0

7
2

文字

分享

0
7
2

新好材料鈣鈦礦,改造太陽能電池

科技大觀園_96
・2021/06/17 ・2345字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

隨著現代科技的發展,人類對能源的需求也逐漸增加,因此科學家一直努力尋找著合適的替代能源。其中最受矚目的能源之一,莫過於取之不盡、用之不竭的太陽能,因此科學家也一直想研發出理想的太陽能電池,能夠把太陽的能量盡可能的轉化為電能,並且長時間儲存起來。

一直以來,太陽能電池的材料都以最常使用的半導體材料——矽晶為主,然而自 2009 年開始,一種特殊的有機金屬鹵化物材料「鈣鈦礦」引起了科學家的注意。「鈣鈦礦」原本是指鈣與鈦的氧化物 CaTiO3(結構可表示為 ABX3),因為有機金屬鹵化物的結構與鈣鈦礦 ABX3 同類型,所以統稱為鈣鈦礦(見圖 1)。太陽能電池用的鈣鈦礦,吸收光的效率很高,吸收光子後,可以很快地分離成電子與電洞,傳送到電極而產生電流。這樣的高效率讓科學家想到,何不用鈣鈦礦來製作太陽能電池呢?

圖 1、鈣鈦礦晶體結構示意圖。用做太陽能電池的鈣鈦礦通常為有機金屬鹵化物。(圖/林唯芳、王彥錡)

臺灣大學材料科學與工程學系教授林唯芳的研究領域一直以高分子材料為主,也研究過以有機材料來製作太陽能電池。鈣鈦礦的出現,很快就吸引了林唯芳的眼球。「鈣鈦礦這種材料簡直不得了。」談起鈣鈦礦,林唯芳透露著興奮的心情,因為和傳統的矽晶相比,以鈣鈦礦製作太陽能電池的製程簡單太多了!

製作太陽能電池,竟和刷油漆一樣簡單

首先,以矽晶做為材料時,為了減低晶格裡的缺陷數量,必須經過約 900℃ 的高溫長時間處理,然後再以半導體高真空高溫製程製作成二極體太陽能電池,工序繁瑣嚴苛。但鈣鈦礦太陽能電池是以溶液塗佈薄膜的形式來製作,所以不需這麼高溫,也不需要真空環境,只要在一般環境裡就可以製作。 

-----廣告,請繼續往下閱讀-----

鈣鈦礦太陽能電池的結構如圖 2,在製造時,每一層都只需要簡單的塗佈,再以紅外線快速烘乾長晶[註1]即可,烘乾需要的時間甚至不到一分鐘。林唯芳形容:「整個過程就像刷油漆一樣簡單。」而因為鈣鈦礦太陽能電池的製作就像刷油漆一樣,因此比起矽晶,鈣鈦礦更容易做出大面積的太陽能電池,甚至是塗佈在各種基材上,做出可撓曲、各種色彩的太陽能電池,應用更加廣泛。

圖2、鈣鈦礦太陽能電池結構示意圖。(圖/林唯芳、王彥錡)

不過林唯芳也說,目前鈣鈦礦和矽晶相比,使用壽命短了許多,矽晶太陽能電池一般認為具有 30 年左右的壽命,但鈣鈦礦的結構大約只能維持 10 年。這是因為鈣鈦礦的晶體結構中,ABX3 各成分之間只是單純的彼此堆疊及配位鍵[註2] ,並非以共價鍵結合,鍵結不夠強的情況下,容易受到破壞。林唯芳的團隊也嘗試著用加入不同離子的方式,增加鈣鈦礦的穩定度,延長使用壽命。

鈣鈦礦與矽晶的合作無間

林唯芳強調:「我們對太陽能電池的期許,除了大面積、長壽命外,更重要的是高轉換效率。」這幾年來,在林唯芳團隊及全世界科學家的努力下,鈣鈦礦太陽能電池的光電轉換效率已經追上矽晶太陽能電池,約在 20-25% 左右。不過,鈣鈦礦和矽晶並不是對立的角色,包括林唯芳在內的許多科學家,都正在嘗試讓這兩種材料「合作」——他們將鈣鈦礦與矽晶疊起來,達到更高的光電轉換效率!

