0

3
3

文字

分享

0
3
3

可發展 6G 無線通訊,還能超感知透視!科技新星「太赫茲技術」到底是什麽?

科技大觀園_96
・2021/08/03 ・5035字 ・閱讀時間約 10 分鐘

「太赫茲」是物理單位,英文為 Terahertz(THz),字首「Tera-」是 1012 的意思,所以太赫茲就是 1012 赫茲,也就是每秒 1012 次的意思,亦可翻譯為「兆赫茲」。目前常聽到的「太赫茲」,其實是指太赫茲波段,就是電磁波的一組特定波段,頻率範圍是 0.1 THz~10 THz,對應電磁波波長為 3 mm~30 µm,介於微波和可見光之間,因此也稱為毫米波和次毫米波。

研究太赫茲技術的清華大學電機系助理教授楊尚樺認為,對一般人來說,「太赫茲」依然是陌生名詞,因此就像之前的「奈米」和「量子」一樣,被許多廠商拿來當成行銷用語。 

橘色區間為太赫茲波段。圖/沈佩泠繪

太赫茲波段有什麼特別的?

楊尚樺強調,太赫茲波有三個特點:辨識化學分子、透視和不破壞生物體。不同波段的電磁波和物質都有很特殊的交互作用,比如說可見光就和人眼細胞有互動(註 1),柱狀和錐狀細胞可以感知可見光波段。相對地,太赫茲波可以辨識出特定的化學分子,得知物質成份,可應用在分析藥品、毒品或蛋白質的種類等。 

另外,太赫茲波可以做到「透視」,人眼看不到的東西,太赫茲波可以穿透表層到達內部。以行李箱為例,太赫茲波可以偵測行李箱裡面是什麼,可應用於機場安檢與毒品檢測。而且太赫茲波不僅可以檢測固體,還可以檢測液體和氣體。 

-----廣告,請繼續往下閱讀-----
太赫茲波影像檢測的特點。圖/沈佩泠繪

 太赫茲波的「透視」有別於 X 光檢測。人體的生物分子(如 DNA、RNA)照射 X 光會受損,因為光子能量太強,容易把分子裡的電子打出來,成為游離電子;而失去電子的分子變得不穩定,會引發人體罕見與不正常的化學反應。反之,太赫茲波的光子能量很小,無法破壞生物分子,更無法將分子內的電子游離出來,因此太赫茲波對生物體是安全的。 

太赫茲波可以做到非破壞性的偵測,很適合工業製造與品質管控的應用,例如半導體廠在晶片封裝之後,檢查內部有無斷線,或是評估 3D 晶片封裝是否完好;藥廠則可以檢查膠囊成品內部有無破損等。

太赫茲技術前景看好

提到當初為什麼想要研究太赫茲技術,楊尚樺笑著說:「其實是有點誤打誤撞。」2011 年楊尚樺申請密西根大學博士班面試時,未來的指導教授Prof. Mona Jarrahi 提到實驗室是做太赫茲技術,這是他首次聽聞這個名詞。當時臺灣僅有少數團隊研究太赫茲科學與技術,多為物理系或應用物理的學者,太赫茲相關元件(發射器或接收器等)也很難取得。 

跟隨著 Mona Jarrahi,楊尚樺從太赫茲最重要的元件「太赫茲發射源」(terahertz emitter)開始接觸,博士班念到第 4 年和第 5 年時,他開始懷疑這項技術是否在 10 年內真的有出口。「因為遇到的困難比你成功要多很多,幾乎都是困難的,看不到出口的,出口的光相當微弱」,楊尚樺說道。 

-----廣告,請繼續往下閱讀-----

甚至後期和指導教授 Mona 討論未來任教是否繼續研究太赫茲技術時,楊尚樺坦白和 Mona 說不會。當時專注在工程技術的楊尚樺認為,在許多人類所需的工程應用上,太赫茲很難和其他相對成熟的領域競爭,前景相當限縮。Mona自然不這麼認為,卻也沒有多說什麼。 

後來,在申請教職的期間,楊尚樺從更全面的角度看待太赫茲技術,不只看業界技術和資金來源,更看向 10 年後和 20 年後的研究發展。他認為如果太赫茲元件能夠量產,且 6G 無線通訊帶來大量市場需求,應可克服許多困難。再來,太赫茲研究對於學界是有挑戰性的問題,不僅符合臺灣半導體、電子、光電通訊產業的脈絡,又有很多題目,可以做長期的研究,很有發展前景。

