0

3
3

文字

分享

0
3
3

可發展 6G 無線通訊,還能超感知透視!科技新星「太赫茲技術」到底是什麽?

科技大觀園_96
・2021/08/03 ・5035字 ・閱讀時間約 10 分鐘

「太赫茲」是物理單位,英文為 Terahertz(THz),字首「Tera-」是 1012 的意思,所以太赫茲就是 1012 赫茲,也就是每秒 1012 次的意思,亦可翻譯為「兆赫茲」。目前常聽到的「太赫茲」,其實是指太赫茲波段,就是電磁波的一組特定波段,頻率範圍是 0.1 THz~10 THz,對應電磁波波長為 3 mm~30 µm,介於微波和可見光之間,因此也稱為毫米波和次毫米波。

研究太赫茲技術的清華大學電機系助理教授楊尚樺認為,對一般人來說,「太赫茲」依然是陌生名詞,因此就像之前的「奈米」和「量子」一樣,被許多廠商拿來當成行銷用語。 

橘色區間為太赫茲波段。圖/沈佩泠繪

太赫茲波段有什麼特別的?

楊尚樺強調,太赫茲波有三個特點:辨識化學分子、透視和不破壞生物體。不同波段的電磁波和物質都有很特殊的交互作用,比如說可見光就和人眼細胞有互動(註 1),柱狀和錐狀細胞可以感知可見光波段。相對地,太赫茲波可以辨識出特定的化學分子,得知物質成份,可應用在分析藥品、毒品或蛋白質的種類等。 

另外,太赫茲波可以做到「透視」,人眼看不到的東西,太赫茲波可以穿透表層到達內部。以行李箱為例,太赫茲波可以偵測行李箱裡面是什麼,可應用於機場安檢與毒品檢測。而且太赫茲波不僅可以檢測固體,還可以檢測液體和氣體。 

-----廣告,請繼續往下閱讀-----
太赫茲波影像檢測的特點。圖/沈佩泠繪

 太赫茲波的「透視」有別於 X 光檢測。人體的生物分子(如 DNA、RNA)照射 X 光會受損,因為光子能量太強,容易把分子裡的電子打出來,成為游離電子;而失去電子的分子變得不穩定,會引發人體罕見與不正常的化學反應。反之,太赫茲波的光子能量很小,無法破壞生物分子,更無法將分子內的電子游離出來,因此太赫茲波對生物體是安全的。 

太赫茲波可以做到非破壞性的偵測,很適合工業製造與品質管控的應用,例如半導體廠在晶片封裝之後,檢查內部有無斷線,或是評估 3D 晶片封裝是否完好;藥廠則可以檢查膠囊成品內部有無破損等。

太赫茲技術前景看好

提到當初為什麼想要研究太赫茲技術,楊尚樺笑著說:「其實是有點誤打誤撞。」2011 年楊尚樺申請密西根大學博士班面試時,未來的指導教授Prof. Mona Jarrahi 提到實驗室是做太赫茲技術,這是他首次聽聞這個名詞。當時臺灣僅有少數團隊研究太赫茲科學與技術,多為物理系或應用物理的學者,太赫茲相關元件(發射器或接收器等)也很難取得。 

跟隨著 Mona Jarrahi,楊尚樺從太赫茲最重要的元件「太赫茲發射源」(terahertz emitter)開始接觸,博士班念到第 4 年和第 5 年時,他開始懷疑這項技術是否在 10 年內真的有出口。「因為遇到的困難比你成功要多很多,幾乎都是困難的,看不到出口的,出口的光相當微弱」,楊尚樺說道。 

-----廣告,請繼續往下閱讀-----

甚至後期和指導教授 Mona 討論未來任教是否繼續研究太赫茲技術時,楊尚樺坦白和 Mona 說不會。當時專注在工程技術的楊尚樺認為,在許多人類所需的工程應用上,太赫茲很難和其他相對成熟的領域競爭,前景相當限縮。Mona自然不這麼認為,卻也沒有多說什麼。 

