0

1
0

文字

分享

0
1
0

渾身是勁:電池的前世今生與未來

果殼網_96
・2015/08/18 ・4109字 ・閱讀時間約 8 分鐘 ・SR值 556 ・八年級

640px-6_most_common_battery_types-1
六種最常見的電池型號。Source: Hohum

作者/chenwei

近日,美國史丹佛大學的戴宏杰研究組在《自然》發表論文,宣布研發出充電極快、壽命超長的鋁離子電池,引起了廣泛關注。比起耳熟能詳的「鋰電池」,人們對鋁離子電池的感覺要陌生得多。為什麼要研發這樣的新電池?這還得從充電電池的發展說起。

初中時,我有一部黃色的隨身聽。我給它準備了3對充電電池輪番上陣,這樣,當周杰倫的聲音突然變得緩慢時,我知道總有電池可以更換。後來,我有了MP3和手機,就漸漸不再聽隨身聽了,需要經常充電的,也從圓柱形的5號電池換成了扁扁的鋰電池。在我看來,世上無法逃避的事情,除了死亡和繳稅,還有給電池充電。

不是每一種電池都叫可充電電池

電池是生活中再常見不過的物品了。它進入人類世界已有200年的歷史。早在1800年,義大利科學家亞歷山卓·伏打(Alessandro Volta)就發明了「伏打電堆」(Voltaic piles)。伏打電堆由很多個單元堆疊而成,每個單元都有一塊銅板和一塊鋅板,中間由一塊浸有鹽水的布隔開。時至今日,生活中常見的鹼性電池、鉛酸電池、鋰電池等電池,都與古老的伏打電堆共享著同樣的工作原理:通過氧化還原反應將自己儲存的化學能轉化為電能。

-----廣告,請繼續往下閱讀-----
ZUNM-h6gqvtU7iDd5IGf6-m7OWPb7fvPGyVUeIHADBJ5AwAABgMAAEpQ (1)
描繪伏特(左)向拿破崙(右)展示伏打電堆的畫作。圖片來源:66south.com

這一看似神奇的過程其實並不複雜。一塊電池主要由正極、負極和電解液三部分組成。當電池與外電路聯通時,負極一端就開始發生氧化反應,釋放出電子;正極一端則發生還原反應,正好需要補充電子。由於電解液將兩極隔開,只允許離子流動,不允許電子流動,於是電子通過外電路從負極流向正極,形成電流做功,化學能也藉此轉化成了電能。

原電池示意圖。陽極(Anode)與陰極(Cathode)與外電路連接,浸泡在電解液中,電池運作時,電流從陰極流向陽極。因此,此處的陽極和負極是同一電極,陰極與正極是同一電極。圖片來源:Arumugam Manthiram, Smart Battery MaterialsIn, CRC Press, 2009, pp. 8.
原電池示意圖。陽極(Anode)與陰極(Cathode)與外電路連接,浸泡在電解液中,電池運作時,電流從陰極流向陽極。因此,此處的陽極和負極是同一電極,陰極與正極是同一電極。圖片來源:Arumugam Manthiram, Smart Battery MaterialsIn, CRC Press, 2009, pp. 8.

但如果用一次性電池為隨身聽供電,那麼一張專輯才放幾遍,電池就該扔了。一次性電池的電化學反應是不可逆的,也就是說,化學能轉化為電能的旅程只能一條路走到黑,電量用盡,電池也沒用了。能不能來一種可以重複使用的電池?

