0

2
2

文字

分享

0
2
2

可發展 6G 無線通訊,還能超感知透視!科技新星「太赫茲技術」到底是什麽?

科技大觀園_96
・2021/08/03 ・5035字 ・閱讀時間約 10 分鐘

「太赫茲」是物理單位,英文為 Terahertz(THz),字首「Tera-」是 1012 的意思,所以太赫茲就是 1012 赫茲,也就是每秒 1012 次的意思,亦可翻譯為「兆赫茲」。目前常聽到的「太赫茲」,其實是指太赫茲波段,就是電磁波的一組特定波段,頻率範圍是 0.1 THz~10 THz,對應電磁波波長為 3 mm~30 µm,介於微波和可見光之間,因此也稱為毫米波和次毫米波。

研究太赫茲技術的清華大學電機系助理教授楊尚樺認為,對一般人來說,「太赫茲」依然是陌生名詞,因此就像之前的「奈米」和「量子」一樣,被許多廠商拿來當成行銷用語。 

橘色區間為太赫茲波段。圖/沈佩泠繪

太赫茲波段有什麼特別的?

楊尚樺強調,太赫茲波有三個特點:辨識化學分子、透視和不破壞生物體。不同波段的電磁波和物質都有很特殊的交互作用,比如說可見光就和人眼細胞有互動(註 1),柱狀和錐狀細胞可以感知可見光波段。相對地,太赫茲波可以辨識出特定的化學分子,得知物質成份,可應用在分析藥品、毒品或蛋白質的種類等。 

另外,太赫茲波可以做到「透視」,人眼看不到的東西,太赫茲波可以穿透表層到達內部。以行李箱為例,太赫茲波可以偵測行李箱裡面是什麼,可應用於機場安檢與毒品檢測。而且太赫茲波不僅可以檢測固體,還可以檢測液體和氣體。 

太赫茲波影像檢測的特點。圖/沈佩泠繪

 太赫茲波的「透視」有別於 X 光檢測。人體的生物分子(如 DNA、RNA)照射 X 光會受損,因為光子能量太強,容易把分子裡的電子打出來,成為游離電子;而失去電子的分子變得不穩定,會引發人體罕見與不正常的化學反應。反之,太赫茲波的光子能量很小,無法破壞生物分子,更無法將分子內的電子游離出來,因此太赫茲波對生物體是安全的。 

太赫茲波可以做到非破壞性的偵測,很適合工業製造與品質管控的應用,例如半導體廠在晶片封裝之後,檢查內部有無斷線,或是評估 3D 晶片封裝是否完好;藥廠則可以檢查膠囊成品內部有無破損等。

太赫茲技術前景看好

提到當初為什麼想要研究太赫茲技術,楊尚樺笑著說:「其實是有點誤打誤撞。」2011 年楊尚樺申請密西根大學博士班面試時,未來的指導教授Prof. Mona Jarrahi 提到實驗室是做太赫茲技術,這是他首次聽聞這個名詞。當時臺灣僅有少數團隊研究太赫茲科學與技術,多為物理系或應用物理的學者,太赫茲相關元件(發射器或接收器等)也很難取得。 

跟隨著 Mona Jarrahi,楊尚樺從太赫茲最重要的元件「太赫茲發射源」(terahertz emitter)開始接觸,博士班念到第 4 年和第 5 年時,他開始懷疑這項技術是否在 10 年內真的有出口。「因為遇到的困難比你成功要多很多,幾乎都是困難的,看不到出口的,出口的光相當微弱」,楊尚樺說道。 

甚至後期和指導教授 Mona 討論未來任教是否繼續研究太赫茲技術時,楊尚樺坦白和 Mona 說不會。當時專注在工程技術的楊尚樺認為,在許多人類所需的工程應用上,太赫茲很難和其他相對成熟的領域競爭,前景相當限縮。Mona自然不這麼認為,卻也沒有多說什麼。 