後來,在申請教職的期間,楊尚樺從更全面的角度看待太赫茲技術,不只看業界技術和資金來源,更看向 10 年後和 20 年後的研究發展。他認為如果太赫茲元件能夠量產,且 6G 無線通訊帶來大量市場需求,應可克服許多困難。再來,太赫茲研究對於學界是有挑戰性的問題,不僅符合臺灣半導體、電子、光電通訊產業的脈絡,又有很多題目,可以做長期的研究,很有發展前景。

檢測晶片內部破損、超感知透視藝術文物

現在楊尚樺實驗室的研究核心是太赫茲裝置(Terahertz Device),可分為主動元件和被動元件。主動元件包括最重要的太赫茲發射源或是太赫茲探測器被動元件則有太赫茲透鏡或太赫茲的訊號與空間調變器等。有了這些元件,就可以做出想要的太赫茲系統。 

楊尚樺目前已做出一套影像系統,用於工業破損檢測時,可以看出晶片內部的破損,或是看太陽能板裡面的隱裂位置和大小。這套影像系統還可以用來觀察植物,例如豆莢內部的豆子長得如何,以及水分子輸送的情況。生醫用途上,也可以從混和物中準確辨識出血糖、胺基酸和蔗糖的成份與比例。以上,是屬於太赫茲光譜學(Terahertz Spectroscopy)的應用。 

-----廣告,請繼續往下閱讀-----

與影像系統有關的,還有超感知(Super sensing)的研究,例如太赫茲波可以直接看透一本書,在不碰觸到書的情況下,把每一頁的訊息解析出來。而且太赫茲波段不會破壞物質分子,也相當適合用來解析故宮文物,讓文物修復更順利。楊尚樺笑著說,如果有機會的話,真的非常想看看裡面藏有什麼祕密。 

楊尚樺指出,2013 年國外太赫茲團隊曾經發表過一項有趣的研究。知名的西班牙畫家 Goya,平常在作品上一定都會簽名,但是有一幅畫作「Sacrifice to Vesta」很特別,從整體風格來看,大家都認為是 Goya 畫的,卻看不到簽名。 

因此 C. Seco-Martorell 等人就用太赫茲影像系統解析了這幅畫,才發現原來 Goya 把自己的簽名簽在畫作底下,被上層的顏料蓋住了,他們將結果發表在光學期刊《Optics Express》(參考資料 1)。  

畫作「Sacrifice to Vesta」不同透明度的影像。(a)是原始畫作,(b)是可見光與太赫茲成像各占一半的情況,(c)則是 100% 太赫茲的成像情況,可以看到原作底下隱約有一位頭部朝左的女人。圖/參考資料 1
將畫作「Sacrifice to Vesta」的太赫茲成像加以放大,團隊終於在右下角找到 Goya 的簽名痕跡。(a)是原始畫作的太赫茲成像,(b)是畫家Goya的簽名對照組,(c)(d)(e)則代表 Goya 隱藏簽名在不同振幅強度的太赫茲成像,(c)是最大振幅,簽名圖像最為清楚。圖/參考資料 1

從影像系統邁向 6G 應用

除了影像系統外,楊尚樺團隊也努力將太赫茲技術應用在 6G 無線通訊的產業鏈之中。目前的工作主要是將 5G 的通訊系統頻率範圍轉移到太赫茲頻率範圍(0.1 THz~10 THz),同時要把很高速的訊號加載在太赫茲的載波頻段(註2)上,目標是做到每秒可傳輸 1012 位元,也就是在一秒要加載 1012 個 0 或 1。 

-----廣告,請繼續往下閱讀-----

現在相關研究遇到了一些困難,與太赫茲元件有關。雖然從 5G 到 6G(太赫茲頻段)的頻寬擴大許多,但是系統的發射端和接收端是否能夠運作?如果太赫茲發射源能量很低,訊號很難到達接收端。如果太赫茲接收器不夠靈敏,也很難獲取資料,並且也要確保龐大的資料量得以順利解碼。 