鈣鈦礦與矽晶的比較表。(圖/何庭劭繪)

這是因為鈣鈦礦能吸收轉換的光波段和矽晶不同,鈣鈦礦主要吸收較高能量的短波波段,矽晶則以較低能量的長波波段為主,所以若讓太陽光先後穿透鈣鈦礦太陽能電池與矽晶太陽能電池,就能更有效率的利用太陽光裡各種不同波段的光。

-----廣告,請繼續往下閱讀-----

在疊層的做法上,有些研究團隊是在製作太陽能電池時,改變製程,設法將矽晶與鈣鈦礦疊層。不過林唯芳和聯合再生能源公司合作,將兩種太陽能電池獨立製作,只是將鈣鈦礦太陽能電池的電極轉換成可透光的材料,然後直接機械式的疊起。林唯芳解釋:「這樣做的好處在於可以維持現有的矽晶太陽能電池的製程,再加上簡單的鈣鈦礦太陽能電池製程,在現階段的技術上是最有商機的。而且現在鈣鈦礦太陽能電池還是比較容易損壞,如果它先損壞了,我們可以只要替換新的鈣鈦礦太陽能電池上去就好。」

圖 3、鈣鈦礦太陽能電池與矽晶太陽能電池疊層,可以增加光電轉換效率。(圖/林唯芳、吳庭慈)

談起這幾年鈣鈦礦的興起,林唯芳認為這是非常有希望的一種材料!在這幾年的積極努力下,林唯芳不但在鈣鈦礦太陽能電池的研究上有進展,還為技術的產業化努力,鼓勵畢業同學廖學中與許哲溥,創立前創科技公司,專精於鈣鈦礦太陽能電池材料的製造和生產,並和臺大機械系的黃秉鈞教授、億尚精密機械公司合作,共同研發了專門塗佈製作鈣鈦礦太陽能電池的機器(如圖 4)。另外也和生產矽晶太陽能電池的聯合再生公司合作,發展大面積高效率層疊太陽能電池,形成了上中下游完全自主整合的一條鞭生產鏈。

林唯芳說:「這對我們臺灣的產業界也帶來了貢獻,雖然我是做學術研究的,但能幫助到臺灣的產業,我也覺得很開心。」而鈣鈦礦這個「大自然的禮物」,將為太陽能以及人類生活帶來的改變,也值得我們期待。

圖 4、鈣鈦礦太陽能電池薄膜製造機。(圖/黃秉鈞)

備註

  1. 製作有結晶的鈣鈦礦薄膜。
  2. 配位鍵的鍵結能量比共價鍵低。 

文章難易度
科技大觀園_96
82 篇文章 ・ 1124 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

3
3

文字

分享

0
3
3
要利用光能還是熱能?小孩子才做選擇,我全都要!——全光譜太陽綠能永續系統
研之有物│中央研究院_96
・2023/04/22 ・6471字 ・閱讀時間約 13 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文/林承勳
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

有效利用太陽的光能和熱能

能源減碳已是國際趨勢,近年政府積極開發再生能源,逐年增加發電比例,而太陽能深具開發潛力。新興的鈣鈦礦太陽能電池是目前的研究熱點,不僅製造成本較低,單片發電效率已可達到 25%,逐漸趕上主流單晶矽太陽能電池的 26%。中央研究院「研之有物」採訪院內應用科學研究中心研究員朱治偉,他與研究團隊試圖開發一個小型的全光譜太陽能系統,讓光電轉換效率最好的波段被鈣鈦礦太陽能電池吸收,其他波段的光會穿過半透明的材料面板,抵達下層的集熱管,讓多餘太陽熱能可以回收再利用。

臺灣發展再生能源的關鍵:太陽能

太陽能是目前最為普遍的再生能源之一。近年來,臺灣的太陽能建設有逐步增加,且經濟部已訂下在西元 2025 年,國內再生能源發電量要佔總發電量 20% 的目標,其中太陽能發電量還要達到 20GW(1GW = 10 億瓦)的規模。

除了政府與業者的大型太陽能專案,太陽能發電對於公司行號或是一般社區大樓也有其誘因。樓頂架設太陽能裝置不但可以隔熱、防漏水,每年產生的電力也能由政府以較高的價格收購,創造額外利潤。然而太陽能發電在現階段還有許多缺點等待解決,像是發電裝置在購買設備時就必須先投入大量的建造成本,之後才逐年發電回收。

-----廣告,請繼續往下閱讀-----

太陽能發電裝置體積龐大、極占空間,以目前市佔率最高的單晶矽太陽能電池來說,裝置架設完成後就沒有辦法再任意移動,如果遭逢颱風或地震等臺灣常見的天災,無法搬至安全處的太陽能板很有可能受到嚴重損傷。此外,機器也要定期保養維修,否則當灰塵逐漸堆積、器材日漸老舊,發電效率也會一點一點地下降。

矽晶太陽能電池裝置昂貴、笨重且無法移動,需要定期清洗,否則當灰塵逐漸堆積,發電效率也會一點一點地下降。圖/iStock

好消息是,單晶矽太陽能電池笨重、易碎而無法隨意重組的缺點,在未來很有機會用新型「鈣鈦礦材料」來克服。鈣鈦礦材料可以做成薄膜,附著在可撓曲的軟性基材上。如此一來,鈣鈦礦太陽能電池可以收捲攜帶,便利性遠勝過單晶矽太陽能電池。

