在康寧創星家競賽當中,從生活經驗中「創新發想」是必不可少的元素。 吳承恩在自己曾受傷而來往醫院半年復健的經驗中,深刻體會到除了身體上的傷痛外,醫院中嘈雜的環境、刺激的藥水味、及病床布簾所隔絕的壓抑空間,帶給他許多心理上的壓力。病患心理狀況不像傷痛可透過物理治療得到改善,常因為環境產生的負面情緒被忽略,反倒降低復健的效率。這樣的經驗讓他了解到:在醫院中缺乏心靈上的照顧,將對病患的復原狀況產生惡性循環。 Outside in 的設計正是為了改善住在一般病房的傷患者在病床區所遇到的不舒適體驗,讓未來的患者不需要再經歷一樣的苦痛。
-----廣告,請繼續往下閱讀-----
「我希望能給予病人良好的恢復環境,暫時彌補他們身體目前所欠缺的機能」吳承恩表示,Outside in 玻璃屏幕的設計主軸便是想改善自己當初的住院經驗──由能播放不同影音的玻璃屏幕隔間取代傳統間隔相鄰病床的布簾,隔絕讓病患不適的噪音、氣味。屏幕上可以依患者需求,或播放與親友即時互動的影音通訊、戶外的風景、人性化的太陽時鐘,或藉由觸碰螢幕感受戶外溫度、甚至是共同飼養虛擬寵物等,帶給住院者正向的力量,進一步改善長期待在病房的心理壓迫感。
單槍匹馬不是件輕鬆的事情, 但其中獲得的經驗與磨練便更顯深刻,「像是評審、老師給予回饋的時候,我會發現自己思考的角度太單一了」,吳承恩如是說。舉例來說,複賽時評審提醒他,作為產品設計者,應考量顧客的購置成本,設置 Outside in 對於醫院負擔太大,若是以企業捐贈的形式,可以降低醫院負擔、又能企業社會責任 CSR結合,會是這類裝置的可能出路之一。這也是吳承恩在賽前沒想過的新角度。
一路參加康寧創星家競賽至此,同時扛著系上畢業專題與競賽的時間壓力,度過了無數個沉思 Outside in 更多可能性的夜晚,並重複與師友討論及精進自己的想法,半年多的努力換來了冠軍獎座。吳承恩說:「這次康寧與奧美合作,將競賽辦得十分完善,導師工作坊的回饋讓參與其中的學生受益良多,也讓我學了不少!」相信這樣的競賽,也幫助了無數其他的參賽同學,為自己的創意思路再加分!
當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。
-----廣告,請繼續往下閱讀-----
那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。
當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray
第一個不好是物理限制:「延遲」。 即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。
第三個挑戰:系統「可靠性」與「韌性」。 如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。 所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!
邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌
知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!
-----廣告,請繼續往下閱讀-----
所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。
以研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。
這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技
此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。
當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray
模型剪枝(Model Pruning)—基於重要性的結構精簡
建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。
這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。
-----廣告,請繼續往下閱讀-----
模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。
知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」
想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。
但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。
-----廣告,請繼續往下閱讀-----
邊緣 AI 的強心臟:SKY-602E3 的三大關鍵
像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?
三、可靠性 SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。
-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技
筆者曾於 2013~2015 年間服務於美國明尼蘇達大學猛禽中心 (The Raptor Center, University of Minnesota),當時聽聞明尼亞波利斯 (Minneapolis) 市中心將興建美國合眾銀行體育場 (U.S. Bank Stadium),並計畫採用大面積的玻璃作為建築設計。
筆者在當地工作期間曾數次路過該體育館改建前的休伯特‧漢弗萊體育場 (Hubert H. Humphrey Metrodome),由於當時對窗殺涉入不深,是無意間與一名猛禽中心的志工聊天而討論到此事,他表示很擔心這棟建築未來對於當地鳥類的衝擊。