為了評估通訊系統是否夠好,也可以從訊噪比(訊號和雜訊的比例,Signal-to-noise ratio)來看,如果訊號和雜訊的比例愈高,訊號就愈乾淨,也更容易成功解碼。因此,提升訊噪比也是將來改善的重點。

仍有重重困難有待突破

太赫茲系統為什麼難以量產?相關元件非常昂貴,市面上買不到整套消費級的太赫茲系統,一套系統造價約數萬到數十萬美元,公尺級別的大尺寸也相當占空間。 

楊尚樺表示,目前技術的最大問題在於「太赫茲發射源」,大家還不知道如何做出完善、實用、微小又可在室溫環境操作的太赫茲發射器,只能先借助過去的知識幫忙。太赫茲波段落在微波和可見光之間,是電學領域和光學領域的交集地,微波那端研究電學的人,會想要把頻率做高,靠近太赫茲波段;但是元件頻率愈高,電容影響愈大,輻射功率會急速下降。 

-----廣告,請繼續往下閱讀-----

另一方面,電磁波段高頻那端研究光學的人,會從材料著手,通常會選用不同能隙(energy gap)大小的材料測試,比如說藍光 LED 的氮化鎵(GaN),能隙大,輻射出的光子頻率較高。如果要將輻射頻率降低,靠近太赫茲波段,能隙要夠小,但自然界找不到可以直接輻射出太赫茲波的窄能隙材料,必須要用特殊的技術才有辦法達成。 

即便達成了上述的窄能隙條件,例如輻射出頻率 1 THz 的光子,對應的能隙能量是 4 meV(milli-electron volts,能量單位),這個能量已經小於室溫下電子熱擾動的動能(幾十個 meV),所以很難控制每個電子從能隙掉下來的時機,以便讓材料發出一致的同調光。必須要在極低溫,例如低於 -196.15 °C(77 K)的液態氮環境下,才有辦法達成。 

楊尚樺強調,不論是電或光的方式,都很難在太赫茲波段輻射出足夠的功率,也就難以做出好的太赫茲發射源。發射源就像一支手電筒,如果不亮(功率不足),就無法探測周圍的環境,更不用說還要傳遞什麼訊號了。 

「太赫茲發射源」目前還沒有找到完美的解決方案,不過楊尚樺團隊已經可以做到足夠亮的發射源,下一步要往可量產、輕巧化的太赫茲發射源邁進。為了搭配臺灣在半導體製程的專業,除了主流的 III – V 族光電元件之外,更開發 IV 族光電元件,目前實驗室已可獨立實現這兩類的主/被動元件。 

-----廣告,請繼續往下閱讀-----

楊尚樺團隊的 10 年研究目標是將整個太赫茲系統微縮到晶片大小(毫米等級,mm),這樣才有辦法讓太赫茲技術進入一般民眾的生活。

年輕學者如何在教學與研究中取得平衡?

在清大做研究的負擔很重,而楊尚樺也熱衷於教學,所以兩邊都忙,「我也不知道我有沒有取得平衡。」楊尚樺笑著說。他認為一般人都會直觀認為教學就是在課堂上教學生,但其實研究同時也是教學,因為必須讓本來習慣在課本做習題的學生,轉換成可以實作的初階研究者,這本身就要花很多心力教導。同時,行政角色上的導生,又或是其他系的學生,如果對太赫茲研究題目有興趣,他也會予以指點。 

「總之,做就對了!」他說道。在授課的同時,自己本身也會感受到某方面知識不足,會特別去學習。還有,因為在教學時強烈感受到每一屆學生思考模式都不同,所以楊尚樺認為不可能用同一套教學方法教 3 年,必須要想新招。每次看到學生學會知識有所成長,心中就很有成就感。

楊尚樺勉勵大學生要做自己有熱情的事。圖/簡克志攝)