朱治偉舉高雄愛河上現有的電動船為例,船上架設的是單晶矽太陽能板,而光是一個面板就重達三十到四十公斤,二十片總共八百公斤。「船雖然能夠自主發電,但發電量還不夠驅動機台本身的重量。」朱治偉笑著說,如果用鈣鈦礦太陽能電池替代,不但能大幅減輕重量,在天氣不好時還能將發電裝置取下,騰出空間做其他用途。

朱治偉手持鈣鈦礦太陽能電池,單片面板就包含許多個元件,其中一小塊就是一個發電單元,端看目標電流與電壓來決定諸多電池要串聯或並聯。圖/研之有物

發電效率大比拼:鈣鈦礦電池 vs. 單晶矽電池

除了裝置的便利性之外,太陽能光電轉換效率也是使用時需考量的一大要素。朱治偉指出,單晶矽太陽能電池單片面板在實驗室的發電效率可達 26%,但進到後段模組後,由於需要多片、大面積組裝,並經由導線串聯和並聯,過程中都會產生電阻導致電量損失。實際運作起來,效率只剩下 22%~23%。

-----廣告,請繼續往下閱讀-----

鈣鈦礦材料的出現,讓單晶矽受到極大挑戰。以發電效率來說,鈣鈦礦太陽能電池在實驗室的效率可達 25.8%,幾乎跟單晶矽不相上下。雖然鈣鈦礦技術還在研發階段,尚未真正投入市場應用,但以小面積材料測試的實驗數據來說,學界與業界都對其發展潛力寄予厚望。

鈣鈦礦材料的另一項優勢在於,原料非常容易取得,且生產過程耗能與成本都相對低廉。「相較之下,目前發電效率稍微占優勢的單晶矽,是個高耗能、高污染的產業。」朱治偉指出,光是要提煉出矽元素,就得先用高溫把原料的砂熔化,接著在昂貴設備的高溫環境中緩慢結晶。

「而且單晶矽材料對於缺陷的容忍度很低。」朱治偉補充說道。所謂缺陷容忍度,就是材料在結晶時,有缺陷出現對於功能、效率的影響程度。

單晶矽在結晶過程中,原子排列越整齊、純度越高,缺陷就會越少,如此一來,電子在整齊的晶格裡可以很順暢地流動;一旦晶體排列不整齊、有缺陷產生,電子流動就會受到阻礙,讓材料發電效率變差。單晶矽對於缺陷的容忍度很低,缺陷會嚴重影響到單晶矽電池發電效率,因此結晶純度要求 99.9999% 以上。

-----廣告,請繼續往下閱讀-----

當矽結晶完後接著要切成薄片,切片時會損耗材料並產生大量粉塵,切完還得進入複雜的半導體製程,不但需要高溫且耗水,還需使用到有毒溶劑。雖然科技廠會將高汙染的排放物先處理到合乎排放標準,但這些製程都需要投入大量的能源跟水。

單晶矽的製程需要耗費大量的能源和水,而且單晶矽對於缺陷的容忍度很低,為了不影響太陽能電池發電效率,結晶純度要求到 99.9999% 以上。圖/Wikimedia Commons

鈣鈦礦材料:高缺陷容忍度、高發電效率、溶液式製程

鈣鈦礦材料的缺陷容忍度很高,即使結晶缺陷是單晶矽的幾百、幾萬倍,都還能有很高的發電效率。「而且鈣鈦礦電池在天氣不好、低照度或是室內時依然能夠持續發電。」朱治偉提到,單晶矽電池在陰天幾乎完全不發電,而鈣鈦礦電池受影響程度較低,仍可繼續發電。

另外,單晶矽電池基本上沒辦法在室內使用,因室內照明環境為低照度、光的波段很狹窄,整體能量會偏低。但是鈣鈦礦電池不但可以使用,其轉換效率可達 30% 以上,可以驅動電力需求低的元件,例如物聯網裝置等。

「更方便的是,鈣鈦礦材料可以溶解在有機溶劑裡。如果使用溶液製程,就能快速、大面積的製作。」朱治偉提到,等到未來技術成熟,就像是在印刷報紙一般,將含有鈣鈦礦材料的溶劑當作墨水,用印刷方式就能快速生產太陽能電池。

-----廣告,請繼續往下閱讀-----

設備建造簡易、材料取得方式環保,如果還能大面積快速印刷來降低製作成本,鈣鈦礦太陽能電池可以說是集各種優點於一身。

不過,鈣鈦礦電池還是有些缺點亟待改善,像是本身材料的穩定性,導致電性上會出現遲滯現象,造成發電量有不穩定、時高時低的問題。此外,由於鈣鈦礦材料是離子材料,一碰到水就會解離,解離後會縮短使用壽命。

鈣鈦礦材料是一種離子材料,結構通式為 ABX3,A 和 X 的位置會分別放入陽離子和陰離子,B 的位置通常會放鉛離子。離子材料在有水氣的環境中容易降解。圖/研之有物

朱治偉指出,想要避免水分接觸到鈣鈦礦材料,能用封裝技術來解決。而穩定性問題則要在一開始長晶時著手。像是藉由添加其他離子促進長晶品質,讓結晶更加緊密結合。只要長晶時越整齊、缺陷越少,電子就能輕易地被導出,電流高、效率穩定,遲滯現象就能減少。「鈣鈦礦太陽能電池還有一個問題,就是裡面含有微量的鉛元素。」朱治偉說,雖然使用量非常少,但鉛終究是有毒的物質,若外洩還是有可能對接觸者造成傷害。目前同樣可以用封裝技術來避免鉛元素外漏,但期待未來有機會能找到其他安全的元素來替代鉛的角色。

小孩子才做選擇,我全都要!

