Loading [MathJax]/extensions/tex2jax.js

2

8
0

文字

分享

2
8
0

別意外!Google 真的聽得懂「人話」:BERT 自然語意演算法如何提升關鍵字理解能力?

Abby T
・2021/10/12 ・3416字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

打開搜尋引擎,不知道要輸入什麼用詞才能找到需要的資訊?例如,明明心中的疑問是「今天會下雨嗎?」,但打開Google搜尋,輸入的關鍵字卻是「本日 降雨機率」。

為了要讓搜尋引擎理解問題,大多數的人在使用 Google 搜尋時往往會捨棄口語用詞,改為輸入幾個簡單的關鍵字,久而久之已變成一種慣用的搜尋習慣。好像不那麼做,Google 會看不懂關鍵字,也就無法順利搜尋到需要的資訊。

但看看「Google 助理向美髮沙龍預約剪髮」的實際對話影片,可以發現 Google 其實有能力理解口語對話,還能像人類一樣回覆流利答覆,而這樣的能力也能在 2019 年「BERT 自然語意演算法」推出後,使用 Google 搜尋查找資訊時獲得類似的經驗。 

號稱能理解人類語言的 BERT 演算法

BERT 演算法有個繞口又深奧的全名:Bidirectional Encoder Representations from Transformers,翻成中文的字面意思還是很難理解。

-----廣告,請繼續往下閱讀-----

但簡單來說,它能幫助電腦更理解人類的語言。若應用在搜尋引擎方面,它能夠仔細辨識搜尋字串的「每個字」,再根據前後字詞的關係(上下文)去讀懂整個搜尋字串要表達的意思,而且與以往只擇一比對前一或後一個字詞不同的是,BERT 演算法是將前、後字詞都納入判斷語意的參考,所以能更精確判斷使用者搜尋該字串的意圖/目的。

BERT 演算法剛推出時,在美國地區、使用英文搜尋時的搜尋結果,約有 10% 受到影響,也就是每 10 個搜尋之中,會有 1 個搜尋結果受到影響,因此被稱為是繼 2015 年、號稱影響 Google 排名第三大因素的 RankBrain 推出後,Google 演算法史上目前最大的變革。除了英文以外,後來也逐漸推及到其他搜尋語言。

BERT 演算法背後的原理

1. 讓電腦聽懂「人話」:自然語言處理

自然語言指的是「人類自然而然說出來的語言」,因為正常狀況下,人類在對話時有上下文可以參考,因此能互相理解彼此的語意(當然偶爾還是可能出現溝通障礙,)。但電腦卻很難理解自然語言。而自然語言處理 Natural Language Processing (NLP),就是用來幫助電腦理解人類自然語言的一種技術。

以中文為例,因為中文句子不像英文句子,會用空格隔開各個單字,很容易因為斷句方式不同,而有不同的語意,因此,中文的自然語言處理至少要做到兩件事,第一件是將句子「斷成詞,以理解個別詞義」、第二件是「分析語意」,包括文法和整個句子的語意解讀。

-----廣告,請繼續往下閱讀-----

舉例來說,「他・有・繪畫・的・才能」和「放下・才・能・得到」這兩句話雖然都有「才能」,但兩個句子的斷句方式不同,「才能」在這兩句話的意思也不同。研究人員會將大量的類似句子做出這樣的斷句,讓電腦學習,往後當「才能」這個詞又出現時,電腦也能學會從上下文判斷,並做出適當的斷句。

脑, 芯片, 神经元, 学习机, 代码, 程序员, 网络, 计算机科学, 计算机芯片的, 头脑, 心理学
自然語言處理在會因為語言的不同而遇到不同的難題,以中文而言,處理「斷句」是一大挑戰。圖/Pixabay

2. 電腦「自學」的關鍵:詞向量

但詞彙那麼多,要如何讓電腦學習呢?最常見的方式是將詞彙轉換為「詞向量/詞嵌入」(Word Vector/ Word Embedding),簡單來說,就是以一連串數字代表詞彙,讓電腦更能理解詞彙之間的關係。每個詞彙都有一組數字,而這些數字是由比對大量前後文而統計出來的結果,可以用來比較詞彙間的關係遠近。