要做自己有熱情的工作

楊尚樺認為,從他帶過專題的清大大學部學生和研究生來看,絕大多數都很積極,有很多東西想學。甚至有的學生不只在他這邊做研究,也同時要求自己在臺灣大學或是中央研究院做其他領域研究。通常多工的研究路線會需要儲備更多的專業知識,以及分散研究力道,導致多方都做不好的情況。而這些學生卻產出了不錯的成果,讓他感到相當驚訝。

-----廣告,請繼續往下閱讀-----

不過,楊尚樺也提到,就他在學校的觀察,清大表現不錯的學生,普遍也都非常焦慮。即便在課業上、研究上、綜合表現上的成果在他看來已經相當出色了,但學生依然覺得想要再多做一些事情補強。這種好學和堅毅的態度,楊尚樺打從心裡給予高度肯定。然而,讓他覺得不好的原因在於:學生無法專注做好一件重要的事。若伴隨著患得患失的心態,卻沒有發展適合自己的主要路線,即便真的做了更多的事,表現往往也不會更好。換句話說,學東西不是因為想要學多而去做,而是自己本身有強烈的動機想要專注學習。 

楊尚樺看過一些很厲害的學生,他們並沒有一個好的目標,而且做事時會很快去計算短期之內能夠看到什麼樣的效益。沒有看到可能的效益,就很有可能會轉向。這些學生不怕做事情,怕的是沒有看到短期內的回饋,這其實不是好的學習態度,因為有些工作的效益,是不能只看短期的。 

最後,楊尚樺也勉勵清大的學弟妹,要做自己有熱情又喜歡的事。因為如果你在做「別人」認為不錯的事情時,若這件事和你的興趣並不相符,當過程中遇到挫折時,就很容易考慮要不要往另一個方向走,而沒有辦法堅持下去。 

但是,如果你是做自己有熱情的事情時,不管遇到什麼困難,你會廢寢忘食地不斷破關,獲得很多技能,當解決一個難題之後,你還會願意挑戰下一個關卡。看到的危機多了、功夫下得深了,你就比別人有更好的危機處理能力。堅持的道路上走得會比別人長、比別人久,你的獨特性就出來了,就比較容易出類拔萃。 

注釋

  • 註 1:不只人眼細胞,許多地球上的生物都和可見光有互動
  • 註 2:載波頻段(Carrier frequency band):用以乘載資料的電磁波頻率區間。 

參考資料

1. Seco-Martorell, C., López-Domínguez, V., Arauz-Garofalo, G., Redo-Sanchez, A., Palacios, J., & Tejada, J. (2013). Goya’s artwork imaging with Terahertz waves. Optics Express, 21(15), 17800. https://doi.org/10.1364/oe.21.017800

文章難易度
科技大觀園_96
82 篇文章 ・ 1125 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

0
0

文字

分享

0
0
0
Intel® Core™ Ultra AI 處理器:下一代晶片的革命性進展
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/21 ・2364字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

本文由 Intel 委託,泛科學企劃執行。 

在當今快節奏的數位時代,對於處理器性能的需求已經不再僅僅停留在日常應用上。從遊戲到學術,從設計到內容創作,各行各業都需要更快速、更高效的運算能力,而人工智慧(AI)的蓬勃發展更是推動了這一需求的急劇增長。在這樣的背景下,Intel 推出了一款極具潛力的處理器—— Intel® Core™ Ultra,該處理器不僅滿足了對於高性能的追求,更為使用者提供了運行 AI 模型的全新體驗。

先進製程:效能飛躍提升

現在的晶片已不是單純的 CPU 或是 GPU,而是混合在一起。為了延續摩爾定律,也就是讓相同面積的晶片每過 18 個月,效能就提升一倍的目標,整個半導體產業正朝兩個不同方向努力。