太陽光的波長​分佈從 300 到 2700 奈米都有。一般單晶矽太陽能電池只能吸收 300 到 1100 奈米的光,1200 奈米以上的波段皆無法利用,有些被反射到環境當中,有些則是轉換成熱能。

熱能累積在矽晶板裡面,會影響發電效率。「矽晶板溫度每上升 1°C,效率就下降 0.3%。」朱治偉指出,大太陽底下矽晶板的溫度會達到約 80°C,比室溫高約 50°C 左右,這將導致發電效率降低 15%。

-----廣告,請繼續往下閱讀-----

相較於不透光的矽晶板,鈣鈦礦太陽能電池能做成半透明的薄膜,將透過的陽光做其他運用。因此,中研院全光譜太陽綠能永續計畫採用的組合是:半透明鈣鈦礦太陽能電池搭配集熱管,以便充分利用太陽能。

「我們用新開發的分光鏡,從 800 奈米波長的地方將太陽光一分為二,800 奈米以下的光直接給鈣鈦礦太陽能電池發電,800 奈米以上的光讓集熱管吸收,產製出熱水。熱水經過吸附式致冷系統(absorption chiller system),透過巧妙的蒸發原理設計,將外部冷水致冷,產製出冰水供大樓使用,剩下的溫熱水則供日常盥洗使用。」朱治偉說道。

用 800 奈米劃分,因為鈣鈦礦太陽能電池在 300 到 800 奈米這段波長時,約有 90% 的光電轉換效率。而 800 奈米以上的波段經集熱管轉成熱能,效率可達到 97%~99%;反之,800 奈米以下的光熱轉換效率則不佳。

全光譜太陽綠能永續系統示意圖。圖/研之有物(資料來源/朱治偉)

將不同波長的光,導向適合的元件

上面提到的「分光鏡」,全名為平面光譜分光模組,這是中研院開發的實驗模組,使用具有光波長選擇的導光板,將不同波長的光導向適合的元件。

-----廣告,請繼續往下閱讀-----

這種導光板的作用原理,是經由奈米結構設計來決定要將哪些波段的光引導到哪個方向。在全光譜太陽綠能永續計畫中,是以 800 奈米的波段來區分。

把導光板鋪在太陽能集熱管上,800 奈米以上的光就穿透導光板照到集熱管,800 奈米以下的光就回收,引導到側邊,照在鈣鈦礦光電轉換元件上。

「將鈣鈦礦太陽能電池做在可撓曲的面板上,搭配時就能增加很多使用彈性。」朱治偉提到,脆弱的單晶矽電池受到重壓或劇烈震動就會碎裂,但是鈣鈦礦電池的機械性質很好,結構不易被破壞。

即使大樓樓頂有障礙物,或是要根據導光板的設計在不同方位擺放太陽能電池,鈣鈦礦電池都可以彈性搭配,使用時攤開、不用時就收捲起來。而且鈣鈦礦電池還可以依物體的弧度來配合製造,很適合用在 3C 產品、汽車、電動車的充電上,未來發展具備各種可能性。

目前中研院已經於院內活動中心樓頂架設了集熱管跟致冷系統,而半透明的鈣鈦礦太陽能電池與導光板在實驗室環境中,也證明小面積發電確實可行。

-----廣告,請繼續往下閱讀-----

不過,想要量產出大面積的鈣鈦礦太陽能電池,單靠學界的製造能量來說有些困難。國內雖然有廠商在研發鈣鈦礦電池,大多沒有真正投入量產。「歐洲跟美國的公司願意投入大量經費研發產製;臺灣普遍的氛圍是傾向等待有明確的研究成果出現,再加入量產行列。」朱治偉說。

圖中機器為吸附式致冷系統。目前中研院已經於院內活動中心樓頂架設了集熱管跟致冷系統,而半透明的鈣鈦礦太陽能電池與導光板在實驗室環境中,也證明小面積發電確實可行。圖/研之有物

科技帶來改變,前景令人期待

與世界各國相比,臺灣電價相對便宜,且用電量相當龐大。根據經濟部能源局的統計資料, 2021 年臺灣總用電量超過 2800 億度,而目前臺灣發電有將近八成是使用化石燃料的火力發電。低電價導致缺乏節電誘因,高用電需求又使火力發電持續高碳排。根據 Our World in Data 資料,2021 年臺灣平均每人排放的二氧化碳為 11.85 噸,為全世界人均排放量的 2.52 倍,名列第 22 名,人均排放量高於日本、德國、新加坡與法國。

