0

0
0

文字

分享

0
0
0

《絕地救援》背後的科學

火星軍情局
・2015/10/07 ・4710字 ・閱讀時間約 9 分鐘 ・SR值 510 ・六年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

喜愛泛科學的朋友,我知道你們的委屈。你們不少人被視為異類,因為你們凡事追根究底,看到科技產品就流口水,電腦壞了不丟掉卻大卸八塊,看到網路上的胡扯文章就腦充血…種種怪胎的行為、罄竹難書,街坊鄰居對你敬而遠之。

不要沮喪,因為你出頭的時候到了,《絕地救援》就是為你拍的電影。

martian-gallery2-gallery-image_0

電影的主角瓦特尼是個被丟包在火星上的科學宅,為了生存,他必須把周遭一切事物化腐朽為神奇,利用一切有限資源求生,製造食物、水、氧氣,還要面對層出不窮的意外,運用他跨領域的豐富知識,把物理化學生物的課本都用上了。所以這部電影可說是馬克思主義的具體實踐,喔錯了,是「馬蓋先主義」!

這就是近年科幻電影的趨勢——科學麻辣重口味:劇情內涵都要符合科學。去年的《星際效應》就是這樣「硬科幻」(Hard Sci-fi)的代表,《絕地救援》也是如此。咦,有人說《絕地救援》是《星際效應》的前傳~~沒有啦,它們只不過都是「硬科幻」故事、麥特戴蒙的角色都是被獨自遺棄在陌生星球的NASA太空人,都有綁架別的太空船,然後…再看看下面這個照片,兩部電影真的有像耶。(但真的、真的是完全不同類型的電影。)

《絕地救援》改編自美國新秀作家Andy Weir的科幻小說《火星任務》(英文都是”The Martian”)。這本書的出版過程本身就是個有趣的故事:Weir本來是個對太空有興趣的平凡軟體工程師,醞釀這個故事時才努力研究火星環境和軌道力學,一開始只是把故事一點一滴在自己的網站上連載,堅持讓讀者免費下載,想不到建立不錯的口碑,反而有人拜託他把小說以電子書的形式在亞馬遜上賣,以方便閱讀。他只好在亞馬遜以每章美金一元超低價自費出版,結果竟然熱賣,進了熱門排行榜,還引來大出版商買下出版權,甚至拍成電影。

電影故事發生在不久的將來,其中的火星之旅採用的科技多半已經存在,也盡可能準確地描寫火星上的情景。Weir這個鬼才不但得到NASA專業科學家的嘉許,連SpaceX的Elon Mask都找他當太空計畫的顧問。

太空版魯賓遜漂流記

故事大概是這樣的:NASA終於在未來啟動「戰神計畫」,送太空人登陸火星。瓦特尼(麥特戴蒙)是路易絲(潔西卡崔絲坦)帶領下的「戰神三號」6人登陸特遣隊成員之一,本來高高興興地登上火星,卻遭遇強烈暴風,特遣隊緊急登上火箭(火星接駁小艇,Mars Ascent Vehicle,或MAV)撤出火星,過程中瓦特尼被天線砸死,路易絲不得已撇下他,和其他5人回地球。想不到瓦特尼只是受傷暈倒,醒來時發現人去樓空,沒有火箭、沒有通訊器材,面對的是剩下的設施、30天的存糧、隊員倉促留下的迪斯可音樂、和一顆樂觀的心。怎麼辦?該怎麼活下去?怎麼回地球?

在瓦特尼手上連簡單地膠帶都會變成救命的工具。

登陸火星的戰神計畫

未來美國的NASA真是發了,竟然有錢建造龐大的登陸火星「戰神計畫」。在送太空人上火星之前,需要先以14艘無人貨運太空船把居住艙、火星車、糧食補給、甚至人員離開火星的火箭陸續送達登陸地點,萬事俱備後才用規模可比國際太空站的巨大太空船「戰神號」,送太空人上火星。它還配備了「離子火箭」:用電場將帶電的離子加速後噴出,雖然推力小(力量和人平常吹氣差不多),但節省燃料又持久,適合長途旅行。

「戰神號」旋轉環狀的太空艙產生離心力,藉此模擬地球的重力,傳送的太空人就不用漂浮在空中。它的角色相當於纜車,來往穿梭於地球與火星之間,到達目的地後再放出小型登陸艇送人上火星。

Weir設計的登陸火星「戰神計畫」參考過去類似的火星登陸藍圖(美國火星協會的Mars Direct,NASA的Design Reference Architecture),它們的太空船航行時幾乎不使用動力,完全依靠慣性和引力,所以速度慢,旅行時間長。現實世界中計畫的太空船只不過是一個比60年代登月小艇大一點的太空艙,任何隊員偷偷放個小屁都是強迫大家雞犬相聞。

Mars Direct強調經濟可行,所以太空船簡陋多了,由一根繩子連接太空人居住的太空艙和在火星上用的居住艙,像流星錘一樣相互旋轉,用離心力模擬重力。很好的辦法,不過比起電影裡的「戰神號」,寒酸多了。

火星風暴

故事的起因是火星上突然而來的風暴,風速高達每小時175公里,幾乎摧毀了讓隊員們離開火星的火箭,他們只好提前離開。地球上的風暴會帶來災難,傳說中連郵筒也低頭。在火星上的風也很有破壞力吧?!

