們可以參考,做為野鳥窗擊風險玻璃的改善準則。

窗外可使用間隔 10 公分寬的繩子垂掛,也有相當不錯的防治鳥類窗殺效果。圖/蔡宜樺

延伸閱讀

  1. Bird-Safe Building Guidelines
  2. 野鳥撞玻璃回報 (Reports on Bird-Glass Collisions)
  3. Birds Striking Building Windows Final 032014

 

〈本文選自《科學月刊》2020 年 3 月號〉

在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

-----廣告,請繼續往下閱讀-----
科學月刊_96
249 篇文章 ・ 3498 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。