2021 年臺灣平均每人排放的二氧化碳為 11.85 噸,為全世界人均排放量(4.69 噸)的 2.52 倍,名列第 22 名,人均排放量高於日本(8.56 噸)、德國(8.08 噸)、新加坡(5.47 噸)與法國(4.74 噸)。圖/Our World in Data

以臺灣的國土面積與經濟規模來說,如此高碳排量代表臺灣的減碳之路還有很大的努力空間。朱治偉指出,目前國內能源有 97% 倚賴進口,若是不努力研發再生能源,對於經濟發展或是國防安全都不會是好現象。

以地熱來說,菲律賓地熱技術的起步比臺灣晚,發展卻非常成功。「臺灣跟菲律賓的地形很相似,發展地熱應該也非難事。」朱治偉表示,即使有學者認為臺灣難以發展再生能源,但在科技發展之下,很多事情都有可能發生。

朱治偉舉例,2014 年得到諾貝爾物理學獎的發光二極體(LED)技術,就是一個科技改變世界的範例,人類得以用新的方式產生高亮度白光。LED 的耗電量僅有白熾燈泡的十分之一,大大改變光照能源的運用。

朱治偉樂觀地指出,就算當前被評估不可行的地熱、風能或海洋能,只要科技持續進步都有機會逐漸實現,新興的鈣鈦礦太陽能電池也是科技進步的一個見證。

鈣鈦礦電池在 2009 年被日本科學家發現時,發電效率其實只有 3%;十年過後,鈣鈦礦電池卻即將追上單晶矽電池發展近百年才達到的效率規模。而且鈣鈦礦材料還可以添加其他離子元素,產生結構變化來影響電性或光性,這個特點讓鈣鈦礦電池未來的發展潛力無窮,也是單晶矽電池完全無法比擬的。

「雖然有些學者不看好,但我相信日新月異的科技在未來能夠改變現狀,讓環境問題慢慢得到改善。」朱治偉說。

聽說高溫會影響太陽能電池的效率?

太陽能電池效率會隨著溫度的上升而下降,下降程度與選用的材料有關。因此太陽能電池效率的標定均在攝氏 25°C。

一般來說,太陽能電池每升高 1°C,會降低整體效率的 0.4% 至 0.5%。溫度過高不僅會降低太陽能電池的效率,也會減低其使用壽命。為了降低溫度過高的影響,建議安裝太陽能板時盡量在底下預留足夠的通風空間,來提高散熱效率。

近期科學家開發出新穎的水凝膠材料,將其貼附於太陽能板背面,利用晚間從大氣吸收和儲存水分。當白天太陽能電池溫度升高時,儲存在水凝膠中的水分便會蒸發,從而降低太陽能板的溫度,如此就可以維持太陽能電池的發電量與延長其使用壽命。

目前的鈣鈦礦電池並不穩定,未來可以如何改善?

鈣鈦礦薄膜材料在形成的過程中,不可避免地會形成大量的淺層能階缺陷(如元素空缺、間隙缺陷和反位替代)與深層能階缺陷(如元素錯位、晶界和沉澱物)。鈣鈦礦薄膜材料雖然可以容忍比較多的缺陷,但是這些缺陷就是造成鈣鈦礦太陽能電池不穩定的最主要因素。

目前在改善鈣鈦礦材料穩定性的研究方向,大致分為兩類:第一類是改變薄膜製程方式來降低缺陷的形成,如兩步驟成膜方式(two-step method)和反溶劑(anti-solvent)製程。第二類是開發多功能分子,鈍化鈣鈦礦材料中不同類型的缺陷,例如以路易斯酸與路易斯鹼、烷基胺鹵鹽、兩性離子、無機鹽類和離子液體來鈍化缺陷。

延伸閱讀

研之有物│中央研究院_96
296 篇文章 ・ 3403 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

5
1

文字

分享

0
5
1
越南車廠將撼動特斯拉電動車地位!?誰能在電池戰中獲勝?
PanSci_96
・2023/02/26 ・2723字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

2022 年 12 月,來自越南的 999 台 VinFast VF 8 City 型智慧電動車乘坐貨輪抵達抵舊金山貝尼西亞港,敲開特斯拉的電動車帝國大門。

除了吹響這次的電動車戰爭號角的 VinFast,眾多車廠像是通用汽車(General Motors)或是來自中國的比亞迪等,都拿起籌碼坐上桌,準備要搶攻這塊市場。而大家手上握的籌碼,就是自家生產的電池。

氫與鋰,都幾?