後來,在申請教職的期間,楊尚樺從更全面的角度看待太赫茲技術,不只看業界技術和資金來源,更看向 10 年後和 20 年後的研究發展。他認為如果太赫茲元件能夠量產,且 6G 無線通訊帶來大量市場需求,應可克服許多困難。再來,太赫茲研究對於學界是有挑戰性的問題,不僅符合臺灣半導體、電子、光電通訊產業的脈絡,又有很多題目,可以做長期的研究,很有發展前景。

檢測晶片內部破損、超感知透視藝術文物

現在楊尚樺實驗室的研究核心是太赫茲裝置(Terahertz Device),可分為主動元件和被動元件。主動元件包括最重要的太赫茲發射源或是太赫茲探測器被動元件則有太赫茲透鏡或太赫茲的訊號與空間調變器等。有了這些元件,就可以做出想要的太赫茲系統。 

楊尚樺目前已做出一套影像系統,用於工業破損檢測時,可以看出晶片內部的破損,或是看太陽能板裡面的隱裂位置和大小。這套影像系統還可以用來觀察植物,例如豆莢內部的豆子長得如何,以及水分子輸送的情況。生醫用途上,也可以從混和物中準確辨識出血糖、胺基酸和蔗糖的成份與比例。以上,是屬於太赫茲光譜學(Terahertz Spectroscopy)的應用。 

與影像系統有關的,還有超感知(Super sensing)的研究,例如太赫茲波可以直接看透一本書,在不碰觸到書的情況下,把每一頁的訊息解析出來。而且太赫茲波段不會破壞物質分子,也相當適合用來解析故宮文物,讓文物修復更順利。楊尚樺笑著說,如果有機會的話,真的非常想看看裡面藏有什麼祕密。 

楊尚樺指出,2013 年國外太赫茲團隊曾經發表過一項有趣的研究。知名的西班牙畫家 Goya,平常在作品上一定都會簽名,但是有一幅畫作「Sacrifice to Vesta」很特別,從整體風格來看,大家都認為是 Goya 畫的,卻看不到簽名。 

因此 C. Seco-Martorell 等人就用太赫茲影像系統解析了這幅畫,才發現原來 Goya 把自己的簽名簽在畫作底下,被上層的顏料蓋住了,他們將結果發表在光學期刊《Optics Express》(參考資料 1)。  

畫作「Sacrifice to Vesta」不同透明度的影像。(a)是原始畫作,(b)是可見光與太赫茲成像各占一半的情況,(c)則是 100% 太赫茲的成像情況,可以看到原作底下隱約有一位頭部朝左的女人。圖/參考資料 1
將畫作「Sacrifice to Vesta」的太赫茲成像加以放大,團隊終於在右下角找到 Goya 的簽名痕跡。(a)是原始畫作的太赫茲成像,(b)是畫家Goya的簽名對照組,(c)(d)(e)則代表 Goya 隱藏簽名在不同振幅強度的太赫茲成像,(c)是最大振幅,簽名圖像最為清楚。圖/參考資料 1

從影像系統邁向 6G 應用

除了影像系統外,楊尚樺團隊也努力將太赫茲技術應用在 6G 無線通訊的產業鏈之中。目前的工作主要是將 5G 的通訊系統頻率範圍轉移到太赫茲頻率範圍(0.1 THz~10 THz),同時要把很高速的訊號加載在太赫茲的載波頻段(註2)上,目標是做到每秒可傳輸 1012 位元,也就是在一秒要加載 1012 個 0 或 1。 

現在相關研究遇到了一些困難,與太赫茲元件有關。雖然從 5G 到 6G(太赫茲頻段)的頻寬擴大許多,但是系統的發射端和接收端是否能夠運作?如果太赫茲發射源能量很低,訊號很難到達接收端。如果太赫茲接收器不夠靈敏,也很難獲取資料,並且也要確保龐大的資料量得以順利解碼。 

