2

6
0

文字

分享

2
6
0

別意外!Google 真的聽得懂「人話」:BERT 自然語意演算法如何提升關鍵字理解能力?

Abby T
・2021/10/12 ・3416字 ・閱讀時間約 7 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

打開搜尋引擎,不知道要輸入什麼用詞才能找到需要的資訊?例如,明明心中的疑問是「今天會下雨嗎?」,但打開Google搜尋,輸入的關鍵字卻是「本日 降雨機率」。

為了要讓搜尋引擎理解問題,大多數的人在使用 Google 搜尋時往往會捨棄口語用詞,改為輸入幾個簡單的關鍵字,久而久之已變成一種慣用的搜尋習慣。好像不那麼做,Google 會看不懂關鍵字,也就無法順利搜尋到需要的資訊。

但看看「Google 助理向美髮沙龍預約剪髮」的實際對話影片,可以發現 Google 其實有能力理解口語對話,還能像人類一樣回覆流利答覆,而這樣的能力也能在 2019 年「BERT 自然語意演算法」推出後,使用 Google 搜尋查找資訊時獲得類似的經驗。 

號稱能理解人類語言的 BERT 演算法

BERT 演算法有個繞口又深奧的全名:Bidirectional Encoder Representations from Transformers,翻成中文的字面意思還是很難理解。

但簡單來說,它能幫助電腦更理解人類的語言。若應用在搜尋引擎方面,它能夠仔細辨識搜尋字串的「每個字」,再根據前後字詞的關係(上下文)去讀懂整個搜尋字串要表達的意思,而且與以往只擇一比對前一或後一個字詞不同的是,BERT 演算法是將前、後字詞都納入判斷語意的參考,所以能更精確判斷使用者搜尋該字串的意圖/目的。

BERT 演算法剛推出時,在美國地區、使用英文搜尋時的搜尋結果,約有 10% 受到影響,也就是每 10 個搜尋之中,會有 1 個搜尋結果受到影響,因此被稱為是繼 2015 年、號稱影響 Google 排名第三大因素的 RankBrain 推出後,Google 演算法史上目前最大的變革。除了英文以外,後來也逐漸推及到其他搜尋語言。

BERT 演算法背後的原理

1. 讓電腦聽懂「人話」:自然語言處理

自然語言指的是「人類自然而然說出來的語言」,因為正常狀況下,人類在對話時有上下文可以參考,因此能互相理解彼此的語意(當然偶爾還是可能出現溝通障礙,)。但電腦卻很難理解自然語言。而自然語言處理 Natural Language Processing (NLP),就是用來幫助電腦理解人類自然語言的一種技術。

以中文為例,因為中文句子不像英文句子,會用空格隔開各個單字,很容易因為斷句方式不同,而有不同的語意,因此,中文的自然語言處理至少要做到兩件事,第一件是將句子「斷成詞,以理解個別詞義」、第二件是「分析語意」,包括文法和整個句子的語意解讀。

舉例來說,「他・有・繪畫・的・才能」和「放下・才・能・得到」這兩句話雖然都有「才能」,但兩個句子的斷句方式不同,「才能」在這兩句話的意思也不同。研究人員會將大量的類似句子做出這樣的斷句,讓電腦學習,往後當「才能」這個詞又出現時,電腦也能學會從上下文判斷,並做出適當的斷句。

脑, 芯片, 神经元, 学习机, 代码, 程序员, 网络, 计算机科学, 计算机芯片的, 头脑, 心理学
自然語言處理在會因為語言的不同而遇到不同的難題,以中文而言,處理「斷句」是一大挑戰。圖/Pixabay

2. 電腦「自學」的關鍵:詞向量

但詞彙那麼多,要如何讓電腦學習呢?最常見的方式是將詞彙轉換為「詞向量/詞嵌入」(Word Vector/ Word Embedding),簡單來說,就是以一連串數字代表詞彙,讓電腦更能理解詞彙之間的關係。每個詞彙都有一組數字,而這些數字是由比對大量前後文而統計出來的結果,可以用來比較詞彙間的關係遠近。

字義越相關,詞向量的距離越近,例如「蝴蝶」跟「飛」的向量距離比跟「爬」的向量距離還近。而且,隨著資料量越多,統計出來的數字也會隨之調整,詞彙間的關係因此能越來越精確。如此一來,電腦不需要語言學相關知識,也能透過蒐集大量資料和統計來自主學習,並且根據統計數據處理語言。

回到BERT來說,起初,研究人員研發出多個不一樣的語言理解處理模型,每個模型都有特定的功能,專職處理特定類型的語言理解,例如有的負責斷詞、有的負責分析語法、有的負責情感分析。就好像廚房中有各種不同的工具,水果刀用來切水果、開瓶器用來開紅酒,每個器具各司其職;而BERT就像是一把瑞士刀,一把在手就能滿足多種功能需求,BERT能處理大部分的自然語言處理問題,也就不再需要使用多種語言理解處理模型,這也是Google將BERT導入演算法應用的原因之一。 

