0

1
0

文字

分享

0
1
0

以光控制光:放大訊號的光機械裝置

only-perception
・2012/10/05 ・998字 ・閱讀時間約 2 分鐘 ・SR值 544 ・八年級

-----廣告,請繼續往下閱讀-----

一個在 Minnesota 大學的科學家與工程師團隊發明一種獨特的微米級光學裝置,能大幅增加線上資訊的下載速度並減少網際網路傳輸的成本。

該裝置利用光所產生的力量,使一個機械性光開關以非常高的速度在 on 與 off 之間來回拍動(flop)。使用效能更高且耗能更低的光而非電流,這項發展能導致運算與訊號處理的進步。

研究結果發表在 Nature Communications 期刊上。

「此裝置類似電磁繼電器,但完全以光運作,」Mo Li 說,他是Minnesota 大學科學與工程學院電機與電腦工程系助理教授。

-----廣告,請繼續往下閱讀-----

這項新研究是基於 Li 與同僚在 2008 年的先前發現,那時他們發現奈米級光導管(conduits)可用來產生夠強的光力(optical force),以機械性的方式移動光導波(optical waveguide,承載光的資訊通道)。在這項新裝置中,研究者發現,光的力量如此強烈,以至於該裝置的機械特性能完全由光效應而非其本身的機械結構所主宰。此效應經過放大,以非常高的力量層次(power level)來控制額外的色光訊號。

「這是首度利用這種新奇的光機械效應(optomechanical effect)來放大光訊號,而無須將之轉換成電訊號,」Li 表示。

利用分配給不同通道的不同色光,玻璃光纖能承載許多通訊通道。在光纜中,這些顏色不同的光通道並不會彼此干涉。這種非干涉特性確保單根光纖在非常長的距離下,傳輸更多資訊的效率。不過這項進展亦窩藏缺點。當考慮運算與訊號處理時,光裝置不允許不同的資訊通道輕易地控制彼此… 直到現在。

研究者的新裝置有二個光導波,每個都攜有一光訊號。形狀如微米級甜甜圈般的光學共振器(像一個迷你版強子對撞機)置於導波之間。在光學共振器中,光能夠循環數百次變得更強。

-----廣告,請繼續往下閱讀-----

利用這種共振效應,在第一導波內的光訊號於共振器內被顯著強化,並在第二導波上產生非常強的光力。第二導波從支持材料鬆開,故當光力施加其上時,其如音叉般,以振盪方式移動。這種波導的機械性運動改變光訊號的傳輸。因為第二光訊號的功率可比控制訊號高出許多倍,故此裝置作用如同一個機械式繼電器,用來放大輸入訊號。

目前,這個新的光繼電(optical relay)裝置每秒運作一百萬次。研究者希望能將其改善至每秒數十億次。目前裝置的機械性運動速度夠快,可直接以光纖連接 RF 裝置進行寬頻通訊。

Li 在 Minnesota 大學的團隊包括畢業生 Huan Li、Yu Chen 以及 Semere Tadesse,還有前博士後研究員 Jong Noh。本計畫資金來自 Minnesota 大學科學與工程學院以及空軍科研辦公室。

資料來源:Using light to control light: Engineers invent new device that could increase Internet download speeds. Phys.org [October 2, 2012]

-----廣告,請繼續往下閱讀-----

轉載自 only perception

文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
195 篇文章 ・ 299 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

15
5

文字

分享

2
15
5
真正的隨機:史上最速亂數產生器
linjunJR_96
・2021/04/12 ・2451字 ・閱讀時間約 5 分鐘 ・SR值 521 ・七年級

-----廣告,請繼續往下閱讀-----

圖/wikipedia

隨機性,在許多領域都扮演了不可或缺的角色。例如電腦信息的加密,還有模擬複雜物理系統等技術,都需要用到巨量的亂數資料。不過,這些隨機是怎麼來的呢?

