分享本文至 E-mail 信箱

學術引用格式

MLA (點一下全選)

APA (點一下全選)

EndNote(.enw)

鋼鐵人-東尼的夢幻3D電腦工作室

作者:Dark Duck(醫事檢驗師)

《鋼鐵人3》可是3D電影呢!回想起第一次看3D版《神鬼奇航》第四集的經驗太令我沮喪,透過3D眼鏡望出去還是有點模糊,居然只有字幕最清楚。不是3D電影不好,實在是現今的3D電影技術還不夠進步,不能讓人更舒適地享受3D立體電影的樂趣。好在《鋼鐵人3》有2D版本可看,不過我的程度不足以解讀其中的科幻設定,還望高手指點解惑啊。

這次換換應用科學的口味吧!東尼常在自宅地下室裡打造新的鋼鐵衣(Iron suit),竟也建造了42台馬克套組。他所使用的3D立體電腦系統太令人羨慕了,徒手操控漂浮在空中的機械藍圖與圖像資料,《Star wars》裡C3PO展示莉亞公主的求救立體影像已經不夠看啦。這麼夢幻的3D電腦工作室,將來有沒有可能成真呢?就現在已知的科技發展來想像一下吧!

為了符合東尼的3D電腦工作室運作方式,科技可分成兩部分來探討,一個是造成我內心陰影的3D影像投射技術,另一個是遊戲機使用的體感控制裝置。

IronMan

3D立體影像

在討論3D立體影像之前,還是得先了解雙眼視覺的生理學。雙眼視覺是指在雙眼視野範圍相互重疊之下,所產生的視覺。光線通過眼睛的瞳孔,經由水晶體折射,在視網膜上聚焦成像。光在視網膜轉化為脈衝訊號,經由視神經傳導到大腦皮質的視覺中樞。由於雙眼因為瞳孔距離而產生視差,在視網膜聚焦的圖像有差異但又十分相似,大腦會將雙眼的圖像差異進行整合,融合成單一的整體感覺,因此產生具有「深度」的距離感,也就是「立體視覺」。一個成功的3D立體影像,要能讓大腦解讀光線進入眼睛的視覺訊號,產生立體視覺才行。最直接的做法就是操縱進入眼睛的光線。

「擴增實境」是個不錯的選擇,這個技術發展得很早,早期發明的外觀就像是一個頭盔、頭戴式的螢幕,影像投射到眼睛產生影像,平面影像或立體影像皆可。有些3D電視的眼鏡也是這種裝置,現在最新穎的產品應該就是Google眼鏡了吧,但是這類裝置目前尚未普及。

現在看到立體影片的機會愈來愈多了,不管是3D電影還是3D電視,都需要戴一個很笨重的3D眼鏡。早期3D電影原本只在一些遊樂園中放映,還記得小時候拿到的還是紙做的3D眼鏡呢!需要戴眼鏡的3D電影原理,就是讓左右眼看到不同的影像,想辦法產生「視差」,讓大腦融合左右眼有差異的圖像,產生「立體視覺」。小時候的紙眼鏡是紅藍眼鏡,讓左右眼分別看到紅色或藍色的影像,再讓大腦將影像疊合起來,因為顏色差異產生立體視覺,我們看到的立體影像比較像是浮在螢幕前方的平面圖層。現在電影院的3D眼鏡是偏振光眼鏡,讓左右眼只能分別看到垂直偏振光或水平偏振光,利用光的偏振性而產生立體視覺,是現在應用最廣的立體顯示技術。

不過戴眼鏡太麻煩了,裸視3D影像變成另一種選擇。最普遍的裸視3D原理,是將不同角度的影像投射在空間中的不同位置,再讓左右眼接收不同角度的影像。更簡單地說,可以把裸視是3D想像成「把3D眼鏡直接戴在電視上」的情形。裸視3D的限制是必須待在特定位置觀看,才看得到3D影像,所以適合用在手機、掌上型遊樂器等近距離觀看的裝置。

另一方面,還有真實3D投影技術,可以不用戴眼鏡直接觀看。它也發展得很早,像是在博物館可見到的水晶球裝置,中央的圓型螢幕高速旋轉,利用視覺暫留的生理現象讓眼睛看到立體影像;後來還有正金字塔型或倒金字塔型的投射玻璃裝置,讓影像在金字塔型玻璃中成像;水蒸氣投影、雷射解離空氣投影等等也是利用不同的投射介質,形成真實的3D立體影像。熟悉AGC族群的朋友,應該最知道的真實3D投影就是初音未來的演唱會啦!這種投影只能算是半個3D,2.5D的投影技術,初音的影像還是需要投射到一面玻璃螢幕上,台下觀眾看到的影像才有立體感。

 

目前的商用3D投影技術(2013年在美國德州舉辦的Trade Show Holograms全像展),已經能夠達到的8呎(2.4公尺)高、20呎(6.1公尺)長的大小嘍!

