Loading [MathJax]/extensions/tex2jax.js

0

2
1

文字

分享

0
2
1

窗殺事件:鳥類的隱形殺手

科學月刊_96
・2020/03/24 ・2499字 ・閱讀時間約 5 分鐘 ・SR值 544 ・八年級

  • 文/王齡敏,獸醫師,社團法人台灣猛禽研究會猛禽救傷站主任。

全球各地的大城市當中,因建築的玻璃與鏡子等設計,經常會發生鳥類飛行時錯認這些是可飛行的路徑,導致撞上而造成傷亡的「窗殺」事件。窗殺可歸納為日間撞擊與夜間撞擊,兩者成因不同。

窗殺事件層出不窮,臺灣也該正視此問題,並研擬出相關的預防措施。

世界各國的窗殺事件

有一種人為的無心傷害,造成每年上億隻野鳥死亡。

這種因撞擊玻璃或建物而導致的傷害稱為窗殺 (bird-building collisions 或 bird-window collisions)。世界各地每年都有多起窗殺案例,舉例來說,美國約有 3 億 6500 萬 ~ 9 億 8800 萬起案例、加拿大約 1600 ~ 4200 萬起及南韓每年約 800 多萬隻野鳥死亡。

有一種人為的無心傷害,造成每年上億隻野鳥死亡。圖/mradsami@Pixabay

雖然北美對野鳥窗殺議題已研究 30 多年,但在臺灣卻很少被提及與討論,相關的研究甚至付之闕如。

回歸到窗殺的發生原因,為何鳥類特別容易撞玻璃呢?

-----廣告,請繼續往下閱讀-----
  • 首先,鳥類(或大部分的動物)無法將玻璃辨識為隔離物或障礙物;
  • 第二,鳥類雖具有翅膀可飛翔並來去自如,但也容易誤判如高樓的玻璃反射影像而撞上。

北美研究窗殺議題多年,美國明尼蘇達州奧杜邦學會 (Audubon Minnesota) 於 2010 年 5 月出版的《鳥類安全之建築指南》(Bird-Safe Building Guidelines),大致將窗殺歸納為日間撞擊與夜間撞擊。

日間撞擊原因有二:

  • 一為玻璃具有穿透性,因此玻璃帷幕或隔音牆等建物,若是位於鳥類可能穿越的路徑上,便會導致窗殺;
  • 二為玻璃的鏡像反射效應,即使透明的玻璃也可能會產生鏡像的效果,更遑論貼有隔熱紙或特別設計為單向透視的鏡面玻璃。

甚至一些半戶外環境,如公廁或游泳池等設立的鏡子,鏡像效果導致鳥類無法分辨影像真偽,以為反射的遠景或山林影像可以飛過,因此一頭撞上,嗚呼哀哉。

夜間撞擊的原因則為燈塔效應 (beacon effect),當夜間空氣濕度較高,或有霧氣或霧霾時,建築物的燈光會吸引遷徙中的鳥類,導致鳥類迷航而誤撞建物。

-----廣告,請繼續往下閱讀-----
欸?原來那邊飛不過去嗎?圖/GIPHY

明尼蘇達的窗殺案例

筆者曾於 2013~2015 年間服務於美國明尼蘇達大學猛禽中心 (The Raptor Center, University of Minnesota),當時聽聞明尼亞波利斯 (Minneapolis) 市中心將興建美國合眾銀行體育場 (U.S. Bank Stadium),並計畫採用大面積的玻璃作為建築設計。

筆者在當地工作期間曾數次路過該體育館改建前的休伯特‧漢弗萊體育場 (Hubert H. Humphrey Metrodome),由於當時對窗殺涉入不深,是無意間與一名猛禽中心的志工聊天而討論到此事,他表示很擔心這棟建築未來對於當地鳥類的衝擊。

而在筆者先前擔任野生動物獸醫師的職涯中,不時會接獲窗殺案例,但由於占傷病原因的比例並不高,所以過去筆者認為這只是不常見的偶發傷害。直到回國後,於 2017 年起在台灣猛禽研究會(以下簡稱猛禽會)進行猛禽救傷,發現為數不少的猛禽因撞窗而癱瘓,才逐漸意識到窗殺對於野鳥的衝擊。

