0

2
2

文字

分享

0
2
2

可發展 6G 無線通訊,還能超感知透視!科技新星「太赫茲技術」到底是什麽?

科技大觀園_96
・2021/08/03 ・5035字 ・閱讀時間約 10 分鐘

「太赫茲」是物理單位,英文為 Terahertz(THz),字首「Tera-」是 1012 的意思,所以太赫茲就是 1012 赫茲,也就是每秒 1012 次的意思,亦可翻譯為「兆赫茲」。目前常聽到的「太赫茲」,其實是指太赫茲波段,就是電磁波的一組特定波段,頻率範圍是 0.1 THz~10 THz,對應電磁波波長為 3 mm~30 µm,介於微波和可見光之間,因此也稱為毫米波和次毫米波。

研究太赫茲技術的清華大學電機系助理教授楊尚樺認為,對一般人來說,「太赫茲」依然是陌生名詞,因此就像之前的「奈米」和「量子」一樣,被許多廠商拿來當成行銷用語。 

橘色區間為太赫茲波段。圖/沈佩泠繪

太赫茲波段有什麼特別的?

楊尚樺強調,太赫茲波有三個特點:辨識化學分子、透視和不破壞生物體。不同波段的電磁波和物質都有很特殊的交互作用,比如說可見光就和人眼細胞有互動(註 1),柱狀和錐狀細胞可以感知可見光波段。相對地,太赫茲波可以辨識出特定的化學分子,得知物質成份,可應用在分析藥品、毒品或蛋白質的種類等。 

另外,太赫茲波可以做到「透視」,人眼看不到的東西,太赫茲波可以穿透表層到達內部。以行李箱為例,太赫茲波可以偵測行李箱裡面是什麼,可應用於機場安檢與毒品檢測。而且太赫茲波不僅可以檢測固體,還可以檢測液體和氣體。 

太赫茲波影像檢測的特點。圖/沈佩泠繪

 太赫茲波的「透視」有別於 X 光檢測。人體的生物分子(如 DNA、RNA)照射 X 光會受損,因為光子能量太強,容易把分子裡的電子打出來,成為游離電子;而失去電子的分子變得不穩定,會引發人體罕見與不正常的化學反應。反之,太赫茲波的光子能量很小,無法破壞生物分子,更無法將分子內的電子游離出來,因此太赫茲波對生物體是安全的。 

太赫茲波可以做到非破壞性的偵測,很適合工業製造與品質管控的應用,例如半導體廠在晶片封裝之後,檢查內部有無斷線,或是評估 3D 晶片封裝是否完好;藥廠則可以檢查膠囊成品內部有無破損等。

太赫茲技術前景看好

提到當初為什麼想要研究太赫茲技術,楊尚樺笑著說:「其實是有點誤打誤撞。」2011 年楊尚樺申請密西根大學博士班面試時,未來的指導教授Prof. Mona Jarrahi 提到實驗室是做太赫茲技術,這是他首次聽聞這個名詞。當時臺灣僅有少數團隊研究太赫茲科學與技術,多為物理系或應用物理的學者,太赫茲相關元件(發射器或接收器等)也很難取得。 

跟隨著 Mona Jarrahi,楊尚樺從太赫茲最重要的元件「太赫茲發射源」(terahertz emitter)開始接觸,博士班念到第 4 年和第 5 年時,他開始懷疑這項技術是否在 10 年內真的有出口。「因為遇到的困難比你成功要多很多,幾乎都是困難的,看不到出口的,出口的光相當微弱」,楊尚樺說道。 

甚至後期和指導教授 Mona 討論未來任教是否繼續研究太赫茲技術時,楊尚樺坦白和 Mona 說不會。當時專注在工程技術的楊尚樺認為,在許多人類所需的工程應用上,太赫茲很難和其他相對成熟的領域競爭,前景相當限縮。Mona自然不這麼認為,卻也沒有多說什麼。 

後來,在申請教職的期間,楊尚樺從更全面的角度看待太赫茲技術,不只看業界技術和資金來源,更看向 10 年後和 20 年後的研究發展。他認為如果太赫茲元件能夠量產,且 6G 無線通訊帶來大量市場需求,應可克服許多困難。再來,太赫茲研究對於學界是有挑戰性的問題,不僅符合臺灣半導體、電子、光電通訊產業的脈絡,又有很多題目,可以做長期的研究,很有發展前景。

檢測晶片內部破損、超感知透視藝術文物

現在楊尚樺實驗室的研究核心是太赫茲裝置(Terahertz Device),可分為主動元件和被動元件。主動元件包括最重要的太赫茲發射源或是太赫茲探測器被動元件則有太赫茲透鏡或太赫茲的訊號與空間調變器等。有了這些元件,就可以做出想要的太赫茲系統。 

