0

0
0

文字

分享

0
0
0

長壽的秘密藏在基因裡(上)

DNArails
・2016/04/16 ・1596字 ・閱讀時間約 3 分鐘 ・SR值 569 ・九年級
4340760300_f7a0020602_z
圖/Fechi Fajardo@flickr

從古自今,很多人都在尋找長壽的秘密,像是秦始皇派徐福入海,尋找仙山上的長生不老藥;而到了唐朝,煉仙丹竟成了一種職業!由此可見人們對於長生不老的嚮往與重視,直到今天我們仍在想辦法讓自己活得更好、更久一點。因為科技的進步、研究方法的提升,研究人員可以用各種角度去解析延長壽命的方法,不管是從飲食調整或到環境的因素等等。近年來,科學家也嘗試尋找「長壽因子」,或許這從古到今人們都在苦苦追尋的秘密,就藏在我們自己的身體裡。

胺基酸來也  自由基退散

其中一部分的科學家是從「胺基酸」中尋找可能的目標。

人體中重要的胺基酸總共有 22 種,其中有 8 種是人體無法自行合成、只存在於食物之中的「必需胺基酸」,而由於不同物種的化合能力,必需胺基酸對於不同物種可能會是不同的。人體的八種必需胺基酸分別為:色胺酸(Tryptophan)、離胺酸(Lysine)、甲硫胺酸(Methionine)、苯丙胺酸(Phenylalanine)、異白胺酸(Isoleucine)、羥丁胺酸(Threonine)、結胺酸(Valine)、白胺酸(Leucine)。

535px-L-leucine-3D-balls
白胺酸。

其中,白胺酸、異白胺酸與結胺酸統稱為支鏈胺基酸(Branched-chain amino acid, BCAA),因為他們的結構上含有支鏈。有在健身、想要藉由高蛋白增肌的人對於 BCAAs 應該很熟悉,支鏈胺基酸可以共同合作,藉由促進胰島素與生長激素的釋放,控制血糖以及幫助內臟脂肪的燃燒,而這些有助於健身過後的肌肉修復以及促進肌肉的增長。

BCAAs 已被證實可以延長酵母的壽命,但是對於哺乳類動物尚是未知的。在 2010 年的 Cell Metabolism 期刊中有篇實驗證實,利用富含 BACC 的混和物(BACCem)可以延長老鼠的平均壽命。在實驗過程中,研究人員在老鼠的飲用水當中加入了 BACCem,而發現老鼠的平均壽命從 774 天延長到了 869 天,換而言之,支鏈胺基酸可以延長老鼠壽命12%。

支鏈胺基酸除了可以延長老鼠壽命以外,同時也使老鼠的細胞可以攝取更多的能量、減少自由基等等。自由基是在不完整氧化過程中所產生的,它具有強大的氧化性,而當自由基結合到蛋白質、DNA,或是其他的細胞構造,並加以破壞時,可能會引發慢性疾病或是衰老。而經過補充 BACCem,老鼠顯得更有活力,同時肌肉的協調能力也增加了。

線蟲中發現延長壽命基因

除此之外,科學家當然也想看看,人體內是不是有一些特別掌管老化、退化的基因?如果把那些基因的功能關掉,是不是也是一個讓我們「青春不老」的方法?

2015 年瑞士蘇黎世聯邦理工學院的科學家就發現了一個參與生理老化的基因—— bcat-1(branched-chain amino acid transferase-1),也就是支鏈胺基酸轉移基因。他們試著減少線蟲(Caenorhabditis elegansbcat-1 基因的表現,發現可以有效延長線蟲的壽命。而且不只是線蟲,目前研究結果顯示在斑馬魚以及小白鼠身上都成功有效。這個研究發表在 Nature Communications 期刊中。

640px-Caenorhabditis_elegans
線蟲。

然而這個基因又是怎麼被發現的呢?

研究者針對線蟲、斑馬魚和小白鼠這三種不同生物體的基因組表現亮進行搜尋,利用生物資訊的分析方法,找出共同擁有並且與老化過程相關的關鍵基因。

他們檢測了動物細胞中訊息 RNA(mRNA)的表現量來衡量基因的活動程度,當一種基因含有許多的 mRNA,則表示其十分的活躍,而反之則代表該基因的活性較低。而透過阻斷相關基因的 mRNA(也就是阻斷相關基因的運作),研究者們發現阻斷了十幾個相關基因,則可以使線蟲的生命延長 5%。

其中,特定的 bcat-1 基因對於動物壽命有極大的影響,那麼到底 bcat-1 是怎麼運作的呢?bcat-1 基因會先轉錄成mRNA,進而在產生 bcat-1 酶(支鏈胺基酸轉移酶),它會導致 BCAA 分解,並影響到肌肉增長與脂肪燃燒等等。

在實驗中阻斷 bcat-1 基因時,會使支鏈胺基酸在組織中堆積,從而引起分子信號間的串連,進而延長線蟲壽命(多達 25% 的壽命),並保持健康。

然而,bcat-1 並不是科學家們發現的第一個與長壽相關的基因,而還有哪些其他長壽基因呢?請繼續看下篇


數感宇宙探索課程,現正募資中!