在電動車產業中,要掌握電動車,就得先掌握好電池。光是電池就佔了整台車 35~40% 的成本,選擇不同種類的電池,更會影響到續行里程、充電效率和安全性。而目前電動車所使用的均為「鋰離子電池」。

大家是否還記得,在十幾年前,與電動車角逐未來「環保車」位置的,還有氫能車。

-----廣告,請繼續往下閱讀-----

氫與鋰的競爭勢必發生,它們排在元素週期表最前面,原子序最小的一、三名。鋰的密度甚至僅有每立方公分 0.534 克,比水還要輕,代表在相同的重量下,可以放入更多的原子,攜帶更多的電量,這正是我們最需要的。由於氫氣的分子量小,在燃料電池中的能量轉換效率也不錯,因此「理論上」氫燃料電池的能量密度是鋰離子電池的 150 倍。

只是,就現在技術成熟度來說,明顯是鋰離子電池獲勝,不論是手機、電動車還是大型儲電設備,到處都見得到鋰離子電池的身影。

手機也是使用鋰離子電池。圖/Envato Elements

鋰離子電池

1970 年代,英國化學家惠廷翰(M. Stanley Whittingham)發明了第一個可以充放電的鋰離子電池,其單位重量的儲電效率遠超過當時的鉛蓄電池與鎳鎘電池。在電池中,金屬鋰會在負極丟下電子,以鋰離子的狀態移動到正極,並被特殊設計的二硫化鈦夾層捕捉,電路中的電子則會從負極流往正極,完成電路循環。

不過當時負極所使用的是純金屬鋰,因此,在電池充電、鋰離子會回到負極再結晶成金屬鋰的過程中,會容易形成如同鐘乳石般的晶鬚(Lithium Dendrite),當晶鬚因為反覆充放電變的更長,甚至會戳破電池的保護層,導致短路爆炸。

-----廣告,請繼續往下閱讀-----

好在後來美國的古迪納夫(John B. Goodenough)與日本的吉野彰(Akira Yoshino),分別將正極材料換成了鋰鈷氧化物,負極換成可以捕捉鋰離子的碳材料;整顆電池不再有純金屬鋰,只有鋰離子在電解液中移動,確保了安全性,讓鋰離子電池得以商業化。

而這孕育出鋰離子電池的這三位科學家惠廷翰、古迪納夫以及吉野彰,在 2019 年抱回諾貝爾化學獎,實至名歸。

2019 年諾貝爾化學獎,頒給了孕育出鋰離子電池的三位科學家。圖/The Nobel Prize

電池的負極在吉野彰將負極換成石墨烯等碳材料後,至今沒有太大的變化,鋰離子電池最主要的改良還是圍繞在正極材料的改變上,我們習慣將不同的鋰離子電池依照它的正極材料來命名,例如:將鋰離子電池的正極改為鋰鈷氧化物,則稱為鈷酸鋰電池。電池發展到現在,陸續登上舞台的還有磷酸鐵鋰電池、磷酸鋰錳鐵電池、鋰鎳鈷鋁電池、鋰鎳錳鈷電池等。

哪個才是最強的電池

「三元電池」是目前市面上可量產的產品中、能量密度最高的電池,也是現在電動車的電池首選。「三元」指的是正極材料中除了鋰以外,加進了鎳、鈷、錳三種元素,具有高容量、低成本的巨大優勢。

-----廣告,請繼續往下閱讀-----

除此之外,材料學家發現,如果提高鎳含量,可再進一步提升單位體積的電容量。許多車廠推出的高鎳電池,其鎳含量甚至高達 80 至 90%。這種高鎳三元電池的電容量可以高達每公斤 280~300瓦時(280~300 Wh/kg),相較之下,馬斯克最愛的「磷酸鐵鋰電池」每公斤只有 140~150 瓦時(140~150 Wh/kg),僅三元電池電容量的一半。

那為什麼電動車龍頭特斯拉反而選擇了磷酸鐵鋰電池呢?就是成本考量。

磷酸鐵鋰的成分除了鋰以外,只需要常見的鐵跟磷,完全移除了昂貴的稀有金屬鎳跟鈷,在俄烏戰爭爆發之初,由於俄羅斯是鎳的生產大國,導致鎳的價格在一個月內暴漲了 250%,大大增加了高鎳三元電池的成本負擔。

另外,相對三元電池,磷酸鐵鋰電池不僅成本低,安全性也較高。

-----廣告,請繼續往下閱讀-----

除了特斯拉,在 2022 年電動車銷售數量超越特斯拉的中國車廠比亞迪也很愛!比亞迪自行研發的「刀片電池」用的就是磷酸鐵鋰電池,並且透過物理結構的改良,在不過多改變材料的情況下,增加相同體積中的電容量。

特斯拉電動車用的是磷酸鐵鋰電池。圖/Wikipedia

次世代電池,Taiwan can help?