楊尚樺目前已做出一套影像系統,用於工業破損檢測時,可以看出晶片內部的破損,或是看太陽能板裡面的隱裂位置和大小。這套影像系統還可以用來觀察植物,例如豆莢內部的豆子長得如何,以及水分子輸送的情況。生醫用途上,也可以從混和物中準確辨識出血糖、胺基酸和蔗糖的成份與比例。以上,是屬於太赫茲光譜學(Terahertz Spectroscopy)的應用。 

與影像系統有關的,還有超感知(Super sensing)的研究,例如太赫茲波可以直接看透一本書,在不碰觸到書的情況下,把每一頁的訊息解析出來。而且太赫茲波段不會破壞物質分子,也相當適合用來解析故宮文物,讓文物修復更順利。楊尚樺笑著說,如果有機會的話,真的非常想看看裡面藏有什麼祕密。 

楊尚樺指出,2013 年國外太赫茲團隊曾經發表過一項有趣的研究。知名的西班牙畫家 Goya,平常在作品上一定都會簽名,但是有一幅畫作「Sacrifice to Vesta」很特別,從整體風格來看,大家都認為是 Goya 畫的,卻看不到簽名。 

因此 C. Seco-Martorell 等人就用太赫茲影像系統解析了這幅畫,才發現原來 Goya 把自己的簽名簽在畫作底下,被上層的顏料蓋住了,他們將結果發表在光學期刊《Optics Express》(參考資料 1)。  

畫作「Sacrifice to Vesta」不同透明度的影像。(a)是原始畫作,(b)是可見光與太赫茲成像各占一半的情況,(c)則是 100% 太赫茲的成像情況,可以看到原作底下隱約有一位頭部朝左的女人。圖/參考資料 1
將畫作「Sacrifice to Vesta」的太赫茲成像加以放大,團隊終於在右下角找到 Goya 的簽名痕跡。(a)是原始畫作的太赫茲成像,(b)是畫家Goya的簽名對照組,(c)(d)(e)則代表 Goya 隱藏簽名在不同振幅強度的太赫茲成像,(c)是最大振幅,簽名圖像最為清楚。圖/參考資料 1

從影像系統邁向 6G 應用

除了影像系統外,楊尚樺團隊也努力將太赫茲技術應用在 6G 無線通訊的產業鏈之中。目前的工作主要是將 5G 的通訊系統頻率範圍轉移到太赫茲頻率範圍(0.1 THz~10 THz),同時要把很高速的訊號加載在太赫茲的載波頻段(註2)上,目標是做到每秒可傳輸 1012 位元,也就是在一秒要加載 1012 個 0 或 1。 

現在相關研究遇到了一些困難,與太赫茲元件有關。雖然從 5G 到 6G(太赫茲頻段)的頻寬擴大許多,但是系統的發射端和接收端是否能夠運作?如果太赫茲發射源能量很低,訊號很難到達接收端。如果太赫茲接收器不夠靈敏,也很難獲取資料,並且也要確保龐大的資料量得以順利解碼。 

為了評估通訊系統是否夠好,也可以從訊噪比(訊號和雜訊的比例,Signal-to-noise ratio)來看,如果訊號和雜訊的比例愈高,訊號就愈乾淨,也更容易成功解碼。因此,提升訊噪比也是將來改善的重點。

仍有重重困難有待突破

太赫茲系統為什麼難以量產?相關元件非常昂貴,市面上買不到整套消費級的太赫茲系統,一套系統造價約數萬到數十萬美元,公尺級別的大尺寸也相當占空間。 

楊尚樺表示,目前技術的最大問題在於「太赫茲發射源」,大家還不知道如何做出完善、實用、微小又可在室溫環境操作的太赫茲發射器,只能先借助過去的知識幫忙。太赫茲波段落在微波和可見光之間,是電學領域和光學領域的交集地,微波那端研究電學的人,會想要把頻率做高,靠近太赫茲波段;但是元件頻率愈高,電容影響愈大,輻射功率會急速下降。 

另一方面,電磁波段高頻那端研究光學的人,會從材料著手,通常會選用不同能隙(energy gap)大小的材料測試,比如說藍光 LED 的氮化鎵(GaN),能隙大,輻射出的光子頻率較高。如果要將輻射頻率降低,靠近太赫茲波段,能隙要夠小,但自然界找不到可以直接輻射出太赫茲波的窄能隙材料,必須要用特殊的技術才有辦法達成。 

即便達成了上述的窄能隙條件,例如輻射出頻率 1 THz 的光子,對應的能隙能量是 4 meV(milli-electron volts,能量單位),這個能量已經小於室溫下電子熱擾動的動能(幾十個 meV),所以很難控制每個電子從能隙掉下來的時機,以便讓材料發出一致的同調光。必須要在極低溫,例如低於 -196.15 °C(77 K)的液態氮環境下,才有辦法達成。 