檢測晶片內部破損、超感知透視藝術文物

現在楊尚樺實驗室的研究核心是太赫茲裝置(Terahertz Device),可分為主動元件和被動元件。主動元件包括最重要的太赫茲發射源或是太赫茲探測器被動元件則有太赫茲透鏡或太赫茲的訊號與空間調變器等。有了這些元件,就可以做出想要的太赫茲系統。 

楊尚樺目前已做出一套影像系統,用於工業破損檢測時,可以看出晶片內部的破損,或是看太陽能板裡面的隱裂位置和大小。這套影像系統還可以用來觀察植物,例如豆莢內部的豆子長得如何,以及水分子輸送的情況。生醫用途上,也可以從混和物中準確辨識出血糖、胺基酸和蔗糖的成份與比例。以上,是屬於太赫茲光譜學(Terahertz Spectroscopy)的應用。 

-----廣告,請繼續往下閱讀-----

與影像系統有關的,還有超感知(Super sensing)的研究,例如太赫茲波可以直接看透一本書,在不碰觸到書的情況下,把每一頁的訊息解析出來。而且太赫茲波段不會破壞物質分子,也相當適合用來解析故宮文物,讓文物修復更順利。楊尚樺笑著說,如果有機會的話,真的非常想看看裡面藏有什麼祕密。 

楊尚樺指出,2013 年國外太赫茲團隊曾經發表過一項有趣的研究。知名的西班牙畫家 Goya,平常在作品上一定都會簽名,但是有一幅畫作「Sacrifice to Vesta」很特別,從整體風格來看,大家都認為是 Goya 畫的,卻看不到簽名。 

因此 C. Seco-Martorell 等人就用太赫茲影像系統解析了這幅畫,才發現原來 Goya 把自己的簽名簽在畫作底下,被上層的顏料蓋住了,他們將結果發表在光學期刊《Optics Express》(參考資料 1)。  

畫作「Sacrifice to Vesta」不同透明度的影像。(a)是原始畫作,(b)是可見光與太赫茲成像各占一半的情況,(c)則是 100% 太赫茲的成像情況,可以看到原作底下隱約有一位頭部朝左的女人。圖/參考資料 1
將畫作「Sacrifice to Vesta」的太赫茲成像加以放大,團隊終於在右下角找到 Goya 的簽名痕跡。(a)是原始畫作的太赫茲成像,(b)是畫家Goya的簽名對照組,(c)(d)(e)則代表 Goya 隱藏簽名在不同振幅強度的太赫茲成像,(c)是最大振幅,簽名圖像最為清楚。圖/參考資料 1

從影像系統邁向 6G 應用

除了影像系統外,楊尚樺團隊也努力將太赫茲技術應用在 6G 無線通訊的產業鏈之中。目前的工作主要是將 5G 的通訊系統頻率範圍轉移到太赫茲頻率範圍(0.1 THz~10 THz),同時要把很高速的訊號加載在太赫茲的載波頻段(註2)上,目標是做到每秒可傳輸 1012 位元,也就是在一秒要加載 1012 個 0 或 1。 

-----廣告,請繼續往下閱讀-----

現在相關研究遇到了一些困難,與太赫茲元件有關。雖然從 5G 到 6G(太赫茲頻段)的頻寬擴大許多,但是系統的發射端和接收端是否能夠運作?如果太赫茲發射源能量很低,訊號很難到達接收端。如果太赫茲接收器不夠靈敏,也很難獲取資料,並且也要確保龐大的資料量得以順利解碼。 

為了評估通訊系統是否夠好,也可以從訊噪比(訊號和雜訊的比例,Signal-to-noise ratio)來看,如果訊號和雜訊的比例愈高,訊號就愈乾淨,也更容易成功解碼。因此,提升訊噪比也是將來改善的重點。

仍有重重困難有待突破

太赫茲系統為什麼難以量產?相關元件非常昂貴,市面上買不到整套消費級的太赫茲系統,一套系統造價約數萬到數十萬美元,公尺級別的大尺寸也相當占空間。 

楊尚樺表示,目前技術的最大問題在於「太赫茲發射源」,大家還不知道如何做出完善、實用、微小又可在室溫環境操作的太赫茲發射器,只能先借助過去的知識幫忙。太赫茲波段落在微波和可見光之間,是電學領域和光學領域的交集地,微波那端研究電學的人,會想要把頻率做高,靠近太赫茲波段;但是元件頻率愈高,電容影響愈大,輻射功率會急速下降。 