常見的自然語言處理有效運用案例有:客服常使用的聊天機器人、智慧型手機的詞彙建議等,能從幾個關鍵字判斷出完整句子,再從資料庫中找出適合的資料回應。

(補充:若想更深入了解BERT演算法原理,可參考Google官方釋出的Open Source說明。)

BERT 演算法的應用實例

Google 官方表示 BERT 將會擴大應用於多種語言的搜尋結果,但官方目前已釋出的舉例大多仍是以英文為主。

例如:使用者搜尋“2019 brazil traveler to usa need a visa”,是想知道「2019 年巴西旅客去美國旅遊是否需要簽證」,但在 BERT 演算法推出前,Google 忽略了使用者搜尋字串中的介係詞 “to”,因此將搜尋意圖錯誤理解為「美國旅客去巴西旅遊是否需要簽證」,提供的搜尋結果自然就會是針對美國人要去巴西旅遊的情境。

圖/ Google 截圖

BERT 演算法強調搜尋引擎能辨識搜尋字串的「每個字」,再去理解整個搜尋字串要表達的語意,所以加入介係詞 “to” 去分析以後,就會得到完全不同、更準確的搜尋意圖,提供的搜尋結果自然更能符合使用者的需求。

雖然沒有官方資料證實,BERT演算法對於繁體中文搜尋結果有何影響。但實際搜尋幾組繁體中文關鍵字,仍可發現有 BERT 的蹤影。例如搜尋口語化的句子「今天會下雨嗎」,和較為正式的關鍵字用法「本日 降雨機率」,Google 搜尋結果第一個列出的,都是使用者所在位置的降雨機率預報。

「今天會下雨嗎」的搜尋結果。圖/Google截圖

根據上述例子,可以推測出,即使「今天會下雨嗎」是相當口語化的自然語言搜尋用語,但Google仍然能夠理解,使用者輸入「今天會下雨嗎」和「本日 降雨機率」這兩組關鍵字,所要找的資料其實是一樣的。

「本日 降雨機率」的搜尋結果。圖/Google截圖

BERT 演算法也有極限

先不論 BERT 演算法,是否能改善英文以外其他語言的搜尋結果,BERT 演算法本身也有以下一些限制:

1. 不擅長理解否定敘述

語言學家 Allyson Ettinger 在他的研究論文 “What BERT is not” 中提出了幾個要點說明 BERT 的限制,其中特別指出 BERT 很難理解否定詞對於上下文語意的影響。

2. 不擅長理解長篇文件

電腦要理解長篇文件的挑戰性更高,因為大部分長篇文件會再細分為章節、段落、句子,即便是人類在閱讀長篇文件時,可能都需要參考文件架構才能理解整篇文件的內容。因此電腦在理解長篇文件時應該將架構一起納入處理,但理解長篇文件的架構對 BERT 演算法而言並不容易。

總結

Google 官方承認,即便導入了 BERT 來提升自然語言處理的成效,要精準理解自然語言對於電腦而言仍是非常有挑戰性。不過,針對搜尋結果優先列出的「精選摘要」部分,Google 表示目前至少在韓語、印地語和葡萄牙語都已有重大改善。在未來,Google 預計將 BERT 學習英文理解的這套模式套用到更多不同語言上,期待未來所有使用者在執行搜尋時,都能以最輕鬆自然的方式輸入,而不需要刻意思考應該輸入什麼關鍵字,才能被 Google 搜尋引擎所理解。

資料來源

  1. Google Duplex: AI will call and book your appointments
  2. FAQ: All about the BERT algorithm in Google search – Search Engine Land
  3. Open Sourcing BERT – Google AI Blog
  4. 如何斷開中文峰峰相連的詞彙鎖鍊,讓電腦能讀懂字裡行間的語意? – 泛科學 PanSci
  5. Understanding searches better than ever before – Google
  6. What BERT is not – Allyson Ettinger
  7. Google’s SMITH Algorithm Outperforms BERT – Search Engine Journal
文章難易度
所有討論 2
Abby T
5 篇文章 ・ 7 位粉絲
內容行銷專欄作家,JKL SEO 行銷公司行銷長 (CMO),對 SEO搜尋引擎優化相關演算法小有研究,致力於將 SEO 相關知識以淺顯易懂方式撰寫成科普文章,使普羅大眾有機會認識 SEO 這項專業數位行銷技術。

0

1
0

文字

分享

0
1
0
給你多少錢,才會願意放棄使用 FB ?社群軟體的體驗該如何被「金錢」衡量?──《資訊超載的幸福與詛咒》
天下文化_96
・2022/08/27 ・2405字 ・閱讀時間約 5 分鐘

使用社群媒體後,你變得更快樂還是更憂鬱?