科學家預估,鋰離子電池的物理極限大約就在每公斤 300 瓦時,三元電池也差不多摸到這條線了。而這個結果離「完美」絕對還有很大一段距離,因為汽油的能量密度可是每公斤一萬兩千瓦時,鋰離子電池的 40 倍!

先別失望!隨著科技進步,鋰離子電池也將進入次世代。2022 年 3 月,Gogoro 與台灣電池廠商輝能科技共同發表,將在 2024 年導入固態鋰電池,用固態電解質來取代傳統鋰電池中的液態電解液。藉此不僅重量僅有鋰電池的一半,去掉液態成分後更大幅減少漏液、燃燒的風險;更重要的是,固態電池的能量密度上看每公斤 500 瓦時,是三元鋰電池的兩倍,車主們就可以少換幾次電池。

想開電動車的車迷也可以期待,除了 Gogoro 以外,輝能科技也宣布結盟 VinFast,可望在電動車市場上掀起一波固態電池車風潮。

-----廣告,請繼續往下閱讀-----

這邊有個更好的消息,超越固態電池,能量密度可以逼近汽油的「空氣鋰電池」已經在研發路上。空氣電池的負極使用鋰金屬,正極則替換為氧氣或二氧化碳,成為鋰氧氣電池(Li–O2 Battery),或是鋰二氧化碳電池(Li–CO2 Battery);用氣體取代了原先沉重的金屬正極,大大提高了相同重量的電容量。

雖然空氣電池仍在研發,一樣需面對負極沉積時產生的晶鬚、安全等問題;但至少在過去 20 年,鋰電池遇到的困難已經多次被解決,電化學儲能的方式大有可為。

電動車的發展持續受到關注。圖/Envato Elements

不論是市場上電動車的銷量年年攀升,還是各國政府、車廠的全力投入,電動車主導汽車市場的未來已經清楚可見。未來會不會出現顛覆市場的電池、電動車,甚至是全新型態的交通工具,都令人期待。而在工業製程與材料改革中,「電動車是否真的有比較環保」這個問題,也希望能有個解答。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1219 篇文章 ・ 2184 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
1

文字

分享

0
2
1
將陽光轉變成電能的太陽能電池:太陽能電池不是電池——《圖解半導體》
台灣東販
・2022/11/23 ・2778字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

備受關注的再生能源

近年來,以太陽能發電的再生能源備受關注。

近年來,以太陽能發電的再生能源備受關注。圖/pexels

太陽能電池是太陽能發電的關鍵裝置,這是用半導體將陽光的能量直接轉變成電能的裝置。雖然有「電池」這個名稱,但不像乾電池那樣可以儲存電能。所以「太陽能電池」這個稱呼其實並不洽當,應該稱其為「太陽光發電元件」才對。

太陽能電池會利用到第 1 章 1-2 節提到的半導體光電效應(將光轉變成電能的現象)。不過,僅僅只透過照光,並不能從半導體中抽取出電能。要將光能轉變成電能,必須使用 pn 接面二極體(參考第 1 章 1-8 節)才行。

pn 接面二極體。圖/東販

圖 5-1(a) 為 pn 接面二極體,p 型半導體有許多電洞做為載子,n 型半導體內則有許多電子做為載子。這個 p 型與 n 型半導體接合後,接合面附近的電洞會往 n 型移動擴散,電子則會往 p 型移動擴散,如圖 5-1(b) 所示。

-----廣告,請繼續往下閱讀-----

移動擴散之後,接面附近的電子與電洞會彼此結合,使載子消滅,這個過程稱為複合。結果會得到圖 5-1(c) 般,沒有任何載子存在的區域,這個區域就稱為空乏層。

接面附近的空乏層中,n 型半導體的帶負電電子不足,故會帶正電;另一方面,p 型半導體的帶正電電洞不足,故會帶負電(圖 5-1(d))。

因此,n 型與 p 型半導體之間的空乏層會產生名為內建電位的電位差,在接面部分形成電場。這個電場可以阻擋從 n 型半導體流出的電子,與電子從 n 型流向 p 型的力達到平衡,故可保持穩定狀態。

這種狀態為熱平衡狀態,放著不管也不會發生任何事。也就是說,接面上有內建電位差之壁,不管是電子還是電洞,都無法穿過這道牆壁。

-----廣告,請繼續往下閱讀-----
用光發電的機制。圖/東販

在這種狀態下,如果陽光照入空乏層,半導體就會在光能下產生新的電子與電洞,如圖 5-2 所示。此時,新的電子會因為內建電場所產生的力而往 n 型半導體移動,新的電洞則往 p 型半導體移動(圖 5-2(a))。於是,電子便會在外部電路產生推動電流的力,稱為電動勢。

在光照射半導體的同時,電動勢會一直持續發生,愈來愈多電子被擠入外部電路,於外部電路供應電力。被擠出至外部電路的電子會再回到 p 型半導體,與電洞結合(圖 5-2(b))。我們可以觀察到這個過程所產生的電流。