字義越相關,詞向量的距離越近,例如「蝴蝶」跟「飛」的向量距離比跟「爬」的向量距離還近。而且,隨著資料量越多,統計出來的數字也會隨之調整,詞彙間的關係因此能越來越精確。如此一來,電腦不需要語言學相關知識,也能透過蒐集大量資料和統計來自主學習,並且根據統計數據處理語言。

回到BERT來說,起初,研究人員研發出多個不一樣的語言理解處理模型,每個模型都有特定的功能,專職處理特定類型的語言理解,例如有的負責斷詞、有的負責分析語法、有的負責情感分析。就好像廚房中有各種不同的工具,水果刀用來切水果、開瓶器用來開紅酒,每個器具各司其職;而BERT就像是一把瑞士刀,一把在手就能滿足多種功能需求,BERT能處理大部分的自然語言處理問題,也就不再需要使用多種語言理解處理模型,這也是Google將BERT導入演算法應用的原因之一。 

-----廣告,請繼續往下閱讀-----

常見的自然語言處理有效運用案例有:客服常使用的聊天機器人、智慧型手機的詞彙建議等,能從幾個關鍵字判斷出完整句子,再從資料庫中找出適合的資料回應。

(補充:若想更深入了解BERT演算法原理,可參考Google官方釋出的Open Source說明。)

BERT 演算法的應用實例

Google 官方表示 BERT 將會擴大應用於多種語言的搜尋結果,但官方目前已釋出的舉例大多仍是以英文為主。

例如:使用者搜尋“2019 brazil traveler to usa need a visa”,是想知道「2019 年巴西旅客去美國旅遊是否需要簽證」,但在 BERT 演算法推出前,Google 忽略了使用者搜尋字串中的介係詞 “to”,因此將搜尋意圖錯誤理解為「美國旅客去巴西旅遊是否需要簽證」,提供的搜尋結果自然就會是針對美國人要去巴西旅遊的情境。

-----廣告,請繼續往下閱讀-----
圖/ Google 截圖

BERT 演算法強調搜尋引擎能辨識搜尋字串的「每個字」,再去理解整個搜尋字串要表達的語意,所以加入介係詞 “to” 去分析以後,就會得到完全不同、更準確的搜尋意圖,提供的搜尋結果自然更能符合使用者的需求。

雖然沒有官方資料證實,BERT演算法對於繁體中文搜尋結果有何影響。但實際搜尋幾組繁體中文關鍵字,仍可發現有 BERT 的蹤影。例如搜尋口語化的句子「今天會下雨嗎」,和較為正式的關鍵字用法「本日 降雨機率」,Google 搜尋結果第一個列出的,都是使用者所在位置的降雨機率預報。

「今天會下雨嗎」的搜尋結果。圖/Google截圖

根據上述例子,可以推測出,即使「今天會下雨嗎」是相當口語化的自然語言搜尋用語,但Google仍然能夠理解,使用者輸入「今天會下雨嗎」和「本日 降雨機率」這兩組關鍵字,所要找的資料其實是一樣的。

「本日 降雨機率」的搜尋結果。圖/Google截圖

BERT 演算法也有極限

先不論 BERT 演算法,是否能改善英文以外其他語言的搜尋結果,BERT 演算法本身也有以下一些限制:

-----廣告,請繼續往下閱讀-----

1. 不擅長理解否定敘述

語言學家 Allyson Ettinger 在他的研究論文 “What BERT is not” 中提出了幾個要點說明 BERT 的限制,其中特別指出 BERT 很難理解否定詞對於上下文語意的影響。

2. 不擅長理解長篇文件

電腦要理解長篇文件的挑戰性更高,因為大部分長篇文件會再細分為章節、段落、句子,即便是人類在閱讀長篇文件時,可能都需要參考文件架構才能理解整篇文件的內容。因此電腦在理解長篇文件時應該將架構一起納入處理,但理解長篇文件的架構對 BERT 演算法而言並不容易。