想知道更多資訊的時候,你可能會上網搜尋。有時候是為了資訊的工具價值,比如透過 Google 地圖確認 A 地到 B地 的路線;腳踝扭傷時,也可以從網路上搜尋到應變的實用資訊;又或是並非真的出於任何用途,只覺得知道某些事很有趣,像是忽然想了解流行音樂歷史。你當然完全可以這樣做。

我們身邊有許多資訊都是一些抽象的概念,其中部分資訊卻可能和你切身相關。比如依據某些基本事實可以推斷你的預期壽命;某些資訊可以了解你的健康風險、未來「錢」景,甚至是個性。比起 10 年前,我們現在能得到的資訊更為詳盡正確,再過 10 年,肯定能夠知道得更多。

這章要談的內容很多,不妨開頭就先提示最大的重點:

研究顯示,整體而言,臉書會讓人變得比較不開心,而且可能感到憂鬱、更為焦慮,也對生活變得更不滿意。

你每天花多少時間使用 FB?使用社群軟體對你的心情造成了什麼影響?圖/Pixabay

我並不打算危言聳聽,事實上這些影響並不大。然而,它們的確存在。

而與此同時,有些人明明已經停用臉書、也感受到幸福感明顯增加,卻又非常想要重新打開臉書。實際上他們要求要得到一大筆錢才願意放棄臉書。這是為什麼?我們雖然無法確定,但一項合理的解釋是,使用臉書的體驗,包括帶來的資訊,並不會讓人變得更快樂,但還是有它的價值。

無知並不是幸福,而很多人都感受到這一點。人們需要知道自己在意的資訊,這是因為喜歡、甚至珍視一種和重要的人之間產生連結的感覺。

若須付費才能使用社群媒體,會怎樣?

重要的是,我們必須強調,社群媒體的功能不僅僅是提供資訊,至少不是我在這裡反覆強調的揭露資訊的意義。你會使用臉書,可能是為了和家人或朋友聯繫,也可能是為了改善荷包或健康。但無論如何,社群媒體的一大重點在於資訊傳遞,雖然這個概念要比我目前所談的更為廣泛。

而這裡的核心問題是:社群媒體究竟多值錢?

在社群媒體上,大部分的資訊是免費的,至少表面上你無須付費;或許可以說你仍需要付出注意力或個資等等。臉書和推特這些企業是從廣告獲得收益,但有鑑於相關爭議不斷,也有人認真討論起將這些平台及其服務的商業模式改成付費使用。

除此之外也有些偏理論的探討,主要關注在如何評估這些平台的經濟價值。要是民眾必須付費才能使用臉書,情況會變得如何?而民眾又願意花多少錢成為用戶?

要是社群媒體要付費的話,你們願意花多少錢呢?圖/LightFieldStudios

這些答案會透露出一些重要的資訊,讓我們知道社群媒體與一般資訊所擁有的價值。而回答這些問題,也有助於了解一些更基本的問題:如何計算經濟上的價值;知道某些消費決定可能只是表面工夫;了解傳統經濟指標與實際民眾福利有何差距(請見第二章)。此外,這些答案也會進一步影響政策與法規。

要你放棄使用 FB ,可能比要你付費使用來得更難?

行為經濟學特別感興趣的一個問題,就是「支付意願」和「願意接受金額」間可能出現的巨大落差。

以臉書為例,如果我們想知道它能為我們帶來多少福利,究竟該問民眾願意為此付出多少錢,抑或該問要給他們多少錢才會願意放棄使用臉書?許多研究都探討過稟賦效應(endowment effect)的現象,也就是被要求放棄某樣商品時所要求的價格,會遠高於他們當初獲得這些商品時支付的費用

稟賦效應目前還有爭議,至少在適用的領域、來源與程度上仍未有定論。我們可能會想知道,使用社群媒體願意付出的費用,是否大於不使用社群媒體所得到的費用?如果是的話,傳統論點又能否提出說明?

IKEA 所設置的家具體驗區,常常被拿來當作「稟賦效應」的案例。圖/Pixabay

另一個同樣常見、甚至是更基本的問題,則是涉及支付意願或願意接受金額的衡量與民眾福利。我在前面也提過,在經濟學中,要是談到民眾擁有某樣商品時的福利效果,往往是以民眾願意付出多少錢來使用那件商品作為衡量。

當然,「願意付出多少錢」也是現實市場的衡量標準。但請回想一下,要提出這項金額,事實上也就是做出預測:預測該商品會對自己的福利造成什麼樣的影響。

這個問題乍看不難,尤其當談到自己熟悉的商品(鞋子、襯衫、肥皂);但換做是從未使用過的商品,回答起來也就沒那麼簡單。對於一項從未擁有過的商品,哪知道能帶給自己多大的福利效果,以及可以換算成多少錢?