楊尚樺強調,不論是電或光的方式,都很難在太赫茲波段輻射出足夠的功率,也就難以做出好的太赫茲發射源。發射源就像一支手電筒,如果不亮(功率不足),就無法探測周圍的環境,更不用說還要傳遞什麼訊號了。 

「太赫茲發射源」目前還沒有找到完美的解決方案,不過楊尚樺團隊已經可以做到足夠亮的發射源,下一步要往可量產、輕巧化的太赫茲發射源邁進。為了搭配臺灣在半導體製程的專業,除了主流的 III – V 族光電元件之外,更開發 IV 族光電元件,目前實驗室已可獨立實現這兩類的主/被動元件。 

楊尚樺團隊的 10 年研究目標是將整個太赫茲系統微縮到晶片大小(毫米等級,mm),這樣才有辦法讓太赫茲技術進入一般民眾的生活。

年輕學者如何在教學與研究中取得平衡?

在清大做研究的負擔很重,而楊尚樺也熱衷於教學,所以兩邊都忙,「我也不知道我有沒有取得平衡。」楊尚樺笑著說。他認為一般人都會直觀認為教學就是在課堂上教學生,但其實研究同時也是教學,因為必須讓本來習慣在課本做習題的學生,轉換成可以實作的初階研究者,這本身就要花很多心力教導。同時,行政角色上的導生,又或是其他系的學生,如果對太赫茲研究題目有興趣,他也會予以指點。 

「總之,做就對了!」他說道。在授課的同時,自己本身也會感受到某方面知識不足,會特別去學習。還有,因為在教學時強烈感受到每一屆學生思考模式都不同,所以楊尚樺認為不可能用同一套教學方法教 3 年,必須要想新招。每次看到學生學會知識有所成長,心中就很有成就感。

楊尚樺勉勵大學生要做自己有熱情的事。圖/簡克志攝)

要做自己有熱情的工作

楊尚樺認為,從他帶過專題的清大大學部學生和研究生來看,絕大多數都很積極,有很多東西想學。甚至有的學生不只在他這邊做研究,也同時要求自己在臺灣大學或是中央研究院做其他領域研究。通常多工的研究路線會需要儲備更多的專業知識,以及分散研究力道,導致多方都做不好的情況。而這些學生卻產出了不錯的成果,讓他感到相當驚訝。

不過,楊尚樺也提到,就他在學校的觀察,清大表現不錯的學生,普遍也都非常焦慮。即便在課業上、研究上、綜合表現上的成果在他看來已經相當出色了,但學生依然覺得想要再多做一些事情補強。這種好學和堅毅的態度,楊尚樺打從心裡給予高度肯定。然而,讓他覺得不好的原因在於:學生無法專注做好一件重要的事。若伴隨著患得患失的心態,卻沒有發展適合自己的主要路線,即便真的做了更多的事,表現往往也不會更好。換句話說,學東西不是因為想要學多而去做,而是自己本身有強烈的動機想要專注學習。 

楊尚樺看過一些很厲害的學生,他們並沒有一個好的目標,而且做事時會很快去計算短期之內能夠看到什麼樣的效益。沒有看到可能的效益,就很有可能會轉向。這些學生不怕做事情,怕的是沒有看到短期內的回饋,這其實不是好的學習態度,因為有些工作的效益,是不能只看短期的。 

最後,楊尚樺也勉勵清大的學弟妹,要做自己有熱情又喜歡的事。因為如果你在做「別人」認為不錯的事情時,若這件事和你的興趣並不相符,當過程中遇到挫折時,就很容易考慮要不要往另一個方向走,而沒有辦法堅持下去。 

但是,如果你是做自己有熱情的事情時,不管遇到什麼困難,你會廢寢忘食地不斷破關,獲得很多技能,當解決一個難題之後,你還會願意挑戰下一個關卡。看到的危機多了、功夫下得深了,你就比別人有更好的危機處理能力。堅持的道路上走得會比別人長、比別人久,你的獨特性就出來了,就比較容易出類拔萃。 

注釋

  • 註 1:不只人眼細胞,許多地球上的生物都和可見光有互動
  • 註 2:載波頻段(Carrier frequency band):用以乘載資料的電磁波頻率區間。 

參考資料

1. Seco-Martorell, C., López-Domínguez, V., Arauz-Garofalo, G., Redo-Sanchez, A., Palacios, J., & Tejada, J. (2013). Goya’s artwork imaging with Terahertz waves. Optics Express, 21(15), 17800. https://doi.org/10.1364/oe.21.017800


數感宇宙探索課程,現正募資中!