後來明尼亞波利斯的新體育場於 2016 年落成,當地的研究人員蒐集並分析 2017 ~ 2018 年間的野鳥撞玻璃案例,他們除了合眾銀行體育場外,還監測當地其它 20 棟具窗殺風險的建築。

-----廣告,請繼續往下閱讀-----
現已落成的美國合眾銀行體育場。圖/Wikipedia

調查期間共蒐集 1000 多起的鳥類窗擊案例,發現合眾銀行體育場窗擊事件占所有 21 棟建築的第二高位(225 ~ 229 件),其中包括 42 種鳥類(該研究調查到的窗殺鳥種共 75 種)。

報告中指出窗殺會因季節不同而有所變化,秋季明顯高於春、夏二季(冬季因當地過去研究窗殺機率低,故此研究未將其納入),秋過境期的窗殺比率為春過境期四倍,而候鳥遭窗殺的數量則較高,前五名物種皆是候鳥,分別為白喉帶鵐 (Zonotrichia albicollis)、黃喉蟲森鶯 (Leiothlypis ruficapilla)、橙頂灶鶯 (Seiurus aurocapilla)、黃喉地鶯 (Geothlypis trichas) 與灰綠叢森鶯 (Leiothlypis peregrina),占此研究窗殺比例近 50%。

臺灣也該正視鳥類窗殺事件!

北美許多地區都有類似的研究報告與長期監測活動,但臺灣對窗殺的系統性研究目前仍未開啟,頂多只有一些零星的撞玻璃傷亡鳥類的花邊新聞報導。

筆者於去 (2019) 年起設立臉書社群「野鳥撞玻璃回報」,希望藉由網友的力量蒐集國內關於野鳥窗殺資料。另外,猛禽會也於去年獲得聯華電子主辦的「綠獎」青睞,計畫今 (2020) 年於臺灣北部地區執行野鳥窗殺調查與友善鳥類玻璃教育推廣,希望引起社會大眾、企業與政府對於野鳥窗殺的重視。

-----廣告,請繼續往下閱讀-----

該如何避免窗殺?

看到這裡,或許讀者會急著想知道到底如何防止野鳥窗殺。其實江湖一點訣,說破不值錢,原理就在於想辦法讓鳥能「看到」或「看懂」眼前的玻璃(無論窗戶、鏡子或隔音牆等)是無法通過的阻隔物。

因此,凡是改善玻璃材質,如霧面、雕花或蝕刻圖案等;玻璃上裝飾,如貼或畫上密集圖案或大面積圖案等;與玻璃外布置,如掛上許多垂墜物、植生牆、圍欄和隱形鐵窗等,都有防治效果。

但依筆者經驗,最常見的錯誤防治法就是在面積不小的玻璃上只貼一張猛禽貼紙或鷹眼貼紙,認為鷹的形象可以嚇阻鳥兒不接近,但最後卻發現效果不彰。

大面積玻璃只貼一張猛禽貼紙並無法達到防止鳥類撞擊效果,圖為一隻翠翼鳩在貼有猛禽貼紙的旁側玻璃窗殺死亡。圖/姚正得

其實,這就如同在農田設立稻草人,鳥類會判斷環境中的威脅者,當牠發現貼在玻璃的飛鷹不會動,會判定沒有威脅,自然不當一回事,反而想從沒貼貼紙的玻璃處飛去而導致窗殺。

-----廣告,請繼續往下閱讀-----

因此美國奧杜邦學會曾做過研究,想知道到底要布置多密,野鳥才不會飛撞玻璃。實驗結果顯示,寬 5 公分 × 長 10 公分(約 2 英寸 × 4 英寸)的布置間隔可以防止 90% 以上的窗殺,或許讀者們可以參考,做為野鳥窗擊風險玻璃的改善準則。

窗外可使用間隔 10 公分寬的繩子垂掛,也有相當不錯的防治鳥類窗殺效果。圖/蔡宜樺

延伸閱讀

  1. Bird-Safe Building Guidelines
  2. 野鳥撞玻璃回報 (Reports on Bird-Glass Collisions)
  3. Birds Striking Building Windows Final 032014

 

〈本文選自《科學月刊》2020 年 3 月號〉

在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3754 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