對許多人而言,臉書、推特、Instagram 等平台都是再熟悉不過的社群媒體,而且有著豐富的使用體驗。但出於某些我們馬上會討論到的原因,社群媒體用戶就是很難估算這些平台可以換算的金錢價值。

只要看看民眾提出使用社群媒體願意付出的金額,就會了解在尋求資訊上,「願意付出的金額」和民眾得到的福利效果似乎並不對等;同時值得進一步研究其中的福利效果究竟是什麼。

在這種時候,「願意付出的金額」只反映出部分的福利效果,還可能只反映一小部分。我們必須找出反映效果不佳的實際原因,並且嘗試找出更能呈現福利效果的方式。而我在這裡的目標,就是希望推進這項任務的進展。


——本文摘自《資訊超載的幸福與詛咒》,2022 年 8 月,天下文化 ,未經同意請勿轉載。

天下文化_96
110 篇文章 ・ 597 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

1

133
3

文字

分享

1
133
3
AI 是理科「主場」? AI 也可以成為文科人的助力!
研之有物│中央研究院_96
・2022/08/13 ・5646字 ・閱讀時間約 11 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/田偲妤
  • 美術設計/蔡宛潔

AI 的誕生,文理缺一不可

人工智慧(Artificial Intelligence,簡稱 AI)在 21 世紀的今日已大量運用在生活當中,近期掀起熱議的聊天機器人 LaMDA、特斯拉自駕系統、AI 算圖生成藝術品等,都是 AI 技術的應用。多數 AI 的研發秉持改善人類生活的人文思維,除了仰賴工程師的先進技術,更需要人文社會領域人才的加入。

中央研究院「研之有物」專訪院內人文社會科學研究中心蔡宗翰研究員,帶大家釐清什麼是 AI?文科人與工程師合作時,需具備什麼基本 AI 知識?AI 如何應用在人文社會領域的工作當中?

中央研究院人文社會科學研究中心蔡宗翰研究員。圖/研之有物

詩詞大對決:人與 AI 誰獲勝?

一場緊張刺激的詩詞對決在線上展開!人類代表是有「AI 界李白」稱號的蔡宗翰研究員,AI 代表則是能秒速成詩的北京清華九歌寫詩機器人,兩位以「人工智慧」、「類神經」為命題創作七言絕句,猜猜看以下兩首詩各是誰的創作?你比較喜歡哪一首詩呢?

猜猜哪首詩是 AI 做的?哪首詩是人類做的?圖/研之有物

答案揭曉!A 詩是蔡宗翰研究員的創作,B 詩是寫詩機器人的創作。細細賞讀可發覺,A 詩的內容充滿巧思,為了符合格律,將「類神經」改成「類審經」;詩中的「福落天赦」是「天赦福落」的倒裝,多念幾次會發現,原來是 Google 開發的機器學習開源軟體庫「Tensor Flow」的音譯;而「拍拓曲」則是 Facebook 開發的機器學習庫「Pytorch」的音譯,整首詩創意十足,充滿令人會心一笑的魅力!

相較之下,B 詩雖然有將「人工」兩字穿插引用在詩中,但整體內容並沒有呼應命題,只是在詩的既有框架內排列字句。這場人機詩詞對決明顯由人類獲勝!

由此可見,當前的 AI 缺乏創作所需的感受力與想像力,無法做出超越預先設定的創意行為。然而,在不久的將來,AI 是否會逐漸產生情感,演變成電影《A.I. 人工智慧》中渴望人類關愛的機器人?

AI 其實沒有想像中聰明?

近期有一則新聞「AI 有情感像 8 歲孩童?Google 工程師爆驚人對話遭停職」,讓 AI 是否已發展出「自我意識」再度成為眾人議論的焦點。蔡宗翰研究員表示:「當前的 AI 還是要看過資料、或是看過怎麼判讀資料,經過對應問題與答案的訓練才能夠運作。換而言之,AI 無法超越程式,做它沒看過的事情,更無法替人類主宰一切!

會產生 AI 可能發展出情感、甚至主宰人類命運的傳言,多半是因為我們對 AI 的訓練流程認識不足,也缺乏實際使用 AI 工具的經驗,因而對其懷抱戒慎恐懼的心態。這種狀況特別容易發生在文科人身上,更延伸到文科人與理科人的合作溝通上,因不了解彼此領域而產生誤會與衝突。如果文科人可以對 AI 的研發與應用有基本認識,不僅能讓跨領域的合作更加順利,還能在工作中應用 AI 解決許多棘手問題。

「職場上常遇到的狀況是,由於文科人不了解 AI 的訓練流程,因此對 AI 產生錯誤的期待,認為辛苦標注的上千筆資料,應該下個月就能看到成果,結果還是錯誤百出,準確率卡在 60、70% 而已。如果工程師又不肯解釋清楚,兩方就會陷入僵局,導致合作無疾而終。」蔡宗翰研究員分享多年的觀察與建議:

如果文科人了解基本的 AI 訓練流程,並在每個訓練階段協助分析:錯誤偏向哪些面向?AI 是否看過這方面資料?文科人就可以補充缺少的資料,讓 AI 再進行更完善的訓練。

史上最認真的學生:AI

認識 AI 的第一步,我們先從分辨什麼是 AI 做起。現在的數位工具五花八門,究竟什麼才是 AI 的應用?真正的 AI 有什麼樣的特徵?