文章難易度
DNArails
3 篇文章 ・ 1 位粉絲
一群基因駭客,將基因定序後的資訊加以解析,提供研究人員與醫生更精闢的見解,希望能夠藉由這些「基因x大數據分析」的成果,為人類的健康與壽命盡一份心力!


0

0
0

文字

分享

0
0
0

霍亂也有自己的免疫系統?想要入侵人體,卻不想被感染!

寒波_96
・2022/05/19 ・3396字 ・閱讀時間約 7 分鐘

由霍亂弧菌(Vibrio cholerae)引發的霍亂,是常見的人類傳染病。有意思的是,霍亂弧菌這般能入侵生物體的細菌,本身也會被病毒等異形入侵,有免疫的需求。

引起霍亂的霍亂弧菌。圖 / Wikimedia

在最近發表的論文中,霍亂向我們展現了以前未知的免疫手法,不但能抵抗病毒,還能對付「質體」。霍亂究竟如何避免成為宿主的命運?質體又是什麼呢?[參考資料 1, 2]

細菌 vs 質體 vs 病毒大亂鬥:細菌也不想被寄生

細菌和人類一樣,都是用染色體上的 DNA 承載遺傳訊息。不過除了染色體以外,細菌也常常配備額外的「質體(plasmid)」,它們是 DNA 圍成的圈圈,獨立於細菌的染色體之外,具有自己的遺傳訊息,會自己複製。

細菌的遺傳物質,除了自己的染色體外,時常還額外攜帶數量不一的質體。圖/Bacterial DNA – the role of plasmids 

質體如果單方面依賴細菌供養、當個快樂的寄生蟲,那麼對細菌來說,質體就是個占空間的東西,只會耗費宿主的資源,對細菌是最差的狀況。但是,質體上也有基因,如果那些基因具備抗藥性等作用,那質體便對細菌有利。換句話說,質體和細菌的關係並不一定,有可能是有利、有害,或是沒有利也沒有害,視狀況而定。

細菌有時候具備攻擊質體的能力,例如近來作為基因改造工具而聲名大噪的 CRISPR,原本便是細菌用來抵禦病毒、質體的免疫系統。神奇的是,許多攻擊目標為質體的 CRISPR 套組,本身就位於質體上頭,令人懷疑其動機不單純。

比方說,A 質體攜帶一套攻擊 B 質體的 CRISPR,那麼 A 質體的目的,到底是保護自己寄宿的細菌不被 B 質體入侵,或是維護自己的地位不要被 B 質體搶走呢?不好說,不好說。

細菌對付質體的手段除了 CRISPR,還有一招是利用「Argonaute」蛋白質,啟動針對質體的排外機制;有時候兩者兼備,就是不給質體活路。[參考資料 3]

了解上述資訊,便能體會霍亂新研究的奧妙:質體無法生存的霍亂弧菌,既沒有 CRISPR,亦沒有 Argonaute,卻有以前不知道的另外兩招。

沒有質體的霍亂弧菌

儘管大家的印象中,霍亂就是一款危害人類的傳染病,不過野生的霍亂弧菌有很多品系,除了 O1 和 O139 兩個亞型之外,大部分其實不怎麼會感染人類。歷史上霍亂有過七次大流行,目前第七次大流行的型號為 O1 旗下的 E1 Tor,也稱作 7PET。

過往導致大流行的型號以及野生霍亂品系,細菌中一般都帶著質體,可是如今廣傳的 E1 Tor 卻常常沒有。假如人為將質體送進細菌體內,一開始倒是沒什麼阻礙,可是複製繁殖十代以後的細菌,卻幾乎不再擁有質體。

因此我們可以假設,霍亂第七次大流行的主角,可能比同類們多出些什麼,讓它新增了排除質體的能力。既然不是其餘細菌使用的 CRISPR 與 Argonaute,應該是某種目前未知的手段。

研究者一番搜尋後,從霍亂基因組上找到 2 處有關係的區域,稱它們為 DdmABC 和 DdmDE(Ddm 為 DNA-defence module 縮寫),兩者各自都有排擠新質體的能力,一起合作效果更好。

霍亂弧菌有 2 個染色體(左、右),DdmABC 位於第一號染色體(左)的 VSP-II 區域(圖中寫成 VSP-2),DdmDE 位於 VPI-2 區域。圖/Molecular insights into the genome dynamics and interactions between core and acquired genomes of Vibrio cholerae

兩套手法獨立運作,就是不要讓質體留下!