總結

Google 官方承認,即便導入了 BERT 來提升自然語言處理的成效,要精準理解自然語言對於電腦而言仍是非常有挑戰性。不過,針對搜尋結果優先列出的「精選摘要」部分,Google 表示目前至少在韓語、印地語和葡萄牙語都已有重大改善。在未來,Google 預計將 BERT 學習英文理解的這套模式套用到更多不同語言上,期待未來所有使用者在執行搜尋時,都能以最輕鬆自然的方式輸入,而不需要刻意思考應該輸入什麼關鍵字,才能被 Google 搜尋引擎所理解。

資料來源

  1. Google Duplex: AI will call and book your appointments
  2. FAQ: All about the BERT algorithm in Google search – Search Engine Land
  3. Open Sourcing BERT – Google AI Blog
  4. 如何斷開中文峰峰相連的詞彙鎖鍊,讓電腦能讀懂字裡行間的語意? – 泛科學 PanSci
  5. Understanding searches better than ever before – Google
  6. What BERT is not – Allyson Ettinger
  7. Google’s SMITH Algorithm Outperforms BERT – Search Engine Journal
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
Abby T
5 篇文章 ・ 7 位粉絲
任職於 JKL SEO 公司的 SEO 顧問兼內容行銷專欄作家。對 SEO搜尋引擎優化相關演算法小有研究,致力於將 SEO 相關知識,以淺顯易懂方式撰寫成科普文章,使普羅大眾有機會認識 SEO 這項專業數位行銷技術。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
0

文字

分享

0
3
0
量子革命來襲!一分鐘搞定傳統電腦要花數千萬年的難題!你的電腦是否即將被淘汰?
PanSci_96
・2024/10/17 ・2050字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

量子電腦:解碼顛覆未來科技的關鍵

2023 年,Google 發表了一項引人注目的研究成果,顯示人類現有最強大的超級電腦 Frontier 需要花費 47 年才能完成的計算任務,Google 所研發的量子電腦 Sycamore 只需幾秒鐘便能完成。這項消息震驚了科技界,也再次引發了量子電腦的討論。

那麼,量子電腦為什麼如此強大?它能否徹底改變我們對計算技術的認知?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

量子電腦是什麼?

量子電腦是一種基於量子力學運作的新型計算機,它與我們熟悉的傳統電腦截然不同。傳統電腦的運算是建立在「位元」(bits)的基礎上,每個位元可以是 0 或 1,這種二進位制運作方式使得計算過程變得線性且單向。然而,量子電腦使用的是「量子位元」(qubits),其運算邏輯則是基於量子力學中的「疊加」與「糾纏」等現象,這使得量子位元能同時處於 0 和 1 的疊加狀態。

這意味著,量子電腦能夠在同一時間進行多個計算,從而大幅提高運算效率。對於某些非常複雜的問題,例如氣候模型、金融分析,甚至質因數分解,傳統電腦可能需要數千年才能完成的運算任務,量子電腦只需數分鐘甚至更短時間便可完成。

-----廣告,請繼續往下閱讀-----

Google、IBM 和量子競賽

Google 和 IBM 是目前在量子計算領域中競爭最為激烈的兩大科技公司。Google 的 Sycamore 量子電腦已經展示出極高的計算速度,令傳統超級電腦相形見絀。IBM 則持續投入量子電腦的研究,並推出了超過 1000 個量子位元的系統,預計到 2025 年,IBM 的量子電腦將擁有超過 4000 個量子位元。

除此之外,世界各國和企業都爭相投入這場「量子霸權」的競賽,台灣的量子國家隊也不例外,積極尋求量子計算方面的突破。這場量子競賽,將決定未來的計算技術格局。

量子電腦的核心原理

量子電腦之所以能如此快速,是因為它利用了量子力學中的「疊加態」和「糾纏態」。簡單來說,傳統電腦的位元只能是 0 或 1 兩種狀態,而量子位元則可以同時處於 0 和 1 兩種狀態的疊加,這使得量子電腦可以在同一時間內同時進行多次計算。

舉例來說,如果一台電腦需要處理一個要花 330 年才能解決的問題,量子電腦只需 10 分鐘便可解決。如果問題變得更複雜,傳統電腦需要 3300 年才能解決,量子電腦只需再多花一分鐘便能完成。