基本上,有「預測」功能的才是 AI,你無法得知每次 AI 會做出什麼判斷。如果只是整合資料後視覺化呈現,而且人類手工操作就辦得到,那就不是 AI。

數位化到 AI 自動化作業的進程與舉例。圖/研之有物

蔡宗翰研究員以今日常見的語音辨識系統為例,大家可以試著對 Siri、Line 或 Google 上的語音辨識系統講一句話,你會發現自己無法事先知曉將產生什麼文字或回應,結果可能正是你想要的、也可能牛頭不對馬嘴。此現象點出 AI 與一般數位工具最明顯的不同:AI 無法百分之百正確!

因此,AI 的運作需建立在不斷訓練、測試與調整的基礎上,盡量維持 80、90% 的準確率。在整個製程中最重要的就是訓練階段,工程師彷彿化身老師,必須設計一套學習方法,提供有助學習的豐富教材。而 AI 則是史上最認真的學生,可以穩定、一字不漏、日以繼夜地學習所有課程。

AI 的學習方法主要分為「非監督式學習」、「監督式學習」。非監督式學習是將大批資料提供給 AI,讓其根據工程師所定義的資料相似度算法,逐漸學會將相似資料分在同一堆,再由人類檢視並標注每堆資料對應的類別,進而產生監督式學習所需的訓練資料。而監督式學習則是將大批「資料」和「答案」提供給 AI,讓其逐漸學會將任意資料對應到正確答案。

圖/研之有物

學習到一定階段後,工程師會出試題,測試 AI 的學習狀況,如果成績只有 60、70 分,AI 會針對答錯的地方調整自己的觀念,而工程師也應該與專門領域專家一起討論,想想是否需補充什麼教材,讓 AI 的準確率可以再往上提升。

就算 AI 最後通過測試、可以正式上場工作,也可能因為時事與技術的推陳出新,導致準確率下降。這時,AI 就要定時進修,針對使用者回報的錯誤進行修正,不斷補充新的學習內容,讓自己可以跟得上最新趨勢。

在了解 AI 的基本特徵與訓練流程後,蔡宗翰研究員建議:文科人可以看一些視覺化的操作影片,加深對訓練過程的認識,並實際參與檢視與標注資料的過程。現在網路上也有很多 playground,可以讓初學者練習怎麼訓練 AI,有了上述基本概念與實務經驗,就可以跟工程師溝通無礙了。

AI 能騙過人類,全靠「自然語言處理」

AI 的應用領域相當廣泛,而蔡宗翰研究員專精的是「自然語言處理」。問起當初想投入該領域的原因,他充滿自信地回答:因為自然語言處理是「AI 皇冠上的明珠」!這顆明珠開創 AI 發展的諸多可能性,可以快速讀過並分類所有資料,整理出能快速檢索的結構化內容,也可以如同真人般與人類溝通。

著名的「圖靈測試」(Turing Test)便證明了自然語言處理如何在 AI 智力提升上扮演關鍵角色。1950 年代,傳奇電腦科學家艾倫・圖靈(Alan Turing)設計了一個實驗,用來測試 AI 能否表現出與人類相當的智力水準。首先實驗者將 AI 架設好,並派一個人操作終端機,再找一個第三者來進行對話,判斷從終端機傳入的訊息是來自 AI 或真人,如果第三者無法判斷,代表 AI 通過測試。

圖靈測試:AI(A)與真人(B)同時傳訊息給第三者(C),如果 C 分不出訊息來自 A 或 B,代表 AI 通過實驗。圖/研之有物

換而言之,AI 必須擁有一定的智力,才可能成功騙過人類,讓人類不覺得自己在跟機器對話,而這有賴自然語言處理技術的精進。目前蔡宗翰的研究團隊有將自然語言處理應用在:人文研究文本分析、新聞真偽查核,更嘗試以合成語料訓練臺灣人專用的 AI 語言模型。

讓 AI 替你查資料,追溯文本的起源

目前幾乎所有正史、許多地方志都已經數位化,而大量數位化的經典更被主動分享到「Chinese Text Project」平台,讓 AI 自然語言處理有豐富的文本資料可以分析,包含一字不漏地快速閱讀大量文本,進一步畫出重點、分門別類、比較相似之處等功能,既節省整理文本的時間,更能橫跨大範圍的文本、時間、空間,擴展研究的多元可能性。