為了評估通訊系統是否夠好,也可以從訊噪比(訊號和雜訊的比例,Signal-to-noise ratio)來看,如果訊號和雜訊的比例愈高,訊號就愈乾淨,也更容易成功解碼。因此,提升訊噪比也是將來改善的重點。

仍有重重困難有待突破

太赫茲系統為什麼難以量產?相關元件非常昂貴,市面上買不到整套消費級的太赫茲系統,一套系統造價約數萬到數十萬美元,公尺級別的大尺寸也相當占空間。 

楊尚樺表示,目前技術的最大問題在於「太赫茲發射源」,大家還不知道如何做出完善、實用、微小又可在室溫環境操作的太赫茲發射器,只能先借助過去的知識幫忙。太赫茲波段落在微波和可見光之間,是電學領域和光學領域的交集地,微波那端研究電學的人,會想要把頻率做高,靠近太赫茲波段;但是元件頻率愈高,電容影響愈大,輻射功率會急速下降。 

另一方面,電磁波段高頻那端研究光學的人,會從材料著手,通常會選用不同能隙(energy gap)大小的材料測試,比如說藍光 LED 的氮化鎵(GaN),能隙大,輻射出的光子頻率較高。如果要將輻射頻率降低,靠近太赫茲波段,能隙要夠小,但自然界找不到可以直接輻射出太赫茲波的窄能隙材料,必須要用特殊的技術才有辦法達成。 

即便達成了上述的窄能隙條件,例如輻射出頻率 1 THz 的光子,對應的能隙能量是 4 meV(milli-electron volts,能量單位),這個能量已經小於室溫下電子熱擾動的動能(幾十個 meV),所以很難控制每個電子從能隙掉下來的時機,以便讓材料發出一致的同調光。必須要在極低溫,例如低於 -196.15 °C(77 K)的液態氮環境下,才有辦法達成。 

楊尚樺強調,不論是電或光的方式,都很難在太赫茲波段輻射出足夠的功率,也就難以做出好的太赫茲發射源。發射源就像一支手電筒,如果不亮(功率不足),就無法探測周圍的環境,更不用說還要傳遞什麼訊號了。 

「太赫茲發射源」目前還沒有找到完美的解決方案,不過楊尚樺團隊已經可以做到足夠亮的發射源,下一步要往可量產、輕巧化的太赫茲發射源邁進。為了搭配臺灣在半導體製程的專業,除了主流的 III – V 族光電元件之外,更開發 IV 族光電元件,目前實驗室已可獨立實現這兩類的主/被動元件。 

楊尚樺團隊的 10 年研究目標是將整個太赫茲系統微縮到晶片大小(毫米等級,mm),這樣才有辦法讓太赫茲技術進入一般民眾的生活。

年輕學者如何在教學與研究中取得平衡?

在清大做研究的負擔很重,而楊尚樺也熱衷於教學,所以兩邊都忙,「我也不知道我有沒有取得平衡。」楊尚樺笑著說。他認為一般人都會直觀認為教學就是在課堂上教學生,但其實研究同時也是教學,因為必須讓本來習慣在課本做習題的學生,轉換成可以實作的初階研究者,這本身就要花很多心力教導。同時,行政角色上的導生,又或是其他系的學生,如果對太赫茲研究題目有興趣,他也會予以指點。 

「總之,做就對了!」他說道。在授課的同時,自己本身也會感受到某方面知識不足,會特別去學習。還有,因為在教學時強烈感受到每一屆學生思考模式都不同,所以楊尚樺認為不可能用同一套教學方法教 3 年,必須要想新招。每次看到學生學會知識有所成長,心中就很有成就感。

楊尚樺勉勵大學生要做自己有熱情的事。圖/簡克志攝)

要做自己有熱情的工作

楊尚樺認為,從他帶過專題的清大大學部學生和研究生來看,絕大多數都很積極,有很多東西想學。甚至有的學生不只在他這邊做研究,也同時要求自己在臺灣大學或是中央研究院做其他領域研究。通常多工的研究路線會需要儲備更多的專業知識,以及分散研究力道,導致多方都做不好的情況。而這些學生卻產出了不錯的成果,讓他感到相當驚訝。