(請參考Giant 3D Hologram projector wows crowd at Real Estate Conference in Dallas

時代在進步,2012年日本fVisiOn研發的Tabletop 3D Display技術有了突破性的創新,不用投射螢幕的真實3D立體影像。Tabletop 3D Display是一套桌上型立體裸視系統,光源在桌面下方,數道光線投射在特製的漏斗中,光線被特製的玻璃集中成像,立體影像就浮現在桌面上。這個影像其實還是平面影像,只是由上往下俯視造成3D的錯覺。由於投射出來的影像很小(高5公分),且可視角只有120度而已,fVisiOn也會持續改良至影像更大、更細緻、視角360度的3D影像。

另一個真實3D技術是利用很強的脈衝雷射把空氣擊穿打成電漿,電漿就可以發光或散射光,只要動態控制雷射的聚焦位置,就可以把任意的空間都當作是雷射的螢幕(見參考資料)。這個技術就符合史塔克不用投射螢幕的需求啦!缺點是需要用更強大的脈衝雷射(不知道會不會曬傷或損害視力),目前能呈現的顏色也很少。

(請參考〈脈衝雷射的電漿舞台〉

在史塔克的夢幻3D電腦工作室裡,3D立體投影技術還有很大的發展空間,想像以現在最新的Tabletop 3D Display技術加大版本來設置,還需要克服使用者站在立體影像中間,能不能看得到3D影像的問題,還是只能俯視才看得到?這都是業界研發部門需要考慮的問題。

體感控制

科技的進步常在意想不到的地方展開,電視遊樂器的發展,讓在空氣中揮揮手就能控制電腦螢幕的技術已經不是夢想嘍!
說到體感控制一定要提電視遊樂器始祖任天堂,任天堂 Wii遊樂器大開體感控制的先河,手持的體感搖桿和Wii Fit平衡板橫掃遊戲界,後來的平板電腦和智慧型手機也都內建了體感控制裝置,雖然現在看來已經是落後的技術,但它將體感控制技術帶進人類的生活中,實在功不可沒。

同樣是電視遊樂器的微軟Xbox,後來推出了「身體就是遊戲控制器」的Kinect,所以在空氣揮揮手就能遙控的技術已經在真實世界中實現了。Kinect所使用的不是Time of Flight技術,而是Light coding技術(見參考資料)。Kinect的紅外線攝影機發出人眼看不見的Class 1雷射光,透過鏡頭前的光柵將雷射光均勻分佈投射在測量空間中,再透過紅外線攝影機記錄下空間中的每個散斑,擷取原始資料後,再透過晶片計算成具有3D深度的圖像。Kinect將擷取到的3D影像透過骨架追蹤系統,轉換成動作指令。全身體感的優勢也使這種體感控制方式將來能夠應用到電腦、家電、手機上。

Kinect需要大量運算,所以會讓使用者有延遲的感受,而且動作判斷精準度較差,但我想東尼的AI電腦賈維斯一定能克服這些問題,史塔克3D電腦工作室的體感操作系統絕對是可行的。

參考資料

  1. 維基百科
  2. 《科學人雜誌》[科學easy learn]擴增實境︰虛擬與實境的無限延伸
  3. 《科學人雜誌》[科學easy learn]戴上眼鏡 看進立體世界
  4. 《科學人雜誌》[科學easy learn]丟掉眼鏡 當機不「立」斷
  5. 《科學人雜誌》[科學easy learn]電視節目變立體 裸視3D即將走入家庭
  6. [創新趨勢] 未來嶄新「視」界:3D立體投影技術
  7. [知識分享]立體觀影時代來臨,破解3D電視原理
  8. [癮科技]3d投影技術更進化,初音未來離你更近了!3D-投影技術 Tabletop 3D Display
  9. 《無線電技術月刊》從體感遊戲看動作感應技術
  10. [ T客邦]身體就是控制器,微軟Kinect是怎麼做到的? 
  11. Giant 3D Hologram projector wows crowd at Real Estate Conference in Dallas
  12. 真正的3D顯示技術: 脈衝雷射的電漿舞台!

原發表於Dark Duck’s Lab,作者投稿。

關於作者

活躍星系核

活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。