2

11
5

文字

分享

2
11
5
小鳥為什麼不走路要用彈跳的?——《鴿子為什麼要邊走邊搖頭?》
晨星出版
・2023/10/25 ・1493字 ・閱讀時間約 3 分鐘

彈跳的鳥類

用雙腳移動時,只有鳥類會使用而人類不會用的動作,那就是彈跳。這種名為彈跳的運動既困難又麻煩,為什麼鳥要這樣子彈跳呢?其實到現在我們還無從得知。

如同前述,彈跳是兩腳幾乎同時一起跳的運動方式。我們常見的鳥,像是麻雀和日菲繡眼這種小鳥就是用彈跳的(圖一),而烏鴉在急的時候也會彈跳。

麻雀是兩腳並用一起跳,但也有兩腳稍微錯開來彈跳的物種。例如巨嘴鴉之類的鳥類身體會微微傾斜,左右腳些微錯開,用「噠噠、噠噠」這樣的節奏來彈跳。這兩種本質上的差異目前還不清楚,不如說彈跳跟跑步的差異也還不清楚,所以步行研究者目前也是束手無策。

圖一、麻雀的彈跳,左右腳微微錯開著地(照片 ③ 中偏差大約是 1/120 秒)

歐亞喜鵲這種鳥同時會彈跳也會跑步,但比較兩者的研究顯示,在跑步與彈跳中,腳的運動方式跟肌肉動作幾乎一樣。彈跳跟跑步一樣,是高速移動的方式,活用肌腱像是彈簧的功能來轉換動能跟彈性位能。然後,兩種的差別只有「雙腳交互動作」或是「幾乎一起動作」而已。

-----廣告,請繼續往下閱讀-----

彈跳和跑步除了腳動的時機以外沒有什麼不同,那為什麼只有一部分的鳥是用彈跳的呢?

這個問題,很遺憾現在的科學還沒有解開,現階段一致贊同的只有:一般認為會彈跳的鳥是相對小型的種類,以及常待樹上的種類。看了許多鳥以後,會發現確實小型的鳥很常彈跳。另外,喜歡待在樹上的鳥則是常用兩腳一起從一根樹枝跳到另一根樹枝上,所以在地上也同樣會用兩腳一起跳躍,這樣說來可能就會覺得可以理解。

但是在樹上彈跳,在地上也還是可以步行不是嗎?不這樣區分移動方式,應該是因為有什麼身體構造或生理學上的理由才對,但這問題至今仍然是謎。

-----廣告,請繼續往下閱讀-----
圖/giphy

另一方面,小型的鳥喜歡彈跳的理由,如果用「彈跳適合用來高速移動」,可以解釋一部分的疑問。比起小型鳥,大型鳥的步幅更大,一般步行速度也比較快。如果小型鳥想跟大型鳥用同樣速度移動的話,就需要走得很快。像是人類,也很常在路上看到小孩要小跑步拚命跟上大人的走路速度。跟那個狀況相同,小型鳥有使用相對身體尺寸的高速進行移動的必要性。

想像看看會啄食掉落在地面的種子的鴿子和麻雀,如果用同樣密度灑餌,鴿子只要數步就能抵達下一個餌也說不定,但小型的麻雀需要移動相對更遠的距離才能拿到餌(圖二)。這樣一來就需要比較急著移動,這麼解釋或許也很合理。

圖二、假設在距離鴿子兩個身體遠的地方放餌,對體型較小的麻雀來說,同距離就需要移動六個身體的長度,不移動更遠的距離就沒辦法拿到餌。

但是彈跳和跑步如果是同樣的運動,那為什麼不能用跑的呢?「小型鳥比較需要快速移動」這種說明,很遺憾地似乎不能完全解釋為什麼要選擇彈跳。

但這麼簡單的問題,21世紀的科學還無法解釋,真是令人驚訝。

-----廣告,請繼續往下閱讀-----

——本文摘自《鴿子為什麼要邊走邊搖頭?》,2023 年 8 月,晨星出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 2

0

0
1

文字

分享

0
0
1
為什麼腿短短,走路還搖搖晃晃?解密企鵝賣萌的背後真相!——《鴿子為什麼要邊走邊搖頭?》
晨星出版
・2023/10/24 ・1652字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