不過,楊尚樺也提到,就他在學校的觀察,清大表現不錯的學生,普遍也都非常焦慮。即便在課業上、研究上、綜合表現上的成果在他看來已經相當出色了,但學生依然覺得想要再多做一些事情補強。這種好學和堅毅的態度,楊尚樺打從心裡給予高度肯定。然而,讓他覺得不好的原因在於:學生無法專注做好一件重要的事。若伴隨著患得患失的心態,卻沒有發展適合自己的主要路線,即便真的做了更多的事,表現往往也不會更好。換句話說,學東西不是因為想要學多而去做,而是自己本身有強烈的動機想要專注學習。 

楊尚樺看過一些很厲害的學生,他們並沒有一個好的目標,而且做事時會很快去計算短期之內能夠看到什麼樣的效益。沒有看到可能的效益,就很有可能會轉向。這些學生不怕做事情,怕的是沒有看到短期內的回饋,這其實不是好的學習態度,因為有些工作的效益,是不能只看短期的。 

最後,楊尚樺也勉勵清大的學弟妹,要做自己有熱情又喜歡的事。因為如果你在做「別人」認為不錯的事情時,若這件事和你的興趣並不相符,當過程中遇到挫折時,就很容易考慮要不要往另一個方向走,而沒有辦法堅持下去。 

但是,如果你是做自己有熱情的事情時,不管遇到什麼困難,你會廢寢忘食地不斷破關,獲得很多技能,當解決一個難題之後,你還會願意挑戰下一個關卡。看到的危機多了、功夫下得深了,你就比別人有更好的危機處理能力。堅持的道路上走得會比別人長、比別人久,你的獨特性就出來了,就比較容易出類拔萃。 

注釋

  • 註 1:不只人眼細胞,許多地球上的生物都和可見光有互動
  • 註 2:載波頻段(Carrier frequency band):用以乘載資料的電磁波頻率區間。 

參考資料

1. Seco-Martorell, C., López-Domínguez, V., Arauz-Garofalo, G., Redo-Sanchez, A., Palacios, J., & Tejada, J. (2013). Goya’s artwork imaging with Terahertz waves. Optics Express, 21(15), 17800. https://doi.org/10.1364/oe.21.017800

文章難易度
科技大觀園_96
82 篇文章 ・ 1112 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

1

3
0

文字

分享

1
3
0
「真.無線充電」?試試電磁波獵能手環,你的身體就是最好的捕能裝置!
PanSci_96
・2023/04/22 ・2676字 ・閱讀時間約 5 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

你的手機能無線充電嗎?不過,雖說是無線充電,但還是得要放在充電盤上,由充電盤連結一條電線,這樣的充電方式,想必跟大家期待的「真.無線充電」有落差。

好消息是,有人提出一種藉由捕捉空間中的無線電波、獲得電能的無線充電方式,所以代表這些電能是完全免費的!但……這是真的嗎?

隔空充電可行嗎

現在我們已經可以透過無線網路串連全球的資訊,但是遠距能量傳輸卻尚未成真。

當代的無線通訊裝置,舉凡手機電話、wifi 網路、無線電、衛星定位等,都可以靠著不斷地發射無線電波來交換訊息。不過其實仔細想想,無線電波、電磁波其實就是不斷變化的電磁場。既然可以透過磁場變化來傳遞能量,那這些強大的電磁波網絡,是不是也可以拿來傳遞電能呢?