-----廣告,請繼續往下閱讀-----

此外,量子電腦中使用的量子閘(quantum gates)類似於傳統電腦中的邏輯閘,但它能進行更複雜的運算。量子閘可以改變量子位元的量子態,進而完成計算過程。例如,Hadamard 閘能將量子位元轉變為疊加態,使其進行平行計算。

量子電腦能大幅縮短複雜問題的計算時間,利用量子閘進行平行運算。圖/envato

計算的效率

除了硬體技術的進步,量子電腦的強大運算能力也依賴於量子演算法。當前,最著名的兩種量子演算法分別是 Grover 演算法與 Shor 演算法。

Grover 演算法主要用於搜尋無序資料庫,它能將運算時間從傳統電腦的 N 遞減至 √N,這使得資料搜索的效率大幅提升。舉例來說,傳統電腦需要花費一小時才能完成的搜索,量子電腦只需幾分鐘甚至更短時間便能找到目標資料。

Shor 演算法則專注於質因數分解。這對於現代加密技術至關重要,因為目前網路上使用的 RSA 加密技術正是基於質因數分解的困難性。傳統電腦需要數千萬年才能破解的加密,量子電腦只需幾秒鐘便可破解。這也引發了全球對後量子密碼學(PQC)的研究,因為一旦量子電腦大規模應用,現有的加密系統將面臨極大的威脅。

-----廣告,請繼續往下閱讀-----

量子電腦的挑戰:退相干與材料限制

儘管量子電腦具有顛覆性的運算能力,但其技術發展仍面臨諸多挑戰。量子位元必須保持在「疊加態」才能進行運算,但量子態非常脆弱,容易因環境中的微小干擾而坍縮成 0 或 1,這種現象被稱為「量子退相干」。量子退相干導致量子計算無法穩定進行,因此,如何保持量子位元穩定是量子電腦發展的一大難題。

目前,科學家們正在探索多種材料和技術來解決這一問題,例如超導體和半導體技術,並嘗試研發更穩定且易於量產的量子電腦硬體。然而,要實現大規模的量子計算應用,仍需克服諸多技術瓶頸。

量子電腦對未來生活的影響

量子電腦的快速發展將為未來帶來深遠的影響。它不僅將推動科學研究的進步,例如藥物設計、材料科學和天文物理等領域,還可能徹底改變我們的日常生活。例如,交通運輸、物流優化、金融風險管理,甚至氣候變遷預測,都有望因量子計算的應用而變得更加精確和高效。

然而,量子計算的發展也帶來了一些潛在的風險。隨著量子電腦逐漸成熟,現有的加密技術可能會被徹底摧毀,全球的資訊安全體系將面臨巨大挑戰。因此,各國政府和企業已經開始研究新的加密方法,以應對量子時代的來臨。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
從離子阱到拓樸量子位元:量子計算的未來還有多少可能?
PanSci_96
・2024/10/13 ・2069字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

量子電腦的新戰場:Atom Computing 的崛起

量子電腦的發展一直以來被視為科技的終極挑戰,從 Google 的量子霸權,到 IBM 不斷推進的Condor 超導電腦,業界翹首以待。然而,截至 2024 年,量子計算領域出現了一個新的變數。Atom Computing 一家美國新興公司,推出了擁有 1,180 個量子位元的量子電腦,不僅超越了IBM神鷹量子電腦的 1,121 個量子位元,甚至德國達姆施塔特工業大學也宣布開發出 1,305 個量子位元的超級電腦。

這些新興勢力的出現,不僅在位元數量上超越了 Google 與 IBM 的現有設備,更顛覆了量子電腦技術路線的既有認知。與以往依賴超導技術的量子電腦不同,Atom Computing 與達姆施塔特大學採用了「離子阱」( Ion Traps ) 技術,利用雷射與電場操控離子,形成穩定且壽命較長的量子位元。這是否意味著,超導量子電腦將不再是量子計算的唯一未來?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

離子阱技術:量子計算的新契機?