這種「得寸進尺」的需求,最終促成了世界上最早的可充電電池——鉛酸電池的誕生。它由法國物理學家加斯頓·普蘭特(Gaston Planté)於1859年發明。可充電電池採用的是可逆的電化學反應,只要施加外電壓,改變電子流動的方向(從正極流向負極),電池兩極就會發生與放電時方向相反的化學反應,彷彿「返老還童」,最終重新充滿電力。

這項發明影響之深遠令人不服不行——時至今日,人們在啟動汽車引擎時使用的蓄電池(俗稱電瓶)依然是鉛酸電池。鉛酸電池的負極與正極分別採用海綿鉛及二氧化鉛,電解液使用稀硫酸。它可以提供很大的電流,價錢也不貴,但就是體積太大了些。

-----廣告,請繼續往下閱讀-----
普蘭特和他發明的鉛酸電池。圖片來源:bb-batteryasia.com
普蘭特和他發明的鉛酸電池。圖片來源:bb-batteryasia.com

鉛酸電池做不到面面俱到?沒關係,後面還有一堆科學家躍躍欲試呢。此後,研究者們又不斷探索,發明出採用其他化學反應的充電電池,如鎳鎘電池、鎳氫電池和鋰電池。它們能量密度更大,體積更小,可以用於為各類小型電子設備提供電能。

青出於藍的鋰離子電池

之前說到,電池工作時,電子通過外電路從負極流向正極。與此同時,相同電荷量的正離子則在電池內部從負極向正極流動。早期的電池都使用諸如稀硫酸這樣的以水為溶劑的電解液。在這種情況下,電池內肩負維持電荷平衡任務的是氫離子。然而,使用水系電解液的電池,最多能達到的工作電壓也不過2伏特左右。如果我們想要獲得更高的電壓,輸出更大功率,就要使用不含水的電解液,找到替代氫離子的正離子。

查看元素週期表,最佳的候選者落在了鋰離子身上:作為3號元素,鋰的原子量只有6.9;它既輕又小,比其他大的離子更容易在電解液中移動,可謂不二之選。確定了鋰離子,接下來的任務,就是找到可以與之發生可逆反應的電極材料了。到20世紀70年代,美國化學家史丹利·惠廷厄姆(M. Stanley Whittingham)在埃克森(Exxon)工作時率先發明了鋰離子電池。經過多年改良,商業化的可充電鋰離子電池在20世紀90年代初在日本推出。

w0tICWIktgSv2JIIperDkuAecjNqnAwEQHfpVcruniOQAgAAEAEAAEpQ
史丹利·惠廷厄姆目前仍是下一代鋰電池設計的​​重要研發者。圖片來源:binghamton.edu

鋰離子電池的負極使用石墨,正極使用鈷酸鋰,電解液則使用含有鋰鹽(如六氟磷酸鋰)的有機溶劑。放電時,嵌在石墨負極中的鋰被氧化、進入電解液,跑到正極嵌入到氧化鈷的晶格間隙中形成鈷酸鋰;充電時,鋰則從鈷酸鋰中脫嵌,溜回石墨中,如此循環往復。這樣的電池,工作電壓可達到3.7伏特以上,能量密度大大提高。

-----廣告,請繼續往下閱讀-----

但所謂「金無足赤,人無完人」,儘管鋰離子電池大獲成功,也免不了還有缺點——比如價格較高,容量流失,以及最嚴重的安全性不高的問題。鋰離子電池電解液使用的有機溶劑十分易燃,雖然我們可以通過加入添加劑和改進電池設計來提高電池的穩定性,卻終究不是長久之計。

厚望加身的離子電池

原理上,我們只要用另一種X離子來替代鋰離子,並找到與之匹配的電極和電解液,就可以得到「X離子電池」。在眾多「X」的候選者中,鋁算是優勢比較明顯的:它的價格比鋰更低,化學性質也更穩定,而且在反應時,每個鋁原子可以釋放3個電子,似乎是個不錯的選擇。

然而,研發鋁離子電池的道路並不順利。最大的困難在於找到合適的正極材料和電解液。在以往的研究中,正極材料往往會在充放電過程中發生不可逆的結構破壞,能有效參與反應的部分因而越來越少。最終,電池容量迅速下降,使用壽命只有幾十個循環——這顯然不能滿足人們的需求。