-----廣告,請繼續往下閱讀-----

另一方面,電磁波段高頻那端研究光學的人,會從材料著手,通常會選用不同能隙(energy gap)大小的材料測試,比如說藍光 LED 的氮化鎵(GaN),能隙大,輻射出的光子頻率較高。如果要將輻射頻率降低,靠近太赫茲波段,能隙要夠小,但自然界找不到可以直接輻射出太赫茲波的窄能隙材料,必須要用特殊的技術才有辦法達成。 

即便達成了上述的窄能隙條件,例如輻射出頻率 1 THz 的光子,對應的能隙能量是 4 meV(milli-electron volts,能量單位),這個能量已經小於室溫下電子熱擾動的動能(幾十個 meV),所以很難控制每個電子從能隙掉下來的時機,以便讓材料發出一致的同調光。必須要在極低溫,例如低於 -196.15 °C(77 K)的液態氮環境下,才有辦法達成。 

楊尚樺強調,不論是電或光的方式,都很難在太赫茲波段輻射出足夠的功率,也就難以做出好的太赫茲發射源。發射源就像一支手電筒,如果不亮(功率不足),就無法探測周圍的環境,更不用說還要傳遞什麼訊號了。 

「太赫茲發射源」目前還沒有找到完美的解決方案,不過楊尚樺團隊已經可以做到足夠亮的發射源,下一步要往可量產、輕巧化的太赫茲發射源邁進。為了搭配臺灣在半導體製程的專業,除了主流的 III – V 族光電元件之外,更開發 IV 族光電元件,目前實驗室已可獨立實現這兩類的主/被動元件。 

-----廣告,請繼續往下閱讀-----

楊尚樺團隊的 10 年研究目標是將整個太赫茲系統微縮到晶片大小(毫米等級,mm),這樣才有辦法讓太赫茲技術進入一般民眾的生活。

年輕學者如何在教學與研究中取得平衡?

在清大做研究的負擔很重,而楊尚樺也熱衷於教學,所以兩邊都忙,「我也不知道我有沒有取得平衡。」楊尚樺笑著說。他認為一般人都會直觀認為教學就是在課堂上教學生,但其實研究同時也是教學,因為必須讓本來習慣在課本做習題的學生,轉換成可以實作的初階研究者,這本身就要花很多心力教導。同時,行政角色上的導生,又或是其他系的學生,如果對太赫茲研究題目有興趣,他也會予以指點。 

「總之,做就對了!」他說道。在授課的同時,自己本身也會感受到某方面知識不足,會特別去學習。還有,因為在教學時強烈感受到每一屆學生思考模式都不同,所以楊尚樺認為不可能用同一套教學方法教 3 年,必須要想新招。每次看到學生學會知識有所成長,心中就很有成就感。

楊尚樺勉勵大學生要做自己有熱情的事。圖/簡克志攝)

要做自己有熱情的工作

楊尚樺認為,從他帶過專題的清大大學部學生和研究生來看,絕大多數都很積極,有很多東西想學。甚至有的學生不只在他這邊做研究,也同時要求自己在臺灣大學或是中央研究院做其他領域研究。通常多工的研究路線會需要儲備更多的專業知識,以及分散研究力道,導致多方都做不好的情況。而這些學生卻產出了不錯的成果,讓他感到相當驚訝。

-----廣告,請繼續往下閱讀-----

不過,楊尚樺也提到,就他在學校的觀察,清大表現不錯的學生,普遍也都非常焦慮。即便在課業上、研究上、綜合表現上的成果在他看來已經相當出色了,但學生依然覺得想要再多做一些事情補強。這種好學和堅毅的態度,楊尚樺打從心裡給予高度肯定。然而,讓他覺得不好的原因在於:學生無法專注做好一件重要的事。若伴隨著患得患失的心態,卻沒有發展適合自己的主要路線,即便真的做了更多的事,表現往往也不會更好。換句話說,學東西不是因為想要學多而去做,而是自己本身有強烈的動機想要專注學習。 