例如我們想了解經典傳說《白蛇傳》是怎麼形成的?就可以應用 AI 進行文本溯源。白蛇傳的故事起源於北宋,由鎮江、杭州一帶的說書人所創作,著有話本《西湖三塔記》流傳後世。直至明代馮夢龍的《警世通言》二十八卷〈白娘子永鎮雷峰塔〉,才讓流傳 600 年的故事大體成型。

我們可以透過「命名實體辨識技術」標記文本中的人名、地名、時間、職業、動植物等關鍵故事元素,接著用這批標記好的語料來訓練 BERT 等序列標注模型,以便將「文本向量化」,進而找出給定段落與其他文本的相似之處。

經過多種文本的比較之後發現,白蛇傳的原型可追溯自印度教的那伽蛇族故事,傳說那伽龍王的三女兒轉化成佛、輔佐觀世音,或許與白蛇誤食舍利成精的概念有所關連,推測印度神話應該是跟著海上絲路傳進鎮江與杭州等通商口岸。此外,故事的雛型可能早從唐代便開始醞釀,晚唐傳奇《博異志》便記載了白蛇化身美女誘惑男子的故事,而法海和尚、金山寺等關鍵人物與景點皆真實存在,金山寺最初就是由唐宣宗時期的高僧法海所建。

白蛇傳中鎮壓白娘子的雷峰塔。最早為五代吳越王錢俶於 972 年建造,北宋宣和二年(1120 年)曾因戰亂倒塌,大致為故事雛形到元素齊全的時期。照片中雷峰塔為 21 世紀重建。圖/Wikimedia

在 AI 的協助之下,我們得以跨時空比較不同文本,了解說書人如何結合印度神話、唐代傳奇、在地的真人真事,創作出流傳千年的白蛇傳經典。

最困難的挑戰:AI 如何判斷假新聞

除了應用在人文研究文本分析,AI 也可以查核新聞真偽,這對假新聞氾濫的當代社會是一大福音,但對 AI 來說可能是最困難的挑戰!蔡宗翰研究員指出 AI 的弱點:

如果是答案和數據很清楚的問題,就比較好訓練 AI。如果問題很複雜、變數很多,對 AI 來說就會很困難!

困難點在於新聞資訊的對錯會變動,可能這個時空是對的,另一個時空卻是錯的。雖然坊間有一些以「監督式學習」、「文本分類法」訓練出的假新聞分類器,可輸入當前的新聞讓機器去判讀真假,但過一段時間可能會失準,因為新的資訊源源不絕出現。而且道高一尺、魔高一丈,當 AI 好不容易能分辨出假新聞,製造假新聞的人就會破解偵測,創造出 AI 沒看過的新模式,讓先前的努力功虧一簣。

因此,現在多應用「事實查核法」,原理是讓 AI 模仿人類查核事實的過程,尋找權威資料庫中有無類似的陳述,可用來支持新聞上描述的事件、主張與說法。目前英國劍橋大學為主的學者群、Facebook 與 Amazon 等業界研究人員已組成 FEVEROUS 團隊,致力於建立英文事實查核法模型所能運用的資源,並透過舉辦國際競賽,廣邀全球學者專家投入研究。

蔡宗翰教授團隊 2021 年參加 FEVEROUS 競賽勇奪全球第三、學術團隊第一後,也與合作夥伴事實查核中心及資策會討論,正著手建立中文事實查核法模型所需資源。預期在不久的將來,AI 就能幫讀者標出新聞中所有說法的資料來源,節省讀者查證新聞真偽的時間。

AI 的無限可能:專屬於你的療癒「杯麵」

想像與 AI 共存的未來,蔡宗翰研究員驚嘆於 AI 的學習能力,只要提供夠好、夠多的資料,幾乎都可以訓練到讓人驚訝的地步!圖/研之有物

AI 的未來充滿無限可能,不僅可以成為分類與查證資料的得力助手,還能照護並撫慰人類的心靈,這對邁入高齡化社會的臺灣來說格外重要!許多青壯年陷入三明治人(上有老、下有小要照顧)的困境,期待有像動畫《大英雄天團》的「杯麵」(Baymax)機器人出現,幫忙分擔家務、照顧家人,在身心勞累時給你一個溫暖的擁抱。

機器人陪伴高齡者已是現在進行式,新加坡南洋理工大學 Gauri Tulsulkar 教授等學者於 2021 年發表了一項部署在長照機構的機器人實驗。這名外表與人類相似的機器人叫「娜丁」(Nadine),由感知、處理、互動等三層架構組成,可以透過麥克風、3D和網路鏡頭感知用戶特徵、所處環境,並將上述資訊發送到處理層。處理層會依據感知層提供的資訊,連結該用戶先前與娜丁互動的記憶,讓互動層可以進行適當的對話、變化臉部表情、用手勢做出反應。

長照機構的高齡住戶多數因身心因素、長期缺乏聊天對象,或對陌生事物感到不安,常選擇靜默不語,需要照護者主動引導。因此,娜丁內建了注視追蹤模型,當偵測到住戶已長時間處於被動狀態,就會自動發起話題。

實驗發現,在娜丁進駐長照機構一段時間後,住戶有一半的天數會去找她互動,而娜丁偵測到的住戶情緒多為微笑和中性,其中有 8 位認知障礙住戶的溝通能力與心理狀態有明顯改善。

照護機器人娜丁的運作架構。圖/研之有物

至於未來的改進方向,研究團隊認為「語音辨識系統」仍有很大的改進空間,需要讓機器人能配合老年人緩慢且停頓較長的語速,音量也要能讓重聽者可以清楚聽見,並加強對方言與多語混雜的理解能力。

臺灣如要發展出能順暢溝通的機器人,首要任務就是要開發一套臺灣人專用的 AI 語言模型,包含華語、臺語、客語、原住民語及混合以上兩種語言的理解引擎。這需花費大量人力與經費蒐集各種語料、發展預訓練模型,期待政府能整合學界與業界的力量,降低各行各業導入 AI 相關語言服務的門檻。

或許 AI 無法發展出情感,但卻可以成為人類大腦的延伸,協助我們節省處理資料的時間,更可以心平氣和地回應人們的身心需求。與 AI 共存的未來即將來臨,如何讓自己的行事邏輯跟上 AI 時代,讓 AI 成為自己的助力,是值得你我關注的課題。

延伸閱讀

所有討論 1
研之有物│中央研究院_96
253 篇文章 ・ 2190 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
找到自己的角色定位:矽谷人的遠端工作模式和團隊管理——《矽谷為什麼》
商周出版_96
・2022/07/10 ・3187字 ・閱讀時間約 6 分鐘

  • 專訪胡煜昌/Google 使用者經驗資深經理

跟許多目前在矽谷工作的台灣人一樣,目前在 Google 擔任使用者經驗(UX)資深經理的胡煜昌,畢業於成功大學建築系,在美國哈佛、卡內基美隆大學取得學位後,留在矽谷繼續工作。

從韓國三星到矽谷科技巨擘 Google,從個人工作者到管理職位,胡煜昌覺得台灣人在矽谷的優勢在於說到做到、執行力超強。而「願意分享與溝通」、「成為解決問題的人」、「永遠為自己的工作與團隊多想一步,成為高信任感的夥伴」是他在矽谷能持續得到工作上的成就與晉升的關鍵成功要素。

從韓國三星到矽谷科技巨擘 Google,從個人工作者到管理職位,胡煜昌覺得台灣人在矽谷的優勢在於說到做到、執行力超強。圖/Pexels

胡煜昌指出,疫情前,遠端工作與跨國團隊間合作本來就已經是矽谷科技公司的日常,雖然疫情來得又急又快,但這些基礎架構都已成型,所以對工作的影響其實並不大。疫情剛開始的時候,大家都不覺得會在家工作很久,團隊還會遠距約了一起吃午餐、品酒、運動。

但是,隨著在家工作的時間越來越久,大家也開始習慣這種遠距工作的新常態,展現出人類的韌性。

胡煜昌指出,矽谷公司間的遠距與跨國工作能夠如此自然,在於大家心態上的正確設定,不要有先入為主的想法,文化沒有高低、對錯之分,大家彼此尊重、願意交流相當重要。當然,實體工作也有許多遠距無法取代的優勢,譬如過去大家在偶遇時的討論,快速在用餐時間的交流,都能讓許多沒有在計畫內的事情,高效解決。但是遠距工作後,需要先設定事項,再透過會議正式討論,還要考慮時區的差異,因此,大家在疫情剛開始時的工作時間的確變得更長。現在大家也逐漸習慣用各種即時與非即時的溝通模式提升合作效率,在工作與生活間找到新的平衡。

分享、溝通與信任是遠距工作的成功祕訣

胡煜昌表示,「分享、溝通與信任」是遠距工作的成功祕訣。要明確地讓別人知道你在做什麼、你想做什麼,透過可視化的 Google 工作檔案,讓團隊清楚了解每個人正在處理的任務,減少誤會產生。譬如團隊中有些在家工作的同事,需要照顧孩子、家人,造成工作有所延誤,也可以開誠布公地表達與溝通。

「分享、溝通與信任」是遠距工作的成功祕訣。圖/Pexels

胡煜昌指出,Google 利用 Google 文件,不但可以分享工作進度,也可以隨時評論,過程中不僅可以高效溝通,更能建立信任感與默契。

主管的存在,在於解決團隊中每個人的問題

胡煜昌表示,主管的團隊管理相當重要,而且主管要有一個正確的認知,了解團隊每個人是主管的重要工作,而主管的主要職責,在於解決每個人的問題,這可以說是耐心與智慧的考驗。

胡煜昌在職場上的升遷與轉職,都遇到了願意教導、願意給機會的好老闆。美國三星是胡煜昌人生中的第一個工作,只花了兩年的時間,便從專業設計工程師晉升到主管。

過程中除了老闆對他的支持,更提供一對一的教練,一步步帶領他設定目標、激勵員工,並在面對困難的決定時一起討論,找出方法。這為期兩年的訓練,對胡煜昌來說,是絕佳的成長養分。

台灣人在矽谷擁有說到做到、高執行力的優勢,但需要學習的是,如何在工作中建立自己獨特的「角色定位」。很多人一進公司就埋頭做事,但是矽谷文化重視「解決問題的人」,也就是策略性的思考能力,能夠主動出擊並能將個人在產品與組織中的影響力最大化。

胡煜昌說,以主管的角度來看,現在產品開發越來越複雜,主管們往往不能對每一個細節都瞭若指掌,這時候更加依賴團隊,提出建議,進而做出正確的判斷。這時團隊要是有人能適時補上這些不足的地方,甚至成為移開路中大石的那人,就顯得更有價值了。

職場的每一步,隱形信譽的重要累積

台灣在團隊合作上,比較趨向於競爭,但在美國則傾向於發展個人價值的同時,也能尊重彼此專業的合作關係。胡煜昌回想,之前在三星第一個應徵的前端工程師是位初出茅廬的年輕小伙子,當時,在提拔他的同時也在他身上「偷」學到許多前端開發與架構的知識。如今這位當初的年輕人已經是在蘋果獨當一面的軟體開發經理。雙方一直保持聯絡,時常見面交換業界心得。

胡煜昌笑著說,在矽谷應該沒有人會在同一個公司終老。這個產業很小,曾經的上司與同事,幾年後都分別在各大公司任職,套一句俗話:「出來行走江湖,總有一天要還的」。

美國傾向於發展個人價值的同時,也能尊重彼此專業的合作關係。圖/Pexels

在美國很重視信用(credibility),在工作場域,隱形的信譽,也就是過去的表現,更具有舉足輕重的重要性,想要在美國的職場任職與升遷,「推薦」扮演相當重要的角色,你過去的紀錄與表現,將跟著你一輩子。胡煜昌表示,自己在三星與 Google 的幾次升遷都是受助於幾位上司與同事的大力支持;過去幾年自己也推薦過多位以前的同事與下屬,靠的都是彼此間在專業合作中累積起來的信任。

在 Google 工作很輕鬆嗎?

當胡煜昌決定轉職到 Google,很多人恭喜他換到這麼一個錢多又人性化的工作場域。Google 真的這麼輕鬆嗎?

胡煜昌笑著說,Google 的確是一個沒有人會叫你做什麼的環境,很多人可能會認為,你就把該做的事情做一做就好,薪水也不會比較少。但是,這就取決於個人的職涯規劃,有沒有更上一層樓的打算。

其實,在 Google 花很多時間在找問題、解決問題。不只是自己專案的問題,很多時候更要看到產品甚至是組織上的問題。

胡煜昌說他在 Google 花很多時間在找問題、解決問題。不只是自己專案的問題,很多時候更要看到產品甚至是組織上的問題。圖/Pexels

或許從上到下、直接命令的做事方式的確比較高效,而 Google 從下而上的管理與工作模式相對耗時,但是在這過程中,展現個人問題解決的能力,在不同想法下互相討論、合作,開創最佳的創意火花,卻是效率所買不到的重要資產。

= I C 筆記/ 詹益鑑=

熟悉 KT 的聽眾與讀者,應該非常容易猜到胡煜昌的身分。對許多 KT 的粉絲來說,胡煜昌就是那個矽谷最幸福、可以嘗到 KT 手藝的矽谷美味人夫(笑)。從我們家兩年多前移居矽谷以來,常受到這個「矽谷美味家庭」的款待,一起度過節日或跟其他朋友在他們家聚餐。除了是一個稱職的男主人,胡煜昌的學霸背景與精彩的業界經歷,也常成為聚餐時的談話主題。

所以這一集訪談,除了是胡煜昌首度出道獻聲之外,更是彷彿在他們家客廳的閒聊(實際上還是遠距錄音,而且應該是三支麥克風)。從三星到 Google 這兩家文化不同的科技公司,從工程師升上管理職的心路歷程與管理心法,還有在疫情之下的居家遠距與跨國工作模式,都是非常有意義的享。而主管最重要的工作是提高每個同仁的效率,最重要的就是解決員工面對的問題(無論是工作上或工作以外),更是我從很多 Google 朋友身上聽到與學到的獨特文化,非常值得台灣的企業經理人與每一個職場上的朋友思考。

——本文摘自《矽谷為什麼:科技、新創、生醫、投資,矽谷直送的最新趨勢與實戰經驗》,2022 年 6 月,商周出版,未經同意請勿轉載。

商周出版_96
101 篇文章 ・ 344 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商業出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。