別擔心,火星的大氣密度只有地球的1%,你看登陸火星的太空船都需要火箭或彈跳的皮球才能軟著陸,降落傘最多只能輔助,就是因為空氣稀薄,阻力太小。電影裡那場災難性風暴風速雖高,但是所造成的風力大概只相當於地球上的微風,根本不值得擔心。

這大概是整個故事中最不符合科學的地方,原作者Weir其實知道這個問題,但他總得要有一個殺不死主角卻又嚇人的災難,戲才能演得下去吧!

火星救援為什麼這麼難

到火星很困難嗎?不是經常發射衛星上太空嗎?

全世界去年發射了近200顆登記有案的衛星,為什麼電影裡面的火星救援行動這麼困難?不是隨便搭上一枚火箭就可以了嗎?

我們可以把每一顆星球的重力場當成漏斗型的「重力場」,在太空中飛行好像一個人在普遍這種「重力漏斗」的冰原上溜冰,從地表溜到大多數衛星所在的低軌道並不會花太多力量;若是要從地球的重力漏斗丟到月球,就要更用力克服坡度,耗費的能量就大多了,難怪至今最大的火箭仍然是阿波羅計畫登月用的農神五號;要到火星,不但要克服地球的重力,還要對付太陽巨大的重力漏斗,好像在漫長的山坡上溜冰,絕對不是普通的火箭就能辦到的。所以啦,電影裡急就章的救援行動還得靠中國現成的大型火箭。

可以把重力場看作「重力井」:每個星體的重力場就像一口井,若想要脫離地球,就要掙脫地球的引力,要離開得越遠就需要越多能量。一般的低軌道人造衛星其實離地球很近,不需要太多能量;但是如果想要到月球、火星、甚至更遠的地方,需要的能量就大得多得多了。(圖片來源:xkcd,Portland State Aerospace Society)

哪裡找水

電影主角為了有大量的水來種菜,只好把登陸艇裡留下的燃料「聯氨」(hydrazine,N2H4 )小心地燒掉,裡面的氫原子與周圍的氧氣結合,就會產生水:

N2H4 + O→ N+ 2H2O

聯氨是傳統的火箭燃料,是有毒的物質,燃燒的過程一個不小心還會爆炸。理論上說得通,但是這麼做真的能產生多少水?我有點懷疑,NASA說可行,不過我是不敢去試的啦。(聯氨市面買得到,勸你不要去試,看看主角的慘痛經驗!)

還好,火星其實有不少水。科學家剛剛發現火星部份地區的土表下埋藏不少鹽度極高的液態水,在「夏天」溫度高的時候就會流到山谷,可以淡化後取得淡水。如果當地沒有液態水,火星的土壤中大約有2%的含水量,在火星的寒冷南北極底下更有冰塊。如果有人以後不小心被困在火星上,千萬不要賣命燒燃料,把火星土壤加熱再收集水蒸氣就夠了。

NASA剛宣布火星表面上有液態水,某些地區每到夏天就會有深色的“水漬”往山谷流下。(圖片來源:NASA)

就地取材的火箭燃料

目前把一瓶礦泉水帶到國際太空站的價錢起碼台幣三十萬,火星的距離比太空站遠N倍,價格肯定貴多了。最划不來的就是燃料——火星的地底可沒有來自古代生物的石化燃料,MAV火箭的燃料若是都要從地球帶到火星,那得花多少錢!怎麼辦才好?

還好,火星的大氣充滿二氧化碳,20世紀初的諾貝爾化學獎得主薩巴捷(Paul Sabatier)已經提供一個辦法(叫Sabatier reaction):

  • CO2 + 4 H2 + energy → CH4 + 2 H2O
  • 2 H2 + 3 CO2→ CH4 + 2 O2 + 2 CO

攜帶地球上的氫氣,再加上能量,就可以把當地的二氧化碳變成可當燃料的甲烷 CH4 和可以助燃的氧氣,非常划算。戰神計畫裡帶太空人飛離火星的MAV火箭就有這種設備,這樣的生產過程要花時間,因此戰神計畫的火箭必須在兩年前先到達火星,才能確保太空人使用時有足夠的燃料。在真實的世界中,民間太空公司SpaceX計劃中往返地球與火星的火箭”Raptor”也打算使用就地取材製造的甲烷作燃料。其實火星有些地方的地底有冰,若把它加熱融成水,再電解成氫氣和氧氣,根本不用大老遠帶去。

SpaceX的太空船。(圖片來源:SpaceX)

火星上種菜

大家都知道,火星上是沒有植物的,看《絕地救援》的劇照就明白了。等一下~瓦特尼,不要發呆了,請你往左邊看一下好嗎,那裡有好幾棵樹你沒有看見嗎?就這樣和科學史上最大的發現錯身而過,真是不應該!