實際上還真有類似的例子,一百年前最早的收音機竟然完全不需要插電!礦石收音機只需要天然礦石、金屬針、線圈和一些電線,就能收到附近廣播電台送出的訊號,轉換成聲音並放出。

那麼為什麼沒有沿用至今呢?主要就是效率的問題。礦石收音機需要不斷調整金屬針接觸礦石的位置,還得拉長長的天線來捕捉更多的無線電波;市售的礦石收音機玩具,甚至附有一條長長的鱷魚夾電線,可以接到大型金屬家具,產生更清楚、更大聲的聲音。當然這種收音機很快就被以電驅動的真空管收音機取代了。

2021 年初小米曾發表過隔空充電技術專利,利用指向型遠距充電,系統會先定位出手機的位置,再透過多個天線組成的陣列將電波瞄準發射給手機,克服電磁波發散的問題,據稱能在數公尺內進行無線 5W 的無線充電,雖然還不到快充,但也算是革命性突破。不過目前還在技術發表階段,尚未正式推出。

礦石收音機是利用天然礦石或晶體,加上天線、地線和調諧電路,所製成的收音機。圖/維基百科

無線射頻獵能

再換個角度思考,能量在傳遞的時候會向四周發散,而我們生活周遭到處都是會發出電磁波的 3C 產品,那能不能反過來,捕捉這些由其他電器溢散的電磁波,並轉為能量呢?

還真的有人這麼做了。收集這些廢能,並轉化成可用電能的技術,就稱為「無線射頻獵能」。近十年來,有許多相關的技術與研究,不過效率大多還未到達實用階段。

就在今年一月,美國麻州大學團隊發表了一種可以用於無線射頻獵能的線圈手環,而且功率竟然比一般的線圈天線高十倍以上。

有趣的是,其實他們當時並不是在研究無線充電,而是如何使用 LED 快速閃爍來傳遞訊息;這種名為可見光通訊 VLC 的技術,有望成為未來 6G 通訊的方式。但發現到,這種技術需要 LED 以每秒數百萬次的頻率閃爍,過程中會釋放出大量不可用的無線電波,浪費掉許多能量;於是轉念一想,嘗試用線圈收集這些逸散的能量,降低傳訊時的能量浪費。

研究團隊發現,當線圈靠近金屬片時,收集能量的效率會變得更好。透過反射增強訊號,金屬片吸收環境中的電磁波再向外放出;隨著金屬片面積越大,攔截到的電磁波也越多,收集能量的效果也越好。

但是無線充電就是要擺脫這些笨重的金屬板,於是研究人員開始拿生活周遭的 3C 產品來進行實驗。從獵能的功率來看,效果最好的依序是筆電、平板、手機。這和預期的一樣:面積越大,獵能效果越好。

然而,意想不到的是,實驗效果最好的,竟然是人體!

推測這是因為人體中含有大量水分,其容易導電、被極化的特性有助於蒐集空間中的電磁波。人體就是一根巨大的共振天線,能增加無線電訊號的發射效率,同樣的道理,也可以用來收集環境中的無線電波能量。

人體是巨大的共振天線!圖/GIPHY

研究團隊將線圈手環的設計稱為「Bracelet+」,是第一個借助人體的獵能裝置;後續又嘗試將線圈做成戒指和手環,希望能打造出輕便的隨身獵能裝置。

那這樣是不是以後只要綁條線圈在手上,就再也不需要幫手機充電了呢?該線圈手環目前在數公尺的距離外最多可以捕獲微瓦等級的功率,也就是百萬分之一瓦。用這種電壓當然不可能幫手機充電,不過已經足以供應一些低功耗的隨身裝置,像是常見的智慧健康手環,或是負責監控體溫或血糖的元件,甚至類似心律調節器的植入式醫療器材,或許就可以利用該線圈設計,減少充電的頻率。

在 5G 物聯網的架構中,各種居家和隨身裝置必須隨時維持連線,如何為這些獨立、低功耗的裝置供電便成了重要的課題。在這種情況下,如果可以汲取周遭無線電波的廢能,不只可以節省能源,還能免去定期更換電池或充電的麻煩。