在研究者們鍥而不捨的努力之下,上月,鋁離子電池終於迎來了大突破。史丹佛大學化學系的戴宏杰教授在《自然》發文宣布,他的研究小組成功製造出了超長壽命的鋁離子電池。

-----廣告,請繼續往下閱讀-----
LXnZb8weSy8nxQWShPZfxVjy0FGoVPxWesSg8IwKZ_RSAwAANwIAAEpQ
戴宏杰(右)和文章的共同第一作者之一龔明(左)圖片來源: Mark Shwartz/Stanford Precourt Institute for Energy

這種電池選用鋁金屬作為負極,正極則是一種三維結構的泡沫石墨。秘製電解液由有機鹽[EMIm]Cl(1-ethyl-3-methylimidazolium chloride)和AlCl3按一定比例混合製成的離子液體。負責在電解液中轉移電荷的離子是AlCl4。電池放電時,鋁負極被氧化生成Al2Cl7,同時釋放電子;本來嵌入在泡沫石墨正極孔隙中的AlCl4則脫嵌進入電解液。充電時,電解液中的AlCl則重新嵌入到泡沫石墨孔隙當中。因為AlCl離子的體積較大,因此找到一種可以允許它快速嵌入/脫嵌的的正極材料頗為關鍵。研究人員巧妙地製備了泡沫石墨——它內部充滿空隙,表面積很大,讓AlCl離子可以快速自由地進出。

1xIp6xHMNHGspHYooF-8kHeR_XoAlksVkMRur0p1nrsPAwAAJwIAAFBO
以泡沫鎳為模板,研究者先用化學氣相沉積法在它的表面沉積上石墨,再覆蓋上一層聚合物PMMA;接著用相應溶劑將泡沫鎳和PMMA相繼溶解,得到三維結構的泡沫石墨。用普通非泡沫熱解石墨做正極的話,鋁離子電池的充放電速率只有使用泡沫石墨時的75分之一。圖片來源:參考文獻[1]

在經過驚人的7500次充放電循環後,這些鋁離子電池的容量幾乎沒有損失,工作電壓也穩定在2伏特左右。除了​​壽命長,這種鋁離子電池功率密度也很高(3000W·kg–1),可以在一分鐘內充滿電。此外,它們柔性極好,可以隨意彎曲;安全性能也超棒,哪怕用電鑽將它鑽穿,也不會影響它正常工作。

VGJpWG4npvVvXEpV5UWO9951yA04pL_mrJrsC55887SgBQAAhAMAAFBO
鋰離子電池被戳開一個洞很可能帶來嚴重的後果,但用鑽頭(Drill)鑽穿戴宏杰研究組的鋁離子電池,電池依然能正常工作。圖片來源:stanford.edu

取而代之?

說了這麼多優點,這樣的鋁離子充電電池什麼時候能走進我們的生活?

恐怕還早得很。

-----廣告,請繼續往下閱讀-----

目前,它的工作電壓只有鋰離子電池的一半,能量密度也只有40 Wh·kg –1,與鉛酸電池相當,還不到鋰離子電池的三分之一,所以大家應該還沒法在智能手機、筆記本電腦或電動汽車裡看到它。除了​​性能的提高還潛力很大之外,這些鋁離子電池的生產成本也有待降低——它的電解液使用離子液體,價格較高;用於製備泡沫石墨正極的化學氣相沉積法也不便宜、是很難投入大規模生產的工藝。要達到「物美價廉」,研究者們還有很長的路要走。

但不管怎樣,鋁離子電池在使用壽命、功率密度和安全性方面的性能依然優越,如果未來可以降低生產成本,它們將會十分適合用於在對能量密度要求不高的地方發揮作用。比如在電網儲能係統中,它們能為太陽能和風能等可再生能源儲能,還能作為家用大型電池,為電動車充電,或是在停電時為電器供電。

一旦科學家能夠研發出比泡沫石墨更好的正極材料,進一步提高鋁離子電池的工作電壓,它的用途將更加廣泛。隨身聽走了,MP3也快走了,科技產品一代又一代地從我們的生活中出現又淘汰,電池和研究電池的人卻一直還在。之後還會有怎樣的電池驚艷我們的生活?給裝備充好電,拭目以待吧。