即使在地球也不是隨便一個地方就可以種菜,更何況是在另一個行星上。目前科學界認為火星的土壤真的可以種菜,不過要成功可不簡單,曾經有研究人員利用火星上探測器的數據,在地球上仿造火星的土壤,結果成功地讓植物發芽、生長,不過只活50天。這種火星土壤可以買得到,你可以試試看,練好了再去火星種馬鈴薯。

想要讓植物生長,陽光、空氣、水分、養分都不可少。陽光?強度不到地球的一半,紫外線相對強度高,所以用LED燈光比自然陽光還好。空氣?在密閉的室內就可以,不過要小心光合作用產生太多氧氣。養分?那通常是生物製造有機物質,火星上哪有!還好電影主角是位植物學家,知道他的大小便成了無價之寶。除了糞便中的養分,更重要的是裡面的微生物,可以做出植物所需要的養分和礦物質。不過嚴格來說,人肚子裡的微生物和土壤裡的還是差很多,如果有人想到火星種田,記得帶一把故鄉的泥土,裡面的微生物比黃金還值錢呢!

其它的太空船、火星車

瓦特尼為了與地球聯絡,特別不辭辛勞綁架1997年的古董「拓荒者號」(Pathfinder)。有點年紀的人大概還記得,拓荒者號是第一個採用「安全氣囊」彈跳降落的火星探測器,它還配備了微波爐大小的「旅居者號」(Sojourner)火星車,它的造型是未來所有火星車的藍本。

(左)當年NASA為「拓荒者號」所繪的想像圖;(右)電影場景。

電影中世界各國似乎有很多環繞火星的人造衛星,不斷從太空中監看瓦特尼的動態。現實世界中還在用的有五顆:美國的MAVEN(火星大氣與揮發物演化任務)、Mars Odyssey(火星奧德賽號)、MRO(火星偵察軌道器),歐洲的Mars Express(火星快車號),還有印度的MOM(火星軌道探測器)。

火星上五顆人造衛星的軌道,紅色的是兩顆天然衛星:火衛一和火衛二的軌道。(圖片來源:Wikipedia)

參考資料

歡迎來火星軍情局做朋友。

Create Your Badge

文章難易度
火星軍情局
19 篇文章 ・ 8 位粉絲
本局以適合火星人智商的方式,將地球上的最新科學新聞向火星同胞播出,歡迎來我的Facebook做朋友:https://www.facebook.com/Dr.Martian.Vader

0

3
0

文字

分享

0
3
0
致我們青澀的初戀——踏入晴道、也英的火星世界
Mia_96
・2022/12/26 ・1800字 ・閱讀時間約 3 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

「也英,你還好嗎?但願你沒有感冒,今年的火星看起來特別亮,是本世紀火星距離地球最近的時候,當我看到明亮的星星時,就覺得你彷彿在我身旁。」晴道在少年時寫給也英的信中這麼說道。

接近人生半百,當晴道再次與也英相遇後,這麼恰好的,火星再次接近地球,劇中晴道與也英於札幌天文台享受著天文景象,究竟在望遠鏡中,他們看到的景象為何會產生?

晴道與也英的人生彷彿都與天文現象班暗示性的相像,也都與天文現象彼此相關。圖/IMDb

揭開接近地球的火星之時——火星衝

太陽系中的八大行星皆繞著恆星太陽公轉,但因各行星距離太陽的遠近不同,造成公轉軌道路徑長度差異,而行星的公轉軌道與速度進一步影響著其公轉週期。八大行星中每一顆行星的公轉週期皆不一樣,也因此,造成每天行星與恆星、行星與行星間的相對位置也都有所差異。

「衝」在天文現象中意指行星(地球軌道外)與太陽、地球,連成一直線的現象。當衝發生時,代表此顆行星整夜可見,且在天空中的亮度極亮!但正如同上文所述,因每顆行星之公轉週期有所差異,所以並非每一年都會發生衝。例如劇中晴道與也英所觀測的「火星衝」,週期約為 780 天,大約每經過 2 年 49 天便會發生一次。 

衝(opposition)為太陽、地球與外行星連線之位置,若太陽、內行星與地球連線時則會稱為合(conjunction)。圖/Wikipedia

長大後的晴道、也英所觀測的火星衝發生在 2018 年,亮度極亮的火星配上恰好的觀測時間,便是觀測火星的最佳時間點!

火星公轉太陽一圈約需 687 個地球日,代表在火星上度過的一年接近於地球的兩年(代表如果在火星上等待下一次跨年的時間會更長!)圖/Pixabay

而在 2022 年 12 月初時,也發生了一次火星衝!這次火星的視星等亮度達到 -1.9 等,預測將會是未來十年內最亮的火星衝,但如果錯過這次也沒有關係,在 2033 年時會發生亮度更亮的火星衝,目前預估視星等亮度可以達到 -2.5 等呢!(星等值越小越亮!)