為了理解這一新興技術的潛力,我們首先需要認識量子位元的製作原理。超導量子電腦運用電子在超低溫下的行為,來實現穩定的量子狀態。然而,隨著量子位元數量增加,超導系統面臨物理尺寸與能耗的挑戰。這也是為何離子阱技術逐漸受到重視。

離子阱技術是透過電場陷阱將帶電的離子懸浮在空中,並利用雷射操控其量子態。這種技術擁有更高的穩定性,且能在更長時間內維持量子位元的疊加態。然而,由於需要超低溫、精確的電場控制以及真空環境,離子阱技術在商業應用中的成本仍然偏高,但它的潛力不容忽視。

-----廣告,請繼續往下閱讀-----

中性原子與光學魔法:更進一步的量子技術

除了離子阱技術,Atom Computing 與德國團隊則採用另一種不同的策略——使用中性原子來取代離子。中性原子不帶電,這意味著無法直接依賴電場控制,那它們如何操控?答案在於光學技術。他們運用光鑷(光學鑷子)和雷射致冷技術,用光來束縛和操控中性原子。光鑷是 2018 年諾貝爾物理學獎的技術,利用雷射的動量來推動和控制微小的粒子。

在這種方法下,雷射不僅能束縛原子,還能通過致冷技術將原子的運動降到極低,使得量子態更穩定。這種新興技術雖然仍處於實驗階段,但已顯示出其在量子計算中的巨大潛力。

量子點與鑽石空缺:人造原子的力量

另一個在量子計算領域獲得關注的技術是「量子點」( Quantum Dots )。量子點被視為人造原子,科學家透過在矽晶體等半導體材料中束縛電子,並利用微波來控制其自旋狀態。這項技術的最大優勢是半導體產業已經相當成熟,因此如果量子點技術能成功商業化,其普及速度將非常快速。即便如此,量子點技術仍需要在低溫環境下運作,且面臨如何克服材料內部雜訊干擾的挑戰。

與此類似的技術還包括「鑽石空缺」( Diamond Vacancies ),它透過在人造鑽石中替換部分碳原子,以氮原子取代,並使用雷射來激發這些空缺結構。鑽石空缺技術的最大優點是它不需要極低溫,能在室溫下運作,這使得它在未來的量子計算應用中具有很大的潛力。

-----廣告,請繼續往下閱讀-----
量子電腦模擬的原子核 。圖/wikimedia

二維世界的探索:拓樸量子位元

隨著三維物理的極限逐漸顯現,科學家們將目光投向了二維世界,探索其中的量子計算可能性。微軟與貝爾實驗室都在研究的「拓樸量子位元」( Topological Qubits ) 便是一個例子。拓樸量子位元基於一種稱為「任意子」( Anyon ) 的準粒子運作,這種粒子只存在於二維空間中,並且擁有無視傳統量子力學法則的特性。

拓樸量子位元透過操控粒子的空間幾何軌跡來實現運算,這種軌跡在二維空間中表現出穩定且高度容錯的特性。因此,與其他量子位元相比,拓樸量子位元的穩定性與耐久性更佳。然而,這項技術仍處於實驗階段,距離實際應用還有一段路要走。

量子電腦的未來:量子糾錯與穩定性挑戰

儘管量子電腦擁有極大的潛力,但其目前仍面臨著許多挑戰,最重要的便是量子位元之間的「保真度」( Fidelity ) 與「量子糾錯」( Quantum Error Correction ) 技術。現代的量子電腦對外界干擾極為敏感,甚至微小的環境變化都可能導致計算結果的錯誤。因此,提升量子位元的精確率,並開發有效的糾錯技術,是量子計算未來必須跨越的關鍵。

以 Google 為例,他們在 2023 年發布的研究顯示,通過增加量子位元數量並使用「表面碼」( Surface Code ) 技術,他們成功降低了量子計算中的錯誤率。這項進展意味著量子糾錯技術正逐步成為現實,然而,大規模商業化的量子電腦仍需更多時間才能問世。

-----廣告,請繼續往下閱讀-----

誰將引領量子計算的未來?

量子電腦的發展方向多樣,從超導量子電腦、離子阱、中性原子、量子點、鑽石空缺,到拓樸量子位元,每一種技術都有其獨特的優勢與挑戰。誰能成為量子計算的最終霸主,仍然是未解之謎。或許在不遠的將來,量子電腦將以我們無法想像的速度改變世界,重新定義我們對計算、數據與科技的理解。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。