參考文獻:

-----廣告,請繼續往下閱讀-----
  1. Lin, Meng-Chang, et al. An ultrafast rechargeable aluminium-ion battery.Nature (2015).
  2. Nagaura, T. & Tozawa, K. Lithium ion rechargeable battery. Prog. Batteries Solar Cells 9, 209 (1990).
  3. Wessells, et al. Investigations of the Electrochemical Stability of Aqueous Electrolytes for Lithium Battery Applications. Electrochemical and Solid-State Letters 13, no. 5 (May 1, 2010): A59–61.
  4. Chen, Z. et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Mater. 10, 424–428 (2011)

 

本文轉載自果殼網

-----廣告,請繼續往下閱讀-----
文章難易度
果殼網_96
108 篇文章 ・ 9 位粉絲
果殼傳媒是一家致力於面向公眾倡導科技理念、傳播科技內容的企業。2010年11月,公司推出果殼網(Guokr.com) 。在創始人兼CEO姬十三帶領的專業團隊努力下,果殼傳媒已成為中國領先的科技傳媒機構,還致力於為企業量身打造面向公眾的科技品牌傳播方案。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

4
0

文字

分享

1
4
0
「真.無線充電」?試試電磁波獵能手環,你的身體就是最好的捕能裝置!
PanSci_96
・2023/04/22 ・2679字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

你的手機能無線充電嗎?不過,雖說是無線充電,但還是得要放在充電盤上,由充電盤連結一條電線,這樣的充電方式,想必跟大家期待的「真.無線充電」有落差。

好消息是,有人提出一種藉由捕捉空間中的無線電波、獲得電能的無線充電方式,所以代表這些電能是完全免費的!但……這是真的嗎?

隔空充電可行嗎

現在我們已經可以透過無線網路串連全球的資訊,但是遠距能量傳輸卻尚未成真。

當代的無線通訊裝置,舉凡手機電話、wifi 網路、無線電、衛星定位等,都可以靠著不斷地發射無線電波來交換訊息。不過其實仔細想想,無線電波、電磁波其實就是不斷變化的電磁場。既然可以透過磁場變化來傳遞能量,那這些強大的電磁波網絡,是不是也可以拿來傳遞電能呢?

-----廣告,請繼續往下閱讀-----

實際上還真有類似的例子,一百年前最早的收音機竟然完全不需要插電!礦石收音機只需要天然礦石、金屬針、線圈和一些電線,就能收到附近廣播電台送出的訊號,轉換成聲音並放出。

那麼為什麼沒有沿用至今呢?主要就是效率的問題。礦石收音機需要不斷調整金屬針接觸礦石的位置,還得拉長長的天線來捕捉更多的無線電波;市售的礦石收音機玩具,甚至附有一條長長的鱷魚夾電線,可以接到大型金屬家具,產生更清楚、更大聲的聲音。當然這種收音機很快就被以電驅動的真空管收音機取代了。

2021 年初小米曾發表過隔空充電技術專利,利用指向型遠距充電,系統會先定位出手機的位置,再透過多個天線組成的陣列將電波瞄準發射給手機,克服電磁波發散的問題,據稱能在數公尺內進行無線 5W 的無線充電,雖然還不到快充,但也算是革命性突破。不過目前還在技術發表階段,尚未正式推出。

礦石收音機是利用天然礦石或晶體,加上天線、地線和調諧電路,所製成的收音機。圖/維基百科

無線射頻獵能

再換個角度思考,能量在傳遞的時候會向四周發散,而我們生活周遭到處都是會發出電磁波的 3C 產品,那能不能反過來,捕捉這些由其他電器溢散的電磁波,並轉為能量呢?