因火星公轉太陽軌道並非正圓形,故每一次的火星衝亮度也皆會稍有不同。圖/臺北市立天文科學教育館

滿載希望的希望號

除卻火星衝外,日本 1998 所發射的希望號探測器(のぞみ)也是年少的也英殷切期待的天文任務。當時日本為促使國民對於火星產生興趣與探索,舉辦於希望號中搭載姓名的活動,也英的名字也跟著希望號一起進行宇宙探索。

希望號原本的目標與任務是觀察火星上大氣層,與火星受太陽風作用的影響。但在 1998 年發射後,希望號的推進器出現故障,不只大量消耗燃料,還造成希望號進入火星軌道的時間延長,後又於 2002 年受到太陽劇烈活動的影響電力系統受到破壞。最終,希望號於 2003 年 12 月失聯,未能順利完成火星的探測任務。

希望號未能順利完成任務,彷彿暗示著也英的人生也同樣遇到瓶頸與挫折。圖/IMDb

未完待續的火星之旅

火星因其醒目的紅色外觀一直為人們所關注與追尋的星球(西方更將其取名為 Mars,即為羅馬神話中的戰神),且因火星具有與地球相似的環境條件,科學家一直將火星作為移居星球的選項之一,也設想過將火星「地球化」,使其更加適合人類居住。

但人們是否有改變火星的權利,又或者我們對於火星是否有足夠的了解,或許等到未來更多次嘗試的火星任務後才能知曉答案,正像是晴道說的:「要想知道是不是命中註定,你必須全心投入進去。」

參考資料

Mia_96
16 篇文章 ・ 20 位粉絲
喜歡教育又喜歡地科,最後變成文理科混雜出生的地科老師

0

5
0

文字

分享

0
5
0
看不見的歐若拉——物理學家解釋火星上極光的成因
Ash_96
・2022/07/05 ・4548字 ・閱讀時間約 9 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

極光。圖/envato elements

形成極光的要素有三,其中之一就是磁場。地球具有覆蓋全球的磁場,可以在兩極地區生成北極光和南極光;然而,火星沒有覆蓋全球的磁場,因此火星上的極光並非出現在兩極,只能在特定區域生成。

近期,愛荷華大學領導的研究團隊,根據美國航空暨太空總署(NASA)火星大氣與揮發物演化任務(MAVEN)探測器的數據,確認了火星離散極光是由太陽風和火星南半球地殼上空殘存的磁場相互作用所生成

極光三要素:大氣、磁場、高能帶電粒子

在介紹火星前,讓我們先把鏡頭轉到地球,談談地球上的極光在哪裡形成,以及如何形成。

地球極光出現的區域稱為極光橢圓區(auroral oval),涵蓋北極與南極地區,但並非以兩極為中心;換句話說,極光橢圓區也涵蓋了極圈以外的部分高緯度地區。另外,極光橢圓區的寬度與延伸範圍,會隨著太陽黑子 11 年的循環週期而變動。

當太陽風和地球磁層的高能帶電粒子被地球磁場牽引,沿著磁力線加速往高緯度地區移動,最後和大氣中的原子碰撞時,就會形成多采多姿的極光。

綜合以上所述,可以得知極光的三個要素是:大氣、磁場、高能帶電粒子。

地球上這些「指引我們美妙未來的魔幻極光」,若屬於可見光波段,就能用肉眼觀測,並以相機記錄這夢幻舞動的光線。

極光橢圓區與地理北極、地磁北極相對位置圖。其中紅色實線表示極圈範圍,綠色區域則為極光橢圓區。圖/National Park Service

火星的大氣層、磁場以及離散極光

在介紹離散極光之前,得先介紹它的幕後推手——行星際磁場(Interplanetary Magnetic Field,IMF)。IMF就是太陽風產生的磁場,在行星際空間主導著太陽系系統內的太空天氣變化,並阻擋來自星際間的高能粒子轟擊。

那麼 IMF 是如何產生的呢?當太陽風的高能帶電粒子從太陽表面向外傳播,會同時拖曳太陽的磁力線一起離開;太陽一邊自轉一邊拋射這些粒子,讓延伸的磁力線在黃道面上形成了螺旋型態的磁場。

以蛋糕裝飾來說明的話,太陽就像是在轉盤上的蛋糕,太陽風粒子就是擠花裝飾;而當蛋糕一邊以固定速度自轉,擠花逐漸向外擴散的同時,就會在蛋糕產生螺旋狀的軌跡。

因為太陽一邊自轉,一邊拋射太陽風的關係,IMF的磁力線會扭曲呈現如圖的螺旋狀。圖/維基百科
蛋糕的螺旋狀擠花。影片/Youyube

對太陽風和 IMF 有基本認識之後,讓我們把鏡頭轉向火星,談談火星的大氣層和磁層和地球有什麼不同。

相較地球來說,火星的大氣層非常稀薄。這是因為太陽風的高能粒子轟擊火星大氣層,強大的能量將大氣層的中性原子解離為離子態,導致大氣層的散失;該過程稱作濺射(sputtering),發生在火星大氣層的濺射主要透過兩種方式達成—–第一,在 IMF 的作用之下,部分的離子會環繞磁力線運動,隨著 IMF 移動而被帶離火星;另外一部份的離子則像撞球一般,撞擊其他位於火星大氣層頂端的中性原子,引發連鎖的解離反應。 

MAVEN 任務的領銜研究員 Bruce Jakosky 說明,根據團隊研究的成果,太陽風的濺射效應會將火星大氣層中的惰性氣體氬解離,並將這些氬離子從大氣層中剝離。火星大氣層內氬的同位素(質子數相同,但是質量不同的元素)以氬-38 以及氬-36 為主,後者因為質量較小而較容易發生濺射。