太陽能電池的結構。圖/東販

目前太陽能電池的大部分都是由 Si 半導體製成。以 Si 結晶製成的太陽能電池結構如圖 5-3 所示。

為方便理解,前面的示意圖中,都是以細長型的 pn 接面半導體為例。但實際上,太陽能電池所產生的電流大小,與 pn 接面二極體的接面面積成正比。所以 pn 接面的面積做得愈廣愈好,就像圖 5-3 那樣呈薄型平板狀。

-----廣告,請繼續往下閱讀-----

前面的說明提到,陽光可產生新的載子,這裡讓我們再進一步說明其原理。

pn 接面二極體的電子狀態。圖/東販

圖 5-4 為 Si 原子之電子組態的示意圖(亦可參考第 38 頁圖 1-11)。Si 原子最外層的軌道與相鄰 Si 原子以共價鍵結合,故 Si 結晶的軌道填滿了電子,沒有空位(圖 5-4(a))。

若摻雜雜質磷(P)或砷(As)等 15 族(Ⅴ族)元素,形成 n 型半導體,便會多出 1 個電子。這個電子會填入最外層電子殼層的最外側軌道(圖 5-4(b)),與共價鍵無關,故能以自由電子的狀態在結晶內自由移動。

由於電子軌道離原子核愈遠,電子的能量愈高,所以位於最外側軌道的電子擁有最高的能量(參考第 57 頁,第 1 章的專欄)。最外側軌道與最外層電子殼層的能量差,稱為能隙。

-----廣告,請繼續往下閱讀-----

另一方面,如果是摻雜鎵(Ga)或銦(In)等 13 族(Ⅲ族)元素的 p 型半導體,會少 1 個電子,形成電洞。這個電洞位於最外層電子殼層,能量比自由電子還要低(圖 5-4(c))。

空乏層不存在自由電子或電洞等載子,此處原子的電子組態皆如圖 5-4(a) 所示。

陽光照進這個狀態下的空乏層區域時,原子的電子會獲得光能飛出,轉移到能量較高的外側軌道(圖 5-4(d))。此時的重點在於,電子從光那裡獲得的能量必須大於能隙。如果光能比能隙小的話,電子就無法移動到外側軌道。

光的能量由波長決定,波長愈短,光的能量愈高(參考第 217 頁,第 5 章專欄)。光能 E(單位為電子伏特eV)與波長 λ(單位為 nm)有以下關係。

-----廣告,請繼續往下閱讀-----

E[eV]=1240/λ[nm]

抵達地表的陽光光譜。圖/東販

另一方面,抵達地表的陽光由許多種波長的光組成,各個波長的光強度如圖 5-5 所示。

由圖可以看出,可見光範圍內的陽光強度很強。陽光中約有52%的能量由可見光貢獻,紅外線約佔 42%,剩下的 5~6% 則是紫外線。

若能吸收所有波長的光,將它們全部轉換成電能的話,轉換效率可達到最高。不過半導體可吸收的光波長是固定的,無法吸收所有波長的光。

-----廣告,請繼續往下閱讀-----

Si結晶的能隙為 1.12eV,對應光波長約為 1100nm,位於紅外線區域。也就是說,用 Si 結晶製造的太陽能電池,只能吸收波長小於 1100nm 的光,並將其轉換成電能。

不過,就像我們在圖 5-5 中看到的,就算只吸收波長比 1100nm 還短的光,也能吸收到幾乎所有的陽光能量。

光是看以上說明,可能會讓人覺得,如果半導體的能隙較小,應該有利於吸收波長較長的光才對。不過,並不只有能隙會影響到發電效率,圖 5-6 提到的光的吸收係數也會大幅影響發電效率。光的吸收係數代表半導體能吸收多少光,可以產生多少載子。

有幾種材料的光吸收係數特別高,譬如 Ⅲ—Ⅴ 族的砷化鎵(GaAs)。GaAs 的能隙為 1.42eV,轉換成光波長後為 870nm,可吸收的光波長範圍比 Si 還要狹窄。但因為吸收係數較高,所以用砷化鎵製作的太陽能電池的效率也比較高。

-----廣告,請繼續往下閱讀-----

總之,GaAs 是效率相當高的太陽能電池材料。然而成本較高是它的缺點,只能用於人造衛星等特殊用途上。即使如此,研究人員們仍在努力開發出成本更低、效率更好,以化合物半導體製成的太陽能電池。

——本文摘自《圖解半導體:從設計、製程、應用一窺產業現況與展望》,2022 年 11 月,台灣東販出版,未經同意請勿轉載。

台灣東販
5 篇文章 ・ 3 位粉絲
台灣東販股份有限公司是在台灣第1家獲許投資的國外出版公司。 本公司翻譯各類日本書籍,並且發行。 近年來致力於雜誌、流行文化作品與本土原創作品的出版開發,積極拓展商品的類別,期朝全面化,多元化,專業化之目標邁進。