遠距充電熱潮

目前的 5G 和開發中的 6G 技術,都持續往電磁頻譜中更高頻率的部分去探索,設置覆蓋率更高、頻譜更寬的無線通訊網絡,而這些頻率的電磁波也將為無線充電帶來新的發展機會。

去年在 Scientific Reports 期刊上,有篇研究提出了 5G 網路作為電力網的想法。團隊針對 5G 使用的頻率設計出一種天線以及搭配的電路,可以在 180 公尺外接收到 6 微瓦,為無線電力網的夢想邁出了第一步。

不過,在這波遠距無線充電的熱潮下,市面上也出現許多令人半信半疑的遠距充電技術。

例如 2011 年一家新創公司推出了超音波充電技術,宣稱可以透過空氣的震動替手機充電;然而,雖說超音波充電雖然在原理上可能可以運作,但在充電效率和經濟成本上根本不切實際,對人體健康的影響也相當有爭議。

除此之外,還有一家叫做 TechNovator 的公司推出了前所未聞的量子充電技術,他們宣稱可以透過「能量量子化」來傳輸能量,並且在「空間中創造能量結構」,還不需要任何形式的電磁場,就可以達成 100 瓦的無線充電!至於到底有沒有這麼好的事,就留給各位判斷了。

在所有物品與資訊都以無線網路相連的這個時代,無線的電力傳輸與電力網是關鍵的下一步;能夠有效的無線傳輸能量,才能讓我們生活周遭的智慧裝置擺脫電線的束縛,減少電池的消耗,成為一個自由移動,自給自足的物聯網。

不論是透過可見光、wifi、還是 5G 訊號,無線且遠距的充電與獵能,將來勢必會有讓人驚豔的發展。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

所有討論 1
PanSci_96
1165 篇文章 ・ 1512 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
1

文字

分享

0
3
1
一卡在手便利無窮,悠遊卡的設計原理——《我們的生活比你想的還物理》
商周出版_96
・2022/12/05 ・2482字 ・閱讀時間約 5 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

時事話題

NEWS|在課堂介紹電磁波概念時,有位同學佳琦舉手提問筆者:「老師,用悠遊卡刷進捷運站非常方便,那個背後的原理和電磁波有關嗎?」另一位同學婕妤回答:「應該是悠遊卡會發出電磁波,傳遞訊息到門閘的感應器吧?」

悠遊卡如今早已融入臺灣大都會的生活中,不論是捷運、超商、購物或搭乘公車,悠遊卡在手,便利許多。然而,悠遊卡內並無電池,也不需要插入讀卡機,為何能夠溝通而傳遞資訊呢?

刷悠遊卡進出捷運站,其背後原理和電磁波有關嗎?圖/Pixabay

為何沒裝電池的悠遊卡可以產生電流?

悠遊卡系統主要是應用法拉第電磁感應定律來辨識與傳遞資訊,此與無接觸感應技術有關,該技術稱為「無線射頻辨識系統」(radio frequency identification,RFID)。完整的一套無線射頻辨識系統,是由讀卡機(reader)、電子標籤(tag)和應用程式資料庫電腦系統部分所組成。

運作過程先由讀卡機發射一特定頻率的無線電波能量給電子標籤,藉此驅動標籤內建電路,輸送內部的身分代碼,以開啟溝通之路。

若以法拉第電磁感應的物理概念解釋,讀卡機產生變動磁場, 同步提供電子標籤變動磁場,驅動電子標籤產生感應電流,也就是讓悠遊卡內部迴路產生感應電流,並讓電子標籤發送身分代碼訊息給讀卡機,也即驅動內部晶片能夠發送訊號,讀卡機依序接收資訊、解讀此身分代碼,再透過應用程式資料庫系統讀取悠遊卡內的晶片資料,完整達成溝通與解讀任務。

電子標籤發送身分代碼訊息給讀卡機,即驅動內部晶片發送訊號。圖/維基百科

每一張悠遊卡都有獨立的電子標籤,當卡片靠近悠