藉由氬- 38 和氬-36 的佔比,Jakosky 的團隊推估火星約有 65% 的氬已經散逸至外太空。基於該研究結果還可以推算出火星大氣層中其他氣體的散逸情形;其中又以二氧化碳為焦點,畢竟行星需要足夠的溫度才能維持液態水的存在,而二氧化碳在溫室效應有很大的貢獻。

火星的大氣層因為太陽風的濺射效應逐漸被剝離。圖/NASA

接著,讓我們一探究竟火星磁場與地球有何不同。地球能形成全球磁場的奧秘是什麼呢?這要先從行星發電機理論開始說起,該理論指出行星要維持穩定的磁場有三個要件——導電流體、驅動導電流體運動的能量來源、科氏力。

以地球為例,地核內部保留了地球形成初始的熱能,約有 4000°C 至 6000°C 的高溫。位於地核底層的高溫液態鐵,因為密度下降而上升至地核頂端,接觸到地函時,這些液體會喪失部分熱能而冷卻,因為溫度比周圍環境低,密度變高而下沉;如此不斷的熱對流循環下,讓帶有磁力的流體不斷運動,進而形成電磁感應。另外,科氏力的作用讓地球內部湧升的流體偏向,產生螺旋狀的流動效果,有如電流通過螺旋線圈移動的效果。

在火星所發現的地殼岩石證據顯示,火星在數十億年前曾經和地球一樣具有全球的磁場。科學家對火星磁場消失的原因還不是很清楚,其中一種假說認為可能跟火星質量較小有關,在火星形成之初散熱較快,造成火星外核液態鐵短時間內就凝固,無法像地球一樣,保留高溫地核使液態的鐵和鎳因為密度的變化,不斷從地核深處上升至地函,再冷卻下降,持續進行熱對流。

火星地核內部缺乏驅動導電流體的原動力,導致火星內部的發電機幾乎停止運轉,無法形成全球的磁場。話雖如此,火星仍然具備小區塊的磁場,主要分布在火星南半球留有殘存磁性的地殼上空。

行星發電機理論中科氏力影響行星地核內熱對流的導電流體偏向。圖/Wikipedia

磁層與大氣層相互依存,火星在太陽風不斷吹襲之下,大氣層愈趨稀薄;火星內部又缺乏發電機的動力,無法形成完整的磁層。火星缺乏厚實的大氣層保護,就難以阻擋外太空隕石的猛烈攻勢,因此如今呈現貧瘠乾燥又坑坑疤疤的外貌。

既然這樣,看似缺乏極光形成要素的火星,又是如何形成極光的呢?

雖然火星沒有覆蓋全球的磁層作為保護,但火星南半球仍帶有區域性的磁場。在那裡,磁性地殼形成的殘存磁場與太陽風交互作用,滿足了極光生成的條件。這種極光被稱為「離散極光」,與地球上常見的極光不同,有些發生在人眼看不見的波段(比如紫外線),所以也更加提升了觀測難度。

那麼,研究團隊是怎麼發現這種紫外線離散極光的呢?那就是藉由文章首段提到的 MAVEN 探測器所搭載的紫外成像光譜儀(Imaging Ultraviolet Spectrograph,IUVS)!

該團隊的成員 Zachary Girazian 是一位天文及物理學家,他解釋了太陽風如何影響火星上的極光。

火星離散極光的發現

研究團隊根據火星上離散極光的觀測結果,比較以下數據之間的關係——太陽風的動態壓力、行星際磁場(IMF)強度、時鐘角和錐角[註 1] 以及火星上極光的紫外線,發現在磁場較強的地殼區域內,極光的發生率主要取決於太陽風磁場的方向;反之,區域外的極光發生率則與太陽風動壓(Solar Wind Dynamic Pressure)關聯較高,但是太陽風動壓的高低則與極光亮度幾乎無關。

N. M. Schneider 與團隊曾在 2021 年的研究發表提到,在火星南緯 30 度至 60 度之間、東經 150 度至 210 度之間的矩形範圍內,當 IMF 的時鐘角呈現負值,如果正逢火星的傍晚時刻,較容易觀測到離散極光;也就是說在火星上符合前述的環境條件很可能有利於磁重聯(Magnetic Reconnection)——意即磁場斷開重新連接後,剩餘的磁場能量就會轉化為其他形式的能量(如動能、熱能等)加以釋放,例如極光就是磁重聯效應的美麗產物。

未來研究方向:移居火星

因為火星上離散極光的生成與殘存的磁層有關,而磁層又關乎大氣的保存。所以觀測離散極光的數據資料,也能作為後續追蹤火星大氣層逸散情形的一個新指標。愛荷華大學的研究成果,主要在兩個方面有極大的進展——太陽風如何在缺乏全球磁層覆蓋的行星生成極光;以及離散極光在不同的環境條件的成因。

人類一直以來懷抱著移居外太空的夢想,火星是目前人類圓夢的最佳選擇;但是在執行火星移民計畫之前,火星不斷逸散的大氣層是首要解決的課題。缺乏覆蓋全球的大氣層保護,生物將難以在貧瘠的土壤存活。或許透過火星上極光觀測的研究成果,科學家們將發掘新的突破點;期許在不久的將來,我們能找到火星適居的鑰匙。

  • 註1:IMF 的時鐘角(Clock Angle)與錐角(Cone Angle)