其中之一是追求更先進的技術,發展出更小奈米的製程節點,做出體積更小的電晶體。常見的方法包含:引進極紫外光 ( EUV ) 曝光機,來刻出更小的電晶體。又或是從材料結構下手,發展不同構造的電晶體,例如鰭式場效電晶體 ( FinFET )、環繞式閘極 ( GAAFET ) 電晶體及互補式場效電晶體 ( CFET ),讓電晶體可以更小、更快。這種持續挑戰物理極限的方式稱為深度摩爾定律——More Moore。

-----廣告,請繼續往下閱讀-----

另一種則是將含有數億個電晶體的密集晶片重新排列。就像人口密集的都會區都逐漸轉向「垂直城市」的發展模式。對晶片來說,雖然每個電晶體的大小還是一樣大,但是重新排列以後,不僅單位面積上可以堆疊更多的半導體電路,還能縮短這些區塊間資訊傳遞的時間,提升晶片的效能。這種透過晶片設計提高效能的方法,則稱為超越摩爾定律——More than Moore。

而 Intel® Core™ Ultra 處理器便是具備兩者優點的結晶。

圖/PanSci

Tile 架構:釋放多核心潛能

在超越摩爾定律方面,Intel® Core™ Ultra 處理器以其獨特的 Tile 架構而聞名,將 CPU、GPU、以及 AI 加速器(NPU)等不同單元分開,使得這些單元可以根據需求靈活啟用、停用,從而提高了能源效率。這一設計使得處理器可以更好地應對多任務處理,從日常應用到專業任務,都能夠以更高效的方式運行。

CPU Tile 採用了 Intel 最新的 4 奈米製程和 EUV 曝光技術,將鰭式電晶體 FinFET 中的像是魚鰭般阻擋漏電流的鰭片構造減少至三片,降低延遲與功耗,使效能提升了 20%,讓使用者可以更加流暢地執行各種應用程序,提高工作效率。

-----廣告,請繼續往下閱讀-----
鰭式電晶體 FinFET。圖/Intel

Foveros 3D 封裝技術:高效數據傳輸

2017 年,Intel 開發出了新的封裝技術 EMIB 嵌入式多晶片互聯橋,這種封裝技術在各個 Tile 的裸晶之間,搭建了一座「矽橋 ( Silicon Bridge ) 」,達成晶片的橫向連接。

圖/Intel

而 Foveros 3D 封裝技術是基於 EMIB 更進一步改良的封裝技術,它能將處理器、記憶體、IO 單元上下堆疊,垂直方向利用導線串聯,橫向則使用 EMIB 連接,提供高頻寬低延遲的數據傳輸。這種創新的封裝技術不僅使得處理器的整體尺寸更小,更提高了散熱效能,使得處理器可以長期高效運行。

運行 AI 模型的專用筆電——MSI Stealth 16 AI Studio

除了傳統的 CPU 和 GPU 之外,Intel® Core™ Ultra 處理器還整合了多種專用單元,專門用於在本機端高效運行 AI 模型。這使得使用者可以在不連接雲端的情況下,依然可以快速準確地運行各種複雜的 AI 算法,保護了數據隱私,同時節省了連接雲端算力的成本。

MSI 最新推出的筆電 Stealth 16 AI Studio ,搭載了最新的 Intel Core™ Ultra 9 處理器,是一款極具魅力的產品。不僅適合遊戲娛樂,其外觀設計結合了落質感外型與卓越效能,使得使用者在使用時能感受到高品質的工藝。鎂鋁合金質感的沉穩機身設計,僅重 1.99kg,厚度僅有 19.95mm,輕薄便攜,適合需要每天通勤的上班族,與在咖啡廳尋找靈感的創作者。

-----廣告,請繼續往下閱讀-----

除了外觀設計之外, Stealth 16 AI Studio 也擁有出色的散熱性能。搭載了 Cooler Boost 5 強效散熱技術,能夠有效排除廢熱,保持長時間穩定高效能表現。良好的散熱表現不僅能夠確保處理器的效能得到充分發揮,還能幫助使用者在長時間使用下的保持舒適性和穩定性。