-----廣告,請繼續往下閱讀-----

還真的有人這麼做了。收集這些廢能,並轉化成可用電能的技術,就稱為「無線射頻獵能」。近十年來,有許多相關的技術與研究,不過效率大多還未到達實用階段。

就在今年一月,美國麻州大學團隊發表了一種可以用於無線射頻獵能的線圈手環,而且功率竟然比一般的線圈天線高十倍以上。

有趣的是,其實他們當時並不是在研究無線充電,而是如何使用 LED 快速閃爍來傳遞訊息;這種名為可見光通訊 VLC 的技術,有望成為未來 6G 通訊的方式。但發現到,這種技術需要 LED 以每秒數百萬次的頻率閃爍,過程中會釋放出大量不可用的無線電波,浪費掉許多能量;於是轉念一想,嘗試用線圈收集這些逸散的能量,降低傳訊時的能量浪費。

研究團隊發現,當線圈靠近金屬片時,收集能量的效率會變得更好。透過反射增強訊號,金屬片吸收環境中的電磁波再向外放出;隨著金屬片面積越大,攔截到的電磁波也越多,收集能量的效果也越好。

-----廣告,請繼續往下閱讀-----

但是無線充電就是要擺脫這些笨重的金屬板,於是研究人員開始拿生活周遭的 3C 產品來進行實驗。從獵能的功率來看,效果最好的依序是筆電、平板、手機。這和預期的一樣:面積越大,獵能效果越好。

然而,意想不到的是,實驗效果最好的,竟然是人體!

推測這是因為人體中含有大量水分,其容易導電、被極化的特性有助於蒐集空間中的電磁波。人體就是一根巨大的共振天線,能增加無線電訊號的發射效率,同樣的道理,也可以用來收集環境中的無線電波能量。

人體是巨大的共振天線!圖/GIPHY

研究團隊將線圈手環的設計稱為「Bracelet+」,是第一個借助人體的獵能裝置;後續又嘗試將線圈做成戒指和手環,希望能打造出輕便的隨身獵能裝置。

-----廣告,請繼續往下閱讀-----

那這樣是不是以後只要綁條線圈在手上,就再也不需要幫手機充電了呢?該線圈手環目前在數公尺的距離外最多可以捕獲微瓦等級的功率,也就是百萬分之一瓦。用這種電壓當然不可能幫手機充電,不過已經足以供應一些低功耗的隨身裝置,像是常見的智慧健康手環,或是負責監控體溫或血糖的元件,甚至類似心律調節器的植入式醫療器材,或許就可以利用該線圈設計,減少充電的頻率。

在 5G 物聯網的架構中,各種居家和隨身裝置必須隨時維持連線,如何為這些獨立、低功耗的裝置供電便成了重要的課題。在這種情況下,如果可以汲取周遭無線電波的廢能,不只可以節省能源,還能免去定期更換電池或充電的麻煩。

遠距充電熱潮

目前的 5G 和開發中的 6G 技術,都持續往電磁頻譜中更高頻率的部分去探索,設置覆蓋率更高、頻譜更寬的無線通訊網絡,而這些頻率的電磁波也將為無線充電帶來新的發展機會。

去年在 Scientific Reports 期刊上,有篇研究提出了 5G 網路作為電力網的想法。團隊針對 5G 使用的頻率設計出一種天線以及搭配的電路,可以在 180 公尺外接收到 6 微瓦,為無線電力網的夢想邁出了第一步。

-----廣告,請繼續往下閱讀-----

不過,在這波遠距無線充電的熱潮下,市面上也出現許多令人半信半疑的遠距充電技術。

例如 2011 年一家新創公司推出了超音波充電技術,宣稱可以透過空氣的震動替手機充電;然而,雖說超音波充電雖然在原理上可能可以運作,但在充電效率和經濟成本上根本不切實際,對人體健康的影響也相當有爭議。

除此之外,還有一家叫做 TechNovator 的公司推出了前所未聞的量子充電技術,他們宣稱可以透過「能量量子化」來傳輸能量,並且在「空間中創造能量結構」,還不需要任何形式的電磁場,就可以達成 100 瓦的無線充電!至於到底有沒有這麼好的事,就留給各位判斷了。