如何判定 IMF 的角度呢?因為磁場空間是立體的關係,我們測量 IMF 方向切線與 X、Y、Z 軸之間的夾角——也就是運用空間向量的概念,來衡量 IMF 的角度。時鐘角是指 Y、Z 軸平面上,IMF 方向與 Z 軸的夾角;而錐角則是在 X、Y 平面上,IMF 方向與 X 軸之間的夾角。

IMF 時鐘角和錐角示意圖。圖/ResearchGate

參考資料

  1. Science Daily. Physicists explain how type of aurora on Mars is formed.
  2. Z. Girazian, N. M. Schneider, Z. Milby, X. Fang, J. Halekas, T. Weber, S. K. Jain, J.-C. Gérard, L. Soret, J. Deighan, C. O. Lee. Discrete Aurora at Mars: Dependence on Upstream Solar Wind Conditions. Journal of Geophysical Research: Space Physics, Volume 127, Issue 4.
  3. Michelle Starr. Mars Has Auroras Without a Global Magnetic Field, And We Finally Know How. ScienceAlert.
  4. Michelle Starr. For The First Time, Physicists Have Confirmed The Enigmatic Waves That Cause Auroras. ScienceAlert.
  5. Southwest Research Institute. SwRI Scientists Map Magnetic Reconnection In Earth’s Magnetotail.
  6. 呂凌霄。太空教室學習資料庫
  7. 頭條匯。火星上的「離散極光」是如何形成的?物理學家有新發現,帶你揭秘
  8. Wilson Cheung。【北極物語】承載北極文化──極光。綠色和平
  9. 大紀元。火星上的極光是如何形成的? 科學家解謎
  10. BBC News 中文。北極光:美國科學家首次在實驗室驗證北極光產生原理
  11. 明日科學。科學團隊藉由 NASA 的太空船所收集的資料得知火星大氣層的流失可能肇因於強烈的太陽風
  12. 台北天文館。NASA 首次繪製火星周圍電流分布圖,證實火星有磁場。科技新報。
  13. 交通部中央氣象局太空天氣作業辦公室。太空天氣問答集
  14. Denise Chow. In an ultraviolet glow, auroras on Mars spotted by UAE orbiter. NBC News.
  15. NASA. NASA Mission Reveals Speed of Solar Wind Stripping Martian Atmosphere.
  16. NASA Goddard. NASA | Mars Atmosphere Loss: Sputtering.
Ash_96
2 篇文章 ・ 2 位粉絲
外交系畢業,很多人看成外文(是不是又回頭看一次? ) 常常在外向與保守的極端之間擺盪;借用朋友說的詞彙,我屬於營業式外向。 喜歡踩點甜點店和咖啡廳,大概是嚮往那種文青都會女子的感覺,或是純粹愛吃。 喜歡k-pop ,跳舞的時候會自動設定為開演唱會模式,自我催眠現在我最帥。

2

2
1

文字

分享

2
2
1
如何選擇「基因交友軟體」?——影集《真愛基因》的現實
胡中行_96
・2022/06/27 ・4916字 ・閱讀時間約 10 分鐘

「身為交友軟體公司的執行長,用自家服務找對象並不道德,可是我偶爾會做市場調查,所以手機裡下載了 20 個同行的產品。當我打開其一,便收到一個月前,某位友善男士的來訊。內容實在迷人,可惜他整頭紅髮……」幸好見面之後,一拍即合。她徵求對方的同意,採集其口腔的 DNA 樣本,進而得知他們擁有最頂尖 10% 的相容性。「我從不想要紅髮伴侶,認為自己不會喜歡,但其實我超愛。……,這都在你的 DNA 裡。」[1]

  

影集《真愛基因》中的基因配對廣告:「接受檢測,找到真愛」。圖/IMDB

  

Netflix 影集《真愛基因》

Netflix 影集《真愛基因》(The One)講述科學家發現有一種 DNA 檢測,可以找到完美伴侶,於是數百萬人踴躍嘗試。以此營利的媒合公司執行長,卻在事業愛情兩得意之際,捲入一場謀殺案……。[2][3]

話說回來,本文第一段引述的並不是影集劇情,而是美國交友網站 Pheramor 的共同創辦人兼執行長,接受德州醫療中心(Texas Medical Center)專訪時的自白。[1]

  

您的手機裡,裝有哪些交友軟體?圖/Pratik Gupta

  

真實的基因配對業者

影集《真愛基因》於 2021 年上映,然而在更早之前,就已經有業者開始提供類似的服務。以下是幾個知名的例子:

DNA Romance 的口腔 DNA 採集套件。圖/參考資料 11

  

基因配對的原理與目的

在考慮註冊一般交友軟體或網站的帳號之前,我們由最基本的動機,例如:純交友、約砲、短期約會、長期戀愛,甚至是以婚姻為前提交往等,搜尋適合的平台。選擇基因配對服務時,想清楚使用的目的,同樣也是首要之務。同時,最好瞭解這些檢測的功能,是否符合您的需求。有鑑於業界廣告的項目繁多,單一基因觸及的層面也相當複雜,以下只簡單說明其中一小部份:

  • 人類白血球抗原(human leukocyte antigens,HLA),即人類的主要組織相容性複合體(major histocompatibility complex,MHC):[15]1995 年瑞士 Claus Wedekind 教授等人,發現動物身上的MHC,會影響體現免疫特質的體味。排除避孕藥干擾的情形下,女人喜愛的味道,通常屬於與自己 HLA 差異較大的男人。[16]2016 年的德國研究,認為 HLA 相異者的結合,能帶來令人滿意的關係和性愛,以及強健的子代[15]不過,2020 年另一群德國科學家檢視 3,691 對情侶後,覺得 HLA 對人類求偶的實際作用甚微。[17]
  • 血清素轉運體(serotonin transporter,SERT基因:編寫蛋白質 SERT 的基因變異體 5-HTTLPR,[18]是調節神經系統中血清素濃度的關鍵,與情緒控管有關[19]
  • 催產素受體基因(oxytocin receptor gene):這種基因有幾個不同的類型,2019 年的美國研究指出,GG 基因型的人合群、有同情心,且情緒穩定。他們或他們的伴侶,比 AA 或 AG 基因型婚姻滿意度高[20]
  • 多巴胺受體基因(dopamine receptor gene)DRD4:多巴胺帶給人愉悅感,但相應受體遲鈍的 DRD4 7R+ 基因型,必須要更大的刺激,才能達到相同效果。[21] 2010 年美國研究 DRD4 的論文指出,相較於 7R-,屬於 7R+ 者,傾向從事一夜情、出軌等高風險的行為,因而有旺盛的繁殖力,且容易繁衍多元的子代。[22]
  • 兒茶酚-O-甲基轉移酶基因COMT gene):COMT 基因若異常,會提高某些精神疾病的風險。[23]2019 年的德國研究顯示 COMT 基因的不同類型,會導致情緒辨識表現的差別。與 Val/Val 相比,有 Met/Met 和 Met/Val 基因型的人,能更準確的辨識負面情緒。因此,遇到負面的社交經驗時,也更輕易地陷入焦慮或憂傷的情緒。[24]
  • 單核苷酸多態性(single-nucleotide polymorphism,SNP):SNP 是指 DNA 序列中的變異,可以用來尋找致病基因和療法、做親子鑑定,或是瞭解族群的演化等。目前科學界已知約 400 萬個 SNP,[25]如果交友網站沒說要驗哪些,其實算是過度籠統。

值得注意的是,許多現有的相關研究均以順性別異性戀為主,所以對性少數的族群而言,未必有參考價值。Instant Chemistry 為此展開大型研究,正在招募後者參加。[6]

  

《真愛基因》劇照:如果已經有伴侶了,您還會想做基因檢測嗎?圖/參考資料 3

  

基因在戀愛中的角色

除了正在尋覓另一半的單身人士,Instant Chemistry 更鼓勵情侶們購買雙人檢驗套組,說是有助於解決兩人對關係的不滿。[6]影集《真愛基因》的原著小說《命定之人》(The One)裡,就有這麼一個經典的橋段:「如果我們的 DNA 結果不合,怎麼辦?」「那就要留心,或許我們得為戀情更加把勁。就像約翰.藍儂說的,『你只需要愛』。」「對,可是他也說過『我是海象』,所以咱們還是別太相信他智慧的箴言。」[26][註1]

想去驗基因的伴侶,是不是早就對感情缺乏信心?若是心中的芥蒂被科學驗證了,又該如何面對?

換個角度來說,這可能要看兩人不合的基因,是關乎哪個面向。比方,美劇《宅男行不行》(The Big Bang Theory)裡,不用驗也知道大難臨頭的 Amy,以反諷的口吻抱怨:「噢,當然,因為 Sheldon 跟我的 DNA 加起來,會等於一個曉得怎麼交朋友的孩子。成熟點!」[27]憂慮子代基因無法適應社會的心情,擺在生育意願超低的臺灣,不僅很難激起觀眾共鳴,應該也不太會動搖已經成形的交往關係。

但,要是基因檢測,還有其他風險呢?

  

Michael Connelly 的小說《Fair Warning》,點出基因檢測的風險。圖/參考資料 28

  

基因資訊的隱私疑慮

「你知道今年五角大廈叫所有軍人,不准使用 DNA 試劑,因為那會造成國安問題嗎?」曾任記者的知名美國作家 Michael Connelly,在 2020 年出版的虛構小說《合理警告》(Fair Warning;暫譯)裡,[註2]描述真實世界可能上演的基因隱私危機。「骯髒四號。有些遺傳學家這麼稱呼 DRD4。」故事中,有心人士從盜用的基因資料,斷定哪些女性水性楊花,然後跟蹤並殺害她們。[28]當原本屬於隱私的個人資訊被交予私人企業,以獲取服務,消費者究竟能得到多少法律的保障?