Stealth 16 AI Studio 的 Intel Core™ Ultra 處理器,其性能更是一大亮點。除了傳統的 CPU 和 GPU 之外,Intel Core™ Ultra 處理器還整合了多種專用單元,專門針對在本機端高效運行 AI 模型的需求。內建專為加速AI應用而設計的 NPU,更提供強大的效能表現,有助於提升效率並保持長時間的續航力。讓使用者可以在不連接雲端的情況下,依然可以快速準確地運行各種複雜的 AI 算法,保護了數據隱私,同時也節省了連接雲端算力的成本。

軟體方面,Intel 與眾多軟體開發商合作,針對 Intel 架構做了特別最佳化。與 Adobe 等軟體的合作使得使用者在處理影像、圖像等多媒體內容時,能夠以更高效的方式運行 AI 算法,大幅提高創作效率。獨家微星AI 智慧引擎能針對使用情境並自動調整硬體設定,以實現最佳效能表現。再加上獨家 AI Artist,更進一步提升使用者體驗,直接輕鬆生成豐富圖像,實現了更便捷的內容創作。

此外 Intel 也與眾多軟體開發商合作,針對 Intel 架構做了特別最佳化,讓 Intel® Core™ Ultra處理器將AI加速能力充分發揮。例如,與 Adobe 等軟體使得使用者可以在處理影像、圖像等多媒體內容時,能夠以更高效的方式運行 AI 算法,大幅提高創作效率。為各行專業人士提供了更加多元、便捷的工具,成為工作中的一大助力。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
199 篇文章 ・ 305 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
1

文字

分享

0
0
1
電磁波全揭秘:了解頻帶、頻寬、頻率和通信技術的基礎知識
數感實驗室_96
・2024/06/13 ・671字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

先前我們介紹了多位為通信科技發展做出貢獻的科學家。現在,我們要深入探討無線通信的技術層面。

無線通信,顧名思義不像傳統的電話或電報那樣需要一條實體的線路來傳遞信號。但這些信號並非憑空傳遞,它們依賴的正是電磁波。

電磁波在現代社會無處不在,從微波爐、手機到基地台,這些設備都會發射電磁波。但其實即使沒有這些科技裝置,電磁波依然存在於我們周圍。什麼意思呢?答案就是:當我們白天走到戶外,看到的光,它其實也是電磁波的一種。

-----廣告,請繼續往下閱讀-----

希望大家掌握了這些電磁波、頻帶、頻寬等基礎知識後,未來在閱讀相關的電信新聞時更加了解他們提到的術語,以及各種縮寫。以後無論是科技發展的動態還是市場新技術,都能更有概念地理解。

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

參考資料

討論功能關閉中。

數感實驗室_96
69 篇文章 ・ 45 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

2
1

文字

分享

0
2
1
量子力學可以幫你判斷物體溫度?從古典物理過渡到近代的一大推手——黑體輻射
PanSci_96
・2024/03/24 ・3634字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

1894 年,美國物理學家邁克生(Albert Abraham Michelson)作為芝加哥大學物理系的創立者,在為學校的瑞爾森物理實驗室(Ryerson Physical Laboratory)落成典禮致詞時,表示:「雖然無法斷言說,未來的物理學不會比過去那些驚奇更令人驚嘆,但似乎大部分的重要基本原則都已經被穩固地建立了。」

以我們現在的後見之明,這段話聽起來固然錯得離譜,但在當時,從 17、18 到 19 世紀,在伽利略、牛頓、馬克士威等前輩的的貢獻之下,物理學已經達成了非凡的成就。

我們現在稱為古典的物理學,對於整個世界的描述幾乎是面面俱到了,事實上沒有人預料到 20 世紀將出現徹底顛覆世界物理學認知的重要理論,量子力學。

而這最一開始竟只是出自於一件不起眼的研究,關於物體發出的光。

-----廣告,請繼續往下閱讀-----

萬物皆輻射

在此我們要先理解一個觀念:所有物體無時無刻不在發出電磁波輻射,包括了你、我、你正使用的螢幕,以及我們生活中的所有物品。

至於為什麼會這樣子呢?其中一個主要原因是,物體都是由原子、分子組成,所以內部充滿了帶電粒子,例如電子。這些帶電粒子隨著溫度,時時刻刻不停地擾動著,在過程中,就會以電磁波的形式放出能量。