楊尚樺看過一些很厲害的學生,他們並沒有一個好的目標,而且做事時會很快去計算短期之內能夠看到什麼樣的效益。沒有看到可能的效益,就很有可能會轉向。這些學生不怕做事情,怕的是沒有看到短期內的回饋,這其實不是好的學習態度,因為有些工作的效益,是不能只看短期的。 

最後,楊尚樺也勉勵清大的學弟妹,要做自己有熱情又喜歡的事。因為如果你在做「別人」認為不錯的事情時,若這件事和你的興趣並不相符,當過程中遇到挫折時,就很容易考慮要不要往另一個方向走,而沒有辦法堅持下去。 

但是,如果你是做自己有熱情的事情時,不管遇到什麼困難,你會廢寢忘食地不斷破關,獲得很多技能,當解決一個難題之後,你還會願意挑戰下一個關卡。看到的危機多了、功夫下得深了,你就比別人有更好的危機處理能力。堅持的道路上走得會比別人長、比別人久,你的獨特性就出來了,就比較容易出類拔萃。 

注釋

  • 註 1:不只人眼細胞,許多地球上的生物都和可見光有互動
  • 註 2:載波頻段(Carrier frequency band):用以乘載資料的電磁波頻率區間。 

參考資料

1. Seco-Martorell, C., López-Domínguez, V., Arauz-Garofalo, G., Redo-Sanchez, A., Palacios, J., & Tejada, J. (2013). Goya’s artwork imaging with Terahertz waves. Optics Express, 21(15), 17800. https://doi.org/10.1364/oe.21.017800

文章難易度
科技大觀園_96
82 篇文章 ・ 1125 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

2
1

文字

分享

0
2
1
如何確保訊息無誤?錯誤更正碼大揭密
數感實驗室_96
・2024/07/03 ・476字 ・閱讀時間少於 1 分鐘

你有沒有想過,當我們用手機打電話、發簡訊,或者用電腦上網時,訊息是如何在短短幾秒鐘內傳遞到世界的另一端?這背後有一個重要的技術,叫做編碼與調變。

簡單來說,編碼是把我們的資訊轉換成適合傳輸的格式,而調變則是把這些編碼訊號載入到傳輸介質中,無論是電波、光纖還是其他方式。透過這兩項技術,我們才能在繁忙的城市街道上、偏遠的山區裡,甚至是高空中的飛機上,隨時隨地進行無縫的溝通。

在這過程中,錯誤更正碼可以起到哪些幫助呢?

這些技術雖然複雜,但它們在我們日常生活中的應用卻是無處不在的。如果你對這些內容感興趣,未來還有更多的通訊技術值得探討,例如量子通信、光通信和毫米波通信等。這些新興技術將如何改變我們的世界,又會帶來哪些前所未見的便利和挑戰呢?

-----廣告,請繼續往下閱讀-----

更多、更完整的內容,歡迎上數感實驗室Numeracy Lab的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 49 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

2
0

文字

分享

0
2
0
從 3G 到 6G:行動通信的進化之路
數感實驗室_96
・2024/06/20 ・825字 ・閱讀時間約 1 分鐘

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

摩斯發明電報和貝爾發明電話,這些似乎是上古時代的科技,其實都發生在過去兩百年內。而手機,作為近五十年來的產物,又經歷了怎樣的演變呢?

讓我們來探討行動通信是如何從 3G 發展到 6G 的。

1989 年,一張名為《The Great Radio Controversy》的搖滾專輯發布,迅速走紅,登上告示牌熱門榜。雖然專輯的歌詞與通信無關,但它的名字「偉大的無線電爭議」確實讓人聯想到無線通信的歷史。而這張專輯的樂團名為 Tesla,沒錯,這正是向那位傳奇的天才科學家特斯拉致敬。特斯拉對無線通信的貢獻可謂奠基石般的重要,而從 3G 到 6G,行動通信技術又經歷了哪些突破和變革呢?讓我們一起深入了解。

-----廣告,請繼續往下閱讀-----

行動通信的歷史雖然只有短短幾十年,但其中包含的豐富內容實在說不完。從精彩的發明故事到商業競爭,再到行動通信所帶來的社會變革,每一個環節都值得深入探討。而在這集影片中,我們僅僅觸及了冰山一角。

下一集將深入探討 WiMAX 那成功的哥哥——Wi-Fi,也就是大家熟悉的無線區域網路技術。讓我們繼續探索這些改變世界的科技!

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

參考資料

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 49 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/