根據 Michael Connelly 的調查,目前美國食品藥物管理局(Food and Drug Administration,FDA)尚且無法有效規範基因資料的蒐集與運用。[28][29]DNA Romance 強調他們遵守美國《健康保險攜帶和責任法案》(Health Insurance Portability and Accountability Act,HIPAA)的隱私準則,而且不會把使用者個資賣給第三方。[11]

可是美國國家人類基因組研究所(National Human Genome Research Institute)坦承:「雖然很多公司設有健全的隱私及知情同意政策,但沒有聯邦法律能禁止他們將個人的基因資訊提供給第三方。[30]

  

臺灣的基因隱私保障

科技部 2021 年的《科技魅癮》數位季刊,曾探討臺灣與美國在基因法規方面的異同。[31]比起美國允許某些科學研究不經當事人同意,就能使用去識別化的基因資訊;[30][31]臺灣的規範較為嚴謹,卻也因阻礙科技發展而為人詬病。[31]基因檢測等相關科技,是一個仍在不斷演進的領域。

我們一來不能光看基因就認識一個人的特質,畢竟後天環境也是造就人格和生理條件的重要因素;二來在研究還未成熟的階段,對檢測的解讀必有其侷限。另外,還得注意檢測單位是否遵循當地法規,以保障消費者權益。萬一不小心,資料外洩或是驗出個本來不曉得的基因缺陷,當事人受到的打擊,說不定會比失戀還嚴峻。

總之,基因檢測是潘朵拉的盒子。一旦勇敢嘗試,便如同 Michael Connelly 書中所言:「你的 DNA 可以開啟任何事物,從此秘密再也不是秘密了。[28]

  

備註

  1. 影集《真愛基因》和原著小說《命定之人》的原文名稱都叫做「The One」。本文引述的段落是由筆者自行翻譯,所以可能與目前通行的繁體中文版用字略有出入。
  2. Michael Connelly 小說改編的作品中,較為臺灣人所知的,大概是電影《下流正義》(The Lincoln Lawyer)和影集《絕命警探》(Bosch)。至於《Fair Warning》,目前好像沒有中文譯本。

參考資料

  1. Dating app taps genetics and social media (Texas Medical Center, 2019)
  2. The One (Netflix, 2021)
  3. The One (IMDB, 2021)
  4. GenePartner (2022)
  5. Instant Chemistry (LinkedIn, 2022)
  6. Instant Chemistry (2022)
  7. SingldOut (Crunchbase, 2022)
  8. This Online Dating Site Thinks It Can Match You Based On Your DNA (Business Insider, 2014)
  9. How Identity Evolves in the Age of Genetic Imperialism (Scientific American, 2015)
  10. DNA Romance (LinkedIn, 2022)
  11. DNA Romance (2022)
  12. Nozze (2022)
  13. The Illusion of Genetic Romance (Scientific American, 2020)
  14. Pheramor (Facebook, 2019)
  15. Kromer J, Hummel T, Pietrowski D, Giani AS, et al. (2016) ‘Influence of HLA on human partnership and sexual satisfaction’ Scientific Reports, 6: 32550.
  16. Wedekind C, Seebeck T, Bettens F, and Paepke AJ. (1995) ‘MHC-dependent mate preferences in humans’ Biological Sciences, 260: 1359, pp. 245 -249.
  17. Croy I, Ritschel G, Kreßner-Kiel D, Schäfer L, et al. (2020) ‘Marriage does not relate to major histocompatibility complex: a genetic analysis based on 3691 couples’. Biological Sciences, 287: 1936.
  18. serotonin transporter (SERT) (APA Dictionary of Psychiatry, 2022)
  19. Cao H, Harneit A, Walter H, et al. (2018) ‘The 5-HTTLPR Polymorphism Affects Network-Based Functional Connectivity in the Visual-Limbic System in Healthy Adults’. Neuropsychopharmacology, 43, pp. 406–414.
  20. Monin JK, Goktas SO, Kershaw T, DeWan A. (2019) ‘Associations between spouses’ oxytocin receptor gene polymorphism, attachment security, and marital satisfaction’. PLOS One, 14 (2): e0213083.
  21. Muda R, Kicia M, Michalak-Wojnowska M, Ginszt M, et al. (2018) ‘The Dopamine Receptor D4 Gene (DRD4) and Financial Risk-Taking: Stimulating and Instrumental Risk-Taking Propensity and Motivation to Engage in Investment Activity’. Behavioral Neuroscience, 12: 34.
  22. Garcia JR, MacKillop J, Aller EL, et al. (2010) ‘Associations between Dopamine D4 Receptor Gene Variation with Both Infidelity and Sexual Promiscuity’. PLOS One, 5(11): e14162.
  23. COMT gene (APA Dictionary of Psychiatry, 2022)
  24. Lischke A, Pahnke R, König J, Homuth G, et al. (2019) ‘COMTVal158Met Genotype Affects Complex Emotion Recognition in Healthy Men and Women’. Frontiers in Neuroscience, 12:1007.
  25. single_nucleotide_polymorphism_snp (國立中正大學生物資訊實驗室,2014)
  26. John Marrs. (2020) Chapter 9. ‘The One: Now a major Netflix series!’ USA: Random House.
  27. Big Bang Theory Quote 11016 (The Big Bang Theory)
  28. Michael Connelly. (2020) ‘Fair Warning‘. USA: Little Brown and Company.
  29. Beautiful Places to Die (The New York Times, 2020)
  30. Privacy in Genomics (National Human Genome Research Institute, 2021)
  31. 【個人vs.社會】基因檢測如打開潘朵拉盒子?隱私權成為重要問題!(科技魅癮,2021)
所有討論 2
胡中行_96
81 篇文章 ・ 29 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。