除了上述原因之外,物體發出的電磁波輻射,還可能有其他來源,我們就暫時省略不提。無論如何,從小到大我們都學過的,熱的傳遞方式分成傳導、對流、輻射三種,其中的輻射,就是我們現在在談的,物體以電磁波形式發出的能量。

那麼,這些輻射能量有什麼樣的特徵呢?為了搞清楚這件事,我們必須先找個適當的範本來研究。

-----廣告,請繼續往下閱讀-----

理想上最好的選擇是,這個範本必須能夠吸收所有外在環境照射在上面的光線,只會發出因自身溫度而產生的電磁輻射。這樣子的話,我們去測量它發出的電磁波,就不會受到反射的電磁波干擾,而能確保電磁波是來自它自己本身。

這樣子的理想物體,稱為黑體;畢竟,黑色物體之所以是黑的,就是因為它能夠吸收外在環境光線,且不太會反射。而在我們日常生活中,最接近理想的黑體,就是一點也不黑、還超亮的太陽!這是因為我們很大程度可以肯定,太陽發出來的光,幾乎都是源於它自身,而非反射自外在環境的光線。

或者我們把一個空腔打洞後,從洞口發出的電磁波,也會近似於黑體輻射,因為所有入射洞口的光都會進入空腔,而不被反射。煉鐵用的鼓風爐,就類似這樣子的結構。

到目前為止,一切聽起來都只是物理學上一個平凡的研究題目。奇怪的是,在對電磁學已經擁有完整瞭解的 19 世紀後半到 20 世紀初,科學家儘管已經藉由實驗得到了觀測數據,但要用以往的物理理論正確推導出黑體的電磁波輻射,卻遇到困難。正是由此開始,古典物理學出現了破口。

-----廣告,請繼續往下閱讀-----

黑體輻射

由黑體發出的輻射,以現在理論所知,長得像這個樣子。縱軸代表黑體輻射出來的能量功率,橫軸代表黑體輻射出來的電磁波波長。

在理想狀況下,黑體輻射只跟黑體的溫度有關,而跟黑體的形狀和材質無關。

以溫度分別處在絕對溫標 3000K、4000K 和 5000K 的黑體輻射為例,我們可以看到,隨著黑體的溫度越高,輻射出來的能量功率也越大;同時,輻射功率最高的波段,也朝短波長、高頻率的方向靠近。

為了解釋這個曲線,物理學家們開始運用「當時」畢生所學來找出函數方程式,分成了兩派:

-----廣告,請繼續往下閱讀-----

一派是 1896 年,由德國物理學家維因(Wilhelm Carl Werner Otto Fritz Franz Wien),由熱力學出發推導出的黑體輻射公式,另一派,在 1900 與 1905 年,英國物理學家瑞立(John William Strutt, 3rd Baron Rayleigh)和金斯(James Jeans),則是藉由電磁學概念,也推導出了他們的黑體輻射公式,稱為瑞立-金斯定律。

你看,若是同時擺上這兩個推導公式,會發現他們都各自對了一半?

維因近似 Wien approximation 只在高頻率的波段才精確。而瑞立-金斯定律只對低頻率波段比較精確,更預測輻射的強度會隨著電磁波頻率的提升而趨近無限大,等等,無限大?――這顯然不合理,因為現實中的黑體並不會放出無限大的能量。

顯然這兩個解釋都不夠精確。

-----廣告,請繼續往下閱讀-----

就這樣,在 1894 年邁克生才說,物理學可能沒有更令人驚嘆的東西了,結果沒幾年,古典物理學築起的輝煌成就,被黑體輻射遮掩了部分光芒,而且沒人知道,這是怎麼一回事。