在所有物品與資訊都以無線網路相連的這個時代,無線的電力傳輸與電力網是關鍵的下一步;能夠有效的無線傳輸能量,才能讓我們生活周遭的智慧裝置擺脫電線的束縛,減少電池的消耗,成為一個自由移動,自給自足的物聯網。

-----廣告,請繼續往下閱讀-----

不論是透過可見光、wifi、還是 5G 訊號,無線且遠距的充電與獵能,將來勢必會有讓人驚豔的發展。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1
PanSci_96
1254 篇文章 ・ 2382 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

4
2

文字

分享

0
4
2
快充怎麼做到又小又快? 半導體材料氮化鎵,突破工作頻率極限
PanSci_96
・2023/03/11 ・2703字 ・閱讀時間約 5 分鐘

除了線材,市場上也到處可看到標榜使用氮化鎵、可支援大電流快充的充電頭。但為什麼之前充電速度一直快不起來呢?為什麼現在要改用氮化鎵呢?快充能變得更快更快更快嗎?

快充加速了充電速度

在快充出來以前,我們的智慧型手機充電器,功率大約是 5 瓦特(W)或是 2.5 瓦特,現在最夯的的氮化鎵快充頭功率則高達 65 瓦特,相差了 13 倍,理想上充電時間也會縮短為十三分之一。

實際上,這幾年快充的發展速度可能比想像的還要快上許多。

還記得在 21 世紀的 Nokia 3310 嗎?其功率僅 4.56 瓦特,而蘋果一直到 2014 年的 iPhone6 才支援更快的 10 瓦特快充。然而,現在不僅已經出現不少支援 50 瓦特以上快充的手機,今年二月中國手機品牌 realme 推出的 GT Neo5,甚至出現 240 瓦特的超快充技術,是目前充電最快的智慧型手機。

提升充電器功率的關鍵

從過去到現在,充電器不僅功率大幅提升,充電器的大小同時也縮小了許多。過去的線性充電器,除了有條細細長長的尾巴外,最大的特徵就是不僅大、充電時還會發熱的變壓器;為了將市電的 110V 交流電轉為手機可以使用的 5V 直流電,就需要變壓器協助降壓。

-----廣告,請繼續往下閱讀-----

變壓器的發熱來源來自內部占了絕大部分體積的線圈,在電路學中被稱為「電感器」。輸入與輸出的線路會以線圈的形式綑在一組鐵芯上,兩端的線圈數量十分關鍵,線圈數量的比值就是兩側電壓的放大大小;若想從 110V 變成 5V,則為輸入的線圈圈數是輸出的 22 倍,那麼輸出的電壓就會減少 22 倍。

在變壓的過程中,輸入端的線圈與鐵芯就像一顆大電磁鐵,讓磁通量通過鐵芯,將能量傳到輸出線圈,輸出線圈則會因為電磁感應,產生相同頻率但電壓不同的交流電,完成降壓。只要再把 5V 交流電轉成 5V 的直流電,就可以幫手機充電啦。

過去的線性充電器最大的特徵就是體積大、充電時還會發熱。圖/Envato Elements

聰明的你應該已經想到,提升充電功率的關鍵就在於——線圈數量

如果希望變壓器的輸出提升,必須在維持線圈比值的情況下,等比例增加輸入與輸出端的線圈數量;更多的線圈就意味更多的磁通量能透過鐵芯傳到另一端,更多的能量也隨之傳遞。但如此一來,早已被塞滿的變壓器,為了塞進更多的線圈就只能繼續增加充電器的體積,還會因能量耗損放出大量的熱。

-----廣告,請繼續往下閱讀-----

若想提升功率,又能減少電感器大小,最好的方法就是——增加工作頻率

透過「高頻變壓器」的幫忙,將原先市電 60 赫茲的頻率提升到 50K 赫茲,被轉為高頻的交流電再進行變壓,如此一來就能降低能量損耗,所需的電感器大小也會大幅降低。

