網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

0
0

文字

分享

0
0
0

公果蠅追女友竟被她狠心阻止! 朱麗安的雷射追蹤系統——拜見科學界女力(二)

彭 琬馨
・2016/05/04 ・2630字 ・閱讀時間約 5 分鐘 ・SR值 519 ・六年級

留著一頭長髮,黑色粗框眼鏡,她,是清大生技所博士班學生朱麗安,年紀輕輕已經是第九屆(2016 年)台灣女科學家「孟粹珠獎學金」得主。

初次見面,她與我想像中的「科學家」有段距離。

朱麗安上
台灣女科學家「孟粹珠獎學金」得主朱麗安。圖/吳健雄學術基金會提供

或許因為是學生身分,反而讓提問不再那麼有心理負擔,畢竟每回要在各專家學者前提出笨問題,內心總會先經過一番不小的掙扎(科學領域太高深莫測,不是那個領域專家真的很難搞懂啊)。

所以,故事要從腐敗水果上飛舞的小小果蠅開始。你沒看錯,朱麗安的研究主題就是果蠅。

或許你內心跟我有一樣的疑惑:在外人眼中,飛來飛去的果蠅能有什麼大學問?對朱麗安來說,這隻小生物的行為和人腦一樣有趣。「其實果蠅分工很精細,這麼小的腦,卻已經有學習跟記憶的功能」。

小小果蠅 大大學問:研究人腦的前驅模式動物

民眾眼裡沒什麼用的果蠅,是科學家研究人腦的重要基礎。

15432-illustration-of-a-common-fruit-fly-pv
果蠅。圖/U.S. CDC, public domain

身長只有 2.5 毫米的母果蠅(公果蠅更小),腦內已經有 13 5000 個神經元,雖然與人類超過 1000 億個神經元相比還是小巫見大巫,卻能讓科學家藉此推估人腦的運作方式。到目前為止,科學家已經能透過操控果蠅特定的神經元或基因,來了解這些構造在訊息傳遞過程中如何在果蠅大腦裡運作。此外,果蠅培養成本低,生命週期短(約 60 天左右),對於需要大量數據搜集的實驗類型非常有幫助,並能與目前許多大數據分析做配合運用;目前科學家已經發現,有超過 60% 的人類疾病,能在果蠅基因體上找到同源基因。最重要的,由於果蠅基因容易操控,人類許多遺傳性疾病(如阿茲海默症、帕金森氏症)都可以轉植到果蠅上研究,對於無法直接進行人體實驗的遺傳性疾病來說,是一個很大的進步。

3D 模擬果蠅嗅覺訊息處理過程

「現在我們用果蠅來做實驗的行為主要有求偶跟學習與記憶。」,朱麗安所屬的實驗室是全台灣數一數二、專做果蠅的實驗室。她的指導老師江安世 2007 年發表在知名期刊《細胞》的「果蠅腦內嗅覺神經網路地圖」,把果蠅處理嗅覺訊息過程的最後一個階段——果蠅腦內神經元如何接受訊息、分析解碼各種味道——用 3D 立體影像呈現,研究發表當下在學術界引起不小震撼。

d0028322_1323470
江安世實驗團隊所建立的果蠅腦內嗅覺神經網路地圖。圖 /取自科技大觀園

清大生物科技研究所教授江世安在研究中發現,小小果蠅光是嗅覺處理就有三道關卡——鼻子嗅覺細胞接觸到氣味分子、腦神經把嗅覺傳到位在鼻子後方的嗅小球、嗅小球再經由軸突投射到蕈狀體的接收區域,由蕈狀體進行分析。

設計雷射追蹤系統 解密果蠅記憶形成

不知道你是不是和我一樣,對於果蠅能如此細緻處理氣味的過程感到驚豔,如果是的話那你可能有所不知,其實果蠅和人類一樣,還可以記住一些事情,特別是怎麼「找對象」。

果蠅求偶有很多個階段,有時會以環繞或追逐等行為接近母果蠅,距離較遠時公果蠅會以振翅發出聲音吸引異性,接近母果蠅後改成單翅(就像是舉手跳舞希望女生看見那樣啦~),更靠近則會以嗅覺或味覺來偵測母果蠅是不是已經交配過。「果蠅的行為其實很精細,不同的神經有不同的行為。」2008 年開始,朱麗安利用自己過去念機械的專長,與動機系博士班學生吳明親、光電所研究員林彥穎,共同開發「雷射追蹤果蠅系統」。這個結合生科、工程、電機的系統,可以讓科學家在自然環境中觀察腦神經如何操控公果蠅行為。

自動追蹤雷射系統(ALTOMS)示意圖
ALTOMS 示意圖。此系統的組成有果蠅競技場、影像捕捉模組、智慧中央控制模組和雷射掃描模組。

看不懂嗎?馬上翻成白話文給你看。

實驗是這樣設計的:「我們以母果蠅為中心,向外畫 3.5 毫米的圓圈,只要公果蠅進入這個範圍,就用雷射打公果蠅直到他離開為止。」這個「阻止公果蠅找女友」的實驗,雖然聽起來有點殘酷,最後卻獲得不小成果。由於求偶行為屬於果蠅的主動式學習,朱麗安和她的研究團隊發現,用這種方式打果蠅,很快就能形成長期記憶、效果也比較持久(打一小時雷射、隔天還會記得),公果蠅很快就能學會不能太靠近母果蠅,否則會被打;相較於被動式學習(電擊配合味道,訓練果蠅討厭特定氣味)三小時訓練只能維持 24 小時,差異其實很大。經過 6 年的努力,加上實驗室新進成員蕭伯彥的幫忙,這個研究成果最後登上《美國國家科學院院刊》(PNAS)。

結合不同領域專長 開發實驗新工具

但這其實不是朱麗安第一次開發新工具,早在 2011 年,朱麗安還是清大生科研究所博士班二年級時,就曾與另一組動力機械系學生一同研發處女果蠅自動搜集器,顧名思義就是能自動篩選處女果蠅的機器,並獲得國家新創獎以及國際科技儀器新創獎首獎的肯定。

「我發現我的興趣是結合不同領域的專長,利用新技術開發新工具,希望能在生物研究上,創造新的突破。」目前還是博士班七年級學生的朱麗安,近期正和中研院合作開發超解析顯微鏡,希望能看見果蠅腦中更精細的結構。

旁敲側擊 間接回應社會需求

身為女性在生涯選擇上,難免面臨來自家庭的壓力。「我還是希望自己的研究跟人類生活有關聯」,深奧難懂大概是多數人談起科學的第一印象,大學念機械的朱麗安,半路才「出家」鑽研果蠅,在她眼裡的生物學比較直觀。「科學家透過模式生物了解神經控制行為的機制,過程中也會開發很多新工具,未來有機會可以應用到人類身上」。當然,模式生物離臨床的人體實驗還很遙遠,但科學上每一小步的前進,都是科學家千錘百鍊實驗的結果,有了模式生物,我們要理解複雜的人腦或許就不再是天方夜譚。

下回在家中看見小小果蠅,可別再只是覺得它惱人了!

文章難易度
彭 琬馨
32 篇文章 ・ 0 位粉絲
一路都念一類組,沒什麼理科頭腦,但喜歡問為什麼,喜歡默默觀察人,對生活中的事物窮追不捨。相信只要努力就會變好,相信科學是為了人而存在。 在這個記者被大多數人看不起的年代,努力做個對得起自己的記者。


0

12
5

文字

分享

0
12
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
15 篇文章 ・ 12 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》