普朗克的黑體輻射公式

就在古典物理學面臨進退維谷局面的時候,那個男人出現了——德國物理學家普朗克(Max Planck)。

1878年學生時代的普朗克。圖/wikimedia

普朗克於 1900 年就推導出了他的黑體輻射公式,比上述瑞立和金斯最終在 1905 年提出的結果要更早,史稱普朗克定律(Planck’s law)。普朗克假想,在黑體中,存在許多帶電且不斷振盪、稱為「振子」的虛擬單元,並假設它們的能量只能是某個基本單位能量的整數倍。

這個基本單位能量寫成 E=hν,和電磁輻射的頻率 ν 成正比,比例常數 h 則稱為普朗克常數。換言之,黑體輻射出來的能量,以hν為基本單位、是一個個可數的「量」加起來的,也就是能量被「量子化」了。

-----廣告,請繼續往下閱讀-----

根據以上假設,再加上不同能量的「振子」像是遵循熱力學中的粒子分佈,普朗克成功推導出吻合黑體輻射實驗觀測的公式。

普朗克的方程式,同時包含了維因近似和瑞立-金斯定律的優點,不管在低頻率還是高頻率的波段,都非常精確。如果我們比較在地球大氣層頂端觀測到的太陽輻射光譜,可以發現觀測數據和普朗克的公式吻合得非常好。

其實有趣的是普朗克根本不認為這是物理現象,他認為,他假設的能量量子化,只是數學上用來推導的手段,而沒有察覺他在物理上的深遠涵意。但無論如何,普朗克成功解決了黑體輻射的難題,並得到符合觀測的方程式。直到現在,我們依然使用著普朗克的方程式來描述黑體輻射。不只如此,在現實生活中,有許多的應用,都由此而來。

正因為不同溫度的物體,會發出不同特徵的電磁波,反過來想,藉由測量物體發出的電磁波,我們就能得知該物體的溫度。在疫情期間,我們可以看到某些場合會放置螢幕,上面呈現類似這樣子的畫面。

-----廣告,請繼續往下閱讀-----

事實上,這些儀器測量的,是特定波長的紅外線。紅外線屬於不可見光,也是室溫物體所發出的電磁輻射中,功率最大的波段。只要分析我們身體發出的紅外線,就能在一定程度上判斷我們的體溫。當然,一來我們都不是完美的黑體,二來環境因素也可能產生干擾,所以還是會有些許誤差。

藉由黑體輻射的研究,我們還可以將黑體的溫度與發出的可見光顏色標準化。

在畫面中,有彩虹背景的部分,代表可見光的範圍,當黑體的溫度越高,發出的電磁輻射,在可見光部分越偏冷色系。當我們在購買燈泡的時候,會在包裝上看到色溫標示,就是由此而來。所以,如果你想要溫暖一點的光線,就要購買色溫較低,約兩、三千 K 左右的燈泡。

結語

事實上,在黑體輻射研究最蓬勃發展的 19 世紀後半,正值第二次工業革命,當時鋼鐵的鍛冶技術出現許多重大進步。

德國鐵血宰相俾斯麥曾經說,當代的重大問題要用鐵和血來解決。

就傳統而言,煉鋼要靠工匠用肉眼,從鋼鐵的顏色來判斷溫度,但若能更精確地判斷溫度,無疑會有很大幫助。

德國作為鋼鐵業發達國家,在黑體輻射的研究上,曾做出許多貢獻,這一方面固然可能是學術的求知慾使然,但另一方面,也可以說跟社會的需求與脈動是完全吻合的。
總而言之,普朗克藉由引進能量量子化的概念,成功用數學式描述了黑體輻射;這件事成為後來量子力學發展的起點。儘管普朗克本人沒有察覺能量量子化背後的深意,但有另一位勇者在數年後繼承了普朗克的想法,並做出意味深長的詮釋,那就是下一個故事的主角――愛因斯坦的事了。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

討論功能關閉中。

PanSci_96
1223 篇文章 ・ 2271 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。