企鵝搖搖晃晃地走路

圖/giphy

說到用兩隻腳走路的鳥類,就不得不提企鵝。企鵝用兩隻腳在冰上搖搖晃晃走路的樣子非常可愛。在水中卻可以自由自在地高速游泳、追捕魚,這兩種樣子帶給人的印象有非常大的不同。

話說,企鵝意外地可以走很長一段距離。牠們會在地上蒐集石頭來作巢,所以當然要可以走到築巢的地點。通常企鵝類的繁殖群會位在距離海岸線幾百公尺的地方,但有時會在距離海岸 3 公里以上的內陸,想像企鵝排成一列搖搖晃晃地走 3 公里,實在是可愛至極。

說是這樣說,但是走 3 公里,我們人類都覺得有點遠了,企鵝真的可以搖搖晃晃走過去嗎?

牠們的走路方式感覺效率很差,好像很累。企鵝走路時腳會使用的力量以及計算其所需能量的研究顯示,企鵝的走路方式一如外表印象,效率很差。大概所有人都會覺得「我想也是」吧,但我們不妨來仔細思考為什麼會效率很差。

-----廣告,請繼續往下閱讀-----
圖/giphy

鵝生好累!企鵝其實一直蹲著?

在討論企鵝的步行時,首先得要知道的是其獨特的體型。企鵝看起來是用兩隻腳站著,腳感覺極端的短。大概因為身上的毛色彷彿穿著燕尾服一樣,總覺得像是人類的喜劇演員一般。

但是牠嚴格說來並不是「站著」。看企鵝的骨骼圖(圖一)就很清楚。髖關節跟膝關節強烈彎曲的姿勢,以人類來說就是「蹲著」。換言之,企鵝時時刻刻都是蹲著的,連走路時也是蹲著的狀態。試著自己蹲著走路看看,就會像企鵝那樣搖搖晃晃地。牠們搖搖晃晃的姿態,背後的祕密就是體型與姿勢。

而由此延伸,企鵝的步行方式非常沒效率的理由,可能就是身體橫向搖擺和轉動幅度非常大。搖擺跟旋轉的動作,對前進而言怎麼看都是不必要的舉動,但是根據之前的研究,其實企鵝不搖晃反而效率會更差。之前也說過雙足步行的動能跟位能要有效率地轉換,才能有效率地運動,但企鵝似乎是用橫向搖擺的動作來進行這種能量轉換。

圖一、企鵝的樣子跟人很像,所以如果讓企鵝在山手線月台上排隊,也不會有人發現(右),但是如果看骨骼(左),企鵝蹲下來就可以跟站著的人類簡單區分開來。

短腿優先?

也就是說,企鵝走路效率不佳的理由,跟牠們這種體型跟姿勢有關。

-----廣告,請繼續往下閱讀-----

企鵝的腳確實很短,以現在還活著的企鵝種類來說,體型最大的皇帝企鵝的體重將近 20 公斤,和澳洲的平胸鳥類鶆䴈幾乎相同,然而比較這兩種鳥類的腿長的話,鶆䴈的髖關節大概在 80 公分高的位置,而皇帝企鵝大概在 30 公分高左右。明明體重差不多相同,企鵝的腳的長度卻只有鶆䴈的一半以下,步行效率差也是沒辦法的事。

本章已經反覆提過好幾次,腿愈長一般來說會步行速度愈快、效率也愈好,企鵝的短腳和蹲下的姿勢非常不適合走路,這點沒有人能否定。

圖/giphy

企鵝的腳會這麼短,恐怕是為了在寒冷地帶保住體溫。雖然也有棲息在熱帶的企鵝,但多數企鵝都棲息在極地,在水中跟地面上不失去體溫就是牠們最重要的課題。四肢末梢要是比較長,就會因為體積的表面積變大,容易失去體溫。所以在寒冷地帶演化的物種,耳朵等突出部位通常都會比較小。

雖然意外地能走很長距離,但企鵝仍然主要屬於在寒冷地區游泳的鳥類,為此演化出的短腿跟蹲著的姿勢,必須讓身體左右搖晃走路來補足才更有效率。

-----廣告,請繼續往下閱讀-----

——本文摘自《鴿子為什麼要邊走邊搖頭?》,2023 年 8 月,晨星出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----