DdmABC 與 DdmDE 都能替霍亂細胞排除質體,但是運作方式不同。

DdmDE 會直接攻擊,令質體無法繼續在細菌體內生存,尤其容易攻擊比較小的質體;這個攻擊過程中,應該有其他蛋白質參與,不過詳細機制仍有待探索。

負責打擊質體的 DdmDE,其基因周圍還有兩套免疫系統的基因:R/M 與 Zorya,它們的任務都是消滅入侵的噬菌體(感染細菌的病毒)。因此霍亂的染色體上,這些基因共同構成一組對抗外來異形的陣地,稱為防禦島(defence island)。

DdmABC 則似乎更傾向「促進選汰」的手法,霍亂如果攜帶質體,不論質體自身大小,DdmABC 都會產生毒性;這使得質體數目較少的細菌,繁殖時產生競爭優勢,多代以後脫穎而出的霍亂,將剩下不再攜帶質體的個體。

有意思的是,霍亂細胞的 DdmABC 能排擠質體,也能屠殺入侵的噬菌體。所以它是一套雙重功能的免疫系統,同時防禦噬菌體和質體這兩種異形。

霍亂弧菌中 DdmABC 與 DdmDE 為兩套獨立運作的免疫系統,DdmABC 能排除入侵的病毒和質體,DdmDE 會直接攻擊質體。圖/參考資料 2

演化上 DdmABC 與 DdmDE 從何而來呢?在資料庫中比對 DNA 序列,ABCDE 這 5 個基因都找不到非常相似的近親基因,所以本題暫時不得而知。

其餘霍亂同類都沒有這兩串基因,所以它們是 E1 Tor 品系新獲得的玩意;幾個新基因組合形成新功能,或許有助於 E1 Tor 當年在霍亂內戰中勝出,成為第七次大流行的主角。總之,它們都通過長期天擇競爭的考驗,贏得一席之地。

質體對細菌可能有害也可能有利,若是通通不要,等於是徹底斷絕獲利的機會。如今廣傳的這款霍亂,為什麼演化成這般樣貌,值得持續探索。

一隻細菌配備對付不同入侵者的多款免疫系統,一如一艘巡洋艦配備的多款防禦系統,不論敵人從陸地、海面、空中發射飛彈,或是從海底用魚雷攻擊,都有防守的應變手段。然而,再怎麼周詳的防禦設計,都有被突破的機會。圖/wiki

戒備森嚴,多重防禦的細菌免疫

由這些研究我們可以觀察到,細菌儘管是只有一顆細胞的簡單生物,也配備多重免疫系統,抵抗各種入侵者。以極為成功的霍亂 E1 Tor 品系來說,它配備 R/M、Zorya、DdmDE 三款防禦病毒的機制,以及 DdmABC、DdmDE 兩套排擠質體的手法,能夠全方位對抗試圖入侵的病毒和質體。

霍亂弧菌之外的許多細菌,又配備記錄入侵者遺傳訊息的 CRISPR 系統,精準識別目標並且攻擊,類似人類的後天免疫。CRISPR 此一特質,使它變成智人的基因改造工具。

而類似先天免疫,無差別切割入侵者的 R/M 系統,其各種限制酶(restriction enzyme),早已從 1970 年代起成為常見的基因改造工具,可謂分子生物學實驗的元老。

新發現霍亂的 DdmABC、DdmDE 免疫系統,除了增加學術知識,也有應用潛力。探索細菌、質體、病毒間的大亂鬥,不只能認識更多免疫與演化,也可能找到對付細菌的新招,還有機會啟發分子生物學的新工具。

延伸閱讀

參考資料

  1. Jaskólska, M., Adams, D. W., & Blokesch, M. (2022). Two defence systems eliminate plasmids from seventh pandemic Vibrio cholerae. Nature, 1-7.
  2. Cholera-causing bacteria have defences that degrade plasmid invaders
  3. Kuzmenko, A., Oguienko, A., Esyunina, D., Yudin, D., Petrova, M., Kudinova, A., … & Kulbachinskiy, A. (2020). DNA targeting and interference by a bacterial Argonaute nuclease. Nature, 587(7835), 632-637.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁


數感宇宙探索課程,現正募資中!

寒波_96
9 篇文章 ・ 7 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。