文章難易度
科技大觀園_96
82 篇文章 ・ 1090 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。


0

1
0

文字

分享

0
1
0

透過「生長激素刺激測驗」,評估孩童生長激素是否不足

careonline_96
・2022/05/19 ・1899字 ・閱讀時間約 3 分鐘

當孩童因「身高不足」或「生長遲緩」就診「兒童內分泌科」,醫師評估有「生長激素不足症」之疑慮時,會安排小朋友做「生長激素刺激測驗」。

究竟這是什麼樣的檢查呢?什麼時候需要做這個檢查?如何執行?這樣的檢查安全嗎? 以下由林口長庚醫院兒童內分泌科邱巧凡醫師,針對以上家長常見問題做完整說明。

生長激素刺激測驗——什麼時候要做?

  1. 「長的矮」而且「長的慢」!
    (1)長的矮: 身高落在該性別年齡「第三百分位」以下。
    (2)長的慢: 「一年長不到四公分」,或身高曲線往下掉兩大條百分位曲線。
  2. 初步檢查顯示: 骨齡明顯落後,血液檢驗 IGF-1 與 IGFBP-3 濃度不足。
  3. 伴隨其他生長激素不足可能合併的特徵(如前額凸出、顴骨發育不良、鼻梁塌陷、低血糖、陰莖短小、尿道下裂,或合併其他賀爾蒙異常等。)

當以上情形發生,醫師認為孩子有「生長激素缺乏症」的可能,將進一步安排「生長激素刺激測驗」。

生長激素刺激測驗——是什麼?

邱巧凡醫師指出,平常生長激素的分泌呈現「脈衝式分泌」,因此無法從隨機、單一次的血液檢測直接反映個體生長激素分泌的能力。生長激素刺激測驗是藉由藥物的刺激,營造出生長激素必須要分泌的情境,藉此情境來了解分泌的功能是否正常。

目前在台灣可用來做為生長激素刺激測驗的藥物包含:胰島素、clonidine、L-Dopa、Arginine 及 Glucagon。

生長激素刺激測驗——怎麼做?

  • 檢查前的準備
  1. 自檢查當天凌晨零時起「禁食」任何食物。
  2. 填寫「檢查同意書」。
  • 生長激素刺激測驗檢查流程
  1. 於早上 7~9 點,幫受檢兒童建立靜脈留置針(通常選擇上肢靜脈),並執行第一次的抽血,隨後給予受檢兒童檢查用之「口服藥物」或「靜脈注射藥物」。
  2. 之後約每隔 15 至 30 分鐘執行一次抽血,檢測生長激素濃度。(不同之檢測藥物,其抽血頻率與時間略有不同)
  3. 一次的「生長激素刺激測驗」檢查流程約 2~3 個小時完成,最後一次抽血完畢後,若身體無不適,便可移除靜脈留置針頭,完成檢查。並給孩童進食一頓大餐。

生長激素刺激測驗——安全嗎?

邱巧凡醫師說,生長激素刺激測驗執行過程,有可能發生以下狀況,須特別留意,因此在林口長庚醫院本檢查需住院執行,在專業醫療團隊照護下執行此測驗。

  1. 暈針: 由於需透過口服或靜脈注射藥物刺激生長激素分泌,加上得抽血數次,因此在兒童、青少年族群有可能因為心理壓力與恐懼感,在測驗過程中出現眩暈與噁心等暈針症狀。通常只要休息一段時間即可恢復,也不會因此產生後遺症。
  2. 測驗藥物的作用: 檢查期間所服用或注射的藥物,會造成血糖偏低、血壓偏低,可能出現口乾、頭痛、冒冷汗、臉色蒼白、嗜睡、疲倦、頭暈、噁心、嘔吐等症狀。一般只要適度休息,並於檢查後進食即可逐漸恢復。少數有特殊病史的孩童(如癲癇、腦瘤等)可能在此過程出現抽搐發作等狀況。

生長激素刺激測驗——檢查注意事項

  1. 自檢查當天凌晨零時起,至檢查流程完畢,期間禁止飲食,否則會影響檢查結果的準確性。 
  2. 抽血期間如出現頭暈、噁心、臉色蒼白、抽搐、意識不清等情況,請立即告知醫護團隊。
  3. 檢查期間應坐在椅子上或臥床休息,儘量不要起身走動。

生長激素刺激測驗——檢查結果

檢查結果醫師將針對患童本身狀況與兩項不同藥物刺激後的生長激素分泌能力進行判讀,若判斷為「生長激素缺乏症」,將進一步安排「腦部核磁共振檢查」以釐清生長激素缺乏的可能原因,並衡量「生長激素治療」的適當性與時機,與家長進行說明與討論。


數感宇宙探索課程,現正募資中!

careonline_96
9 篇文章 ・ 7 位粉絲
台灣最大醫療入口網站