然而,要注意的是,要想改變交流電的頻率,是無法直接轉換的。要先將交流電轉為直流電,再經由特殊的「開關」電路將直流電轉為特定頻率的交流電;這類型的充電器就被稱為「開關充電器」,現在的智慧型手機就是使用開關充電器。

救世主材料

但隨著手機電池容量不斷增加,手機充電效率的需求永無止盡,充電器又開始一個比一個大。

-----廣告,請繼續往下閱讀-----
智慧型手機所使用得充電器為開關充電器。圖/Envato Elements

不是繼續提升工作頻率就好了嗎?那是因為,我們遇到了「矽的極限」。

開關電路中將直流轉為交流的關鍵,就是我們熟知的半導體元件電晶體。裡頭的原料過去都以我們熟知的矽為主,然而以矽為材料的半導體工作頻率極限僅在 100k 以下,如果超過 100k,轉換效率會大幅下降,更有嚴重的能量浪費問題。

解決的方法就是:尋找下一個材料。沒錯,就是最近最夯半導體的——氮化鎵(GaN);其能隙是矽的 3 倍,電子遷移率為 1.1 倍,崩潰電壓極限則有 10 倍。

顯然,氮化鎵擁有更良好的電特性,還能在高頻、高電壓的環境下工作,使用氮化鎵為材料的快充頭因此誕生!氮化鎵最高的工作頻率是 1000K,是矽的 10 倍,除了讓變壓器的電感線圈能再次縮小,連帶縮小充電頭的體積;亦能降低能耗並減少電容與散熱器的大小,成為好攜帶的快充豆腐頭。

-----廣告,請繼續往下閱讀-----

到這裡,或許你會想問,提高充電效率應該不只有換材料一條路吧?還會有更快的充電技術出現嗎?

當然會的;和矽相比,氮化鎵仍有很大的研究性。

而且不僅手機,就以現在市面上正夯的電動車來說,也需要快充技術支援,來減少充電時所需要的時間;為應對龐大的充電市場需求,綜觀整個半導體材料的發展歷史,已經有許多材料問世。除了氮化鎵,還包括矽、鍺、三五族半導體「砷化鎵」(GaAs)、「磷化銦」(InP),以及化合物半導體「碳化矽」(SiC);在能源產業中,又以氮化鎵和碳化矽的發展最令人期待。

電動車也需快充技術的支援,來縮短充電所需時間。圖/Envato Elements

氮化鎵與碳化矽的未來與挑戰

不論以技術發展還是成本考量,這兩位成員還不會那麼快取代矽的地位。

-----廣告,請繼續往下閱讀-----

兩者應用的範圍也不完全相同。氮化鎵擁有極高的工作頻率,在高頻的表現佳,並且耐輻射、耐高溫,除了運用在充電技術內外,在高功率 5G 基地台、航空通訊、衛星通訊也都將大展身手。碳化矽則在高溫及高電壓下擁有良好的穩定性,尤其在未來電動車快充的需求增加,1000 伏特以上的充電需求,將使得僅能承受 600 伏特的矽半導體無法負荷,預期將接手電動車中的關鍵元件。

兩者看來潛力無窮,但目前在製程上仍需克服許多問題;如:材料介面的晶格缺陷及成本考量;在它們能像矽材料應用在各方領域之前,還需要投入更多研發能量。

但令人興奮的是,駛向下個半導體世代的鳴笛聲已經響起,不論是台積電、晶圓大廠環球晶,國內外各家半導體大廠,都早以搭上這班列車。不同的材料也意味著,從磊晶、製程、元件設計、晶圓製造都將迎來改變,陸續也有廠商開始使用 AI 輔助設計氮化鎵半導體元件。

未來半導體與科技產業將迎來何種轉變,就讓我們拭目以待吧!

-----廣告,請繼續往下閱讀-----
半導體未來的發展令人興奮!圖/GIPHY

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----