當電腦計算 1+1 是多少時,它可以遵從既定的程序算出正確答案;但如果叫電腦隨便給你一個數字,它肯定不知道該怎麼辦。畢竟電腦不像人,可以隨便「想到」一個數字。電腦只能根據你的命令,算出你要的結果。

要得到「真正的隨機」並不如想像中簡單。當我們到廟裡擲筊,或是玩桌遊時丟骰子,得到的結果看似沒有規律,但其實不然。它們可以用簡單的電腦計算來預測,像是丟硬幣的結果,便早已被研究透徹。只要對初始條件有足夠良好的掌握(像是丟出的速度與角度等等),這類物品的行為都能用兩百年前確立的力學定律來精準預測,因此稱不上是「真正」的隨機;另外一個缺點在於,這類方法產生隨機結果的速度實在太慢,跟不上現代社會對於隨機資料的龐大需求。

對於丟硬幣的結果,只要對初始條件有足夠良好的掌握,這類物品的行為都能用力學定律來精準預測,因此稱不上是「真正」的隨機。圖/Giphy

至於使用電腦計算的結果呢?常見像是串流平台的隨機播放功能,以及粉專抽獎會用的亂數產生器,它們所呈現的隨機是演算法算出來的。隨機播放功能利用特殊的演算法,排列出一個讓你聽起來很隨興的歌單;一般的電腦亂數,只是將特定的「種子」數字丟進一個超複雜的算式,算出成串毫無規律的數字。這些方法雖然快速又實用,但終究是可以預期的。當亂數數量夠多時,往往可以發現某些規律;而可被預期的亂數若是用於加密或認證,便會成為駭客眼中的肥羊

-----廣告,請繼續往下閱讀-----

由量子世界尋求真正的隨機!

既然手邊的物品和電腦都不管用,科學家於是轉向微觀的量子世界。量子物理對世界的描述本身就是機率性的,因此物理學家可以從實際測量結果中汲取「正港的」隨機亂數。像是物質的放射性衰變或電路中的雜訊,都是常見的選項。這類過程雖然可以確保隨機性,但效率還是稍嫌太差,相關的實驗架設也相當費工。

不過就在今年二月,研究人員利用半導體雷射技術,打造出有史以來最快的亂數產生器:每秒 250 TB 的隨機位元,比先前的紀錄高出一百多倍。

雷射的產生牽涉到原子內的「電子躍遷」。在一般狀態下,大部分原子中的電子會按照高中化學課本中提到的「電子軌域」排列,這種排列方式稱為「基態」,代表原子中的所有電子,都處在最低能量狀態。

在原子接收一定的能量後,會有部分電子跳入高能量的軌域中,變成「激發態」,這時原子內的電子組態不穩定,電子會跳回低能量軌域中回到「基態」,並以光(輻射)的形式放出能量。圖/wikipedia

在原子接收一定的能量後,會有部分電子跳入高能量的軌域中,變成「激發態」,這時原子內的電子組態不穩定,電子會跳回低能量軌域中回到「基態」,並以光(輻射)的形式放出能量。

-----廣告,請繼續往下閱讀-----

而這些跳回的電子,如果都從同一個激發態回到基態,就會釋放出特定「頻率」與「能量大小」的光,以愛因斯坦的說法,從相同的激發態回到基態,會得到固定的「光子」,這是舊量子論的重要發現之一。提供原子特定的能量,讓原子放出光子,就可以激發出雷射。

利用電子躍遷的隨機性

但這件事情跟隨機性有什麼關係呢?電子躍遷本身就是具有隨機性的。

要激發雷射,其實事情並沒有那麼簡單,需要克服這個機率性。讓我們回頭看上面的敘述,「『大部分』原子中的電子會按照……」、「在原子接收一定的能量後,『有部分』電子跳入高能量的軌域中」,這些「大部分」、「有部分」,使得我們就算給原子固定能量,也未必能平穩釋放出特定光子,讓雷射光的強弱不穩定,也不會朝同方向射出。

因此雷射技術的重點之一,就是「光學共振腔」,將激發光子的物質放在共振腔中,放出的光子會在共振腔中來回游走,再次激發原子放出更多的光子,來增強雷射強度,並讓雷射光往特定方向射出。

-----廣告,請繼續往下閱讀-----

但是,「光學共振腔」強化雷射強度以及方向,但實際上雷射光的強度,仍然是由量子力學的隨機性所決定!如果我們能用感光元件捕捉雷射光線起伏不定的強度,再轉換為數位訊號,就能獲取珍貴且無法破解的隨機亂數。

蝴蝶結狀「光學共振腔」

這種想法雖有十幾年的歷史,不過由於技術上的限制,產率一直相當有限。而且一般方形共振腔產生的雷射,容易讓光強度陷入特定的規律,產生的隨機性也較低。為了解決這個問題,研究人員將共振腔的形狀改良為蝴蝶結狀。如此一來,在其中反彈的雷射光便能保有其當初紊亂的特性,且往特定方向射出。

隨機的雷射光源被 254 像素的高速攝影機拍下,每個像素受到的光強度也被證實為相互獨立,因此成就了 254 條同步生產線,一同產出隨機亂數,使效率遠遠勝過以往一次只能記錄一個像素的做法,創下每秒 250 TB 的紀錄。

現今電腦運作的時間尺度最快不超過幾 GHz,因此這次的 250 THz 創舉難以發揮全部的實力。如果犧牲一些效率,用較簡單的偵測裝置來取代高速攝影機,可以讓整個裝置變得更加輕巧,提升實用性。在不久的將來,史上最速的亂數產生機制,或許可以直接容納於單一晶片之上。

-----廣告,請繼續往下閱讀-----

參考資料:

所有討論 2
linjunJR_96
33 篇文章 ・ 832 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。

0

0
0

文字

分享

0
0
0
康寧光纖大變身!魚缸水質糾察隊與光劍般的夜釣釣竿 ─《康寧創星家》競賽報導2
鳥苷三磷酸 (PanSci Promo)_96
・2016/01/29 ・2502字 ・閱讀時間約 5 分鐘 ・SR值 493 ・六年級

本文由台灣康寧贊助,泛科學策畫執行

在上篇文章「可撓式玻璃能怎麼玩?來看看教你穿衣服的智能行李箱和透明停車場樑柱」中,泛科學介紹了兩組指定示範組團隊將 Willow 可撓式玻璃分別應用於行李箱和交通情境,來改善使用者體驗的概念作品,分享他們如何從生活問題中發想、設計與實踐。這些創作皆來自康寧創星家 ─  創新應用競賽,它規定「使用材料」而未限制主題的獨特遊戲規則,催生了許多意想不到的創意。

這次我們訪問到臺灣科技大學設計團隊,他們所選用的特殊材料為「康寧 Fibrance 玻璃光纖」,透過其纖細、可彎曲、高彩度、高明度的特性,把場景延伸進「水」裡,提出兩種創新應用。

幫忙把關魚缸的水質狀態,給魚兒健康的家

大家應該看過河川或海口出現不同顏色的水流吧?一般人通常會很直覺地想,這水有特殊物質,可能不乾淨。但是無色無味的水就是乾淨的嗎?如果之中有我們看不見的汙染呢?「如同空氣品質對於人類健康的影響,對住在水族箱裡的魚來說,水的品質一旦超出範圍便會對魚的健康造成衝擊、甚至死亡。因此,水的溫度和 pH 值必須嚴加控管。」臺科大團隊的施同學與我們分享此想法的動機。

-----廣告,請繼續往下閱讀-----

著眼於 Fibrance 玻璃纖維的特性:防水、明度彩度皆高,而且對雷射的顯色效果比一般塑膠光纖好,因此臺科大團隊決定利用這樣的特殊材料來做水質指示功能,進而達到水質控管,於是第一項作品「水底空調」誕生了。

水底空調的測量儀器旁邊裝有一塊光纖板,並於側邊接出雷射頭,在充飽電、水質正常的狀況下會持續發光,而當魚缸中水的 pH 值、溫度超過或低於正常範圍時,則會開始閃爍。談到產品設計過程的挑戰,他們表示,「當然也沒有整個設計過程都很順利,我們碰到最大的問題是『太熱』。平常大家用雷射筆用得很習慣,大概不會發現雷射發亮時其實會產生極高的熱能,讓整個測量監控系統變得很燙。起先想用盒子把它包起來,但發現行不通;後來經過設計,我們將雷射頭部分掛在外面,並用長尾夾夾住方便散熱。」。

利用康寧 Fibrance 玻璃光纖當作顯示功能的水質偵測器,此為水底空調產品草圖(圖片來源:水底空調團隊)

除了應用於水質檢測,Fibrance光纖的纖細和可彎曲的特性讓使用者能隨個人喜好設計出不同的形狀,裝飾自己的水族箱,展現出更趣味、客製化的產品樣貌。

-----廣告,請繼續往下閱讀-----

3
玻璃光纖防水、明度與彩度皆高,更可以依個人喜歡彎曲成不同形狀

你的光劍哪裡來的?不,這是我的釣竿!

第二種概念發想則出現在釣竿上,光纖釣竿感應器 ─ Night Flash 夜漁玩家。

「釣魚是一件很花時間的事,夜釣尤其有趣。一般專業釣客通常會有兩三支釣竿,以竿架固定同時使用,那麼夜釣時,要怎麼知道魚有沒有上鉤?是哪一支釣竿中獎?除了仰賴釣客的感官經驗外,就是用釣竿警報器。在這種既有產品的基礎上,我們想設計出更炫、更便利的應用。」臺科大團隊的林同學如是說。

他們將警報器別在釣竿竿頭上,並串聯至 Fibrance 玻璃光纖、再掛上釣線,魚一旦吃餌,拉動了感應器,光纖就會發亮。Night Flash 夜漁玩家在配色設計採用現有的雷射模組 RGB 三種基礎色(紅、綠、藍),搭配基本的黑色,讓釣竿在黑夜中像光劍一般搶眼,或許也能讓夜釣過程更有趣。套句臺科大設計團隊的話,就是「很炫、很好玩啊!」

-----廣告,請繼續往下閱讀-----

Night Flash 夜漁玩家利用警報器的主板串聯 Fibrance 玻璃光纖,將動作轉變為看得見的訊號。圖為夜漁玩家產品草圖(圖片來源:Nigh Flash 團隊)
Night Flash 夜漁玩家利用警報器的主板串聯 Fibrance 玻璃光纖,將動作轉變為看得見的訊號。圖為夜漁玩家產品草圖(圖片來源:Nigh Flash 團隊)

有魚上鉤時,釣竿會顯現出發亮的光纖。(圖片來源:Night Flash 夜漁玩家團隊)
有魚上鉤時,釣竿會顯現出發亮的光纖。(圖片來源:Night Flash 夜漁玩家團隊)

設計講求實踐,可行性是成功關鍵

特別的是,兩款產品的負責同學都不是電子背景。林同學表示,「過去我只要碰到電子領域就會選擇放棄,這次算是突破了以前的障礙。雖然我們的作品是買現成晶片板來修改程式,一開始還是什麼都不懂,甚至只能土法煉鋼地一個個戳電路板,觀察反應。但後來慢慢摸索、學習,實際去做之後,才發覺好像也沒有想像的那麼難。」而這次經驗也讓他們想了解更多不同的領域,接觸更多設計的可能性。

臺科大團隊指出,「創星家競賽一定要做出實品這點也是有所成長的原因,我們必須考慮設計可否『實現』,以及產品有沒有市場。這很符合現況,現在設計領域很講求實踐,產品可行性是成功的關鍵。」接著他們補充,做使用者研究也很有趣,負責到釣具行買測試用釣竿的林同學回憶,他隨口向店裡一個五、六十歲的伯伯介紹團隊的新設計,伯伯竟然表示有意願購買,直接問一個要賣多少錢,讓他相當驚訝,「原來從舊有產品中做改良,因為消費者已經很熟悉了,所以會更有共鳴,更容易接受。」

-----廣告,請繼續往下閱讀-----

「我們想透過 Fibrance 光纖,把看不到的東西視覺化。」

聊到產品理念,兩位同學說他們的發想起點同樣是材質本身。在魚缸和釣具之前,兩人考慮過很多主題,例如測量空氣品質和配電盤,最後決定從身邊的議題下手。「不過這些想法都圍繞著同一個概念,」他們說,「Fibrance 玻璃光纖明度、彩度高,在視覺上非常漂亮,希望能做出能充分凸顯這項特點的應用。Making the value / action visible 是我們的設計初衷,就好像蒲公英的種子讓人『看見』風的存在,我們想把看不到的東西視覺化,送到大家眼前。」

水底空調團隊現場展示水族箱光纖感測器
水底空調團隊現場展示水族箱光纖感測器

Night Flash 夜漁玩家團隊解釋釣竿上的 Fibrance 玻璃光纖運用
Night Flash 夜漁玩家團隊解釋釣竿上的 Fibrance 玻璃光纖運用

鳥苷三磷酸 (PanSci Promo)_96
195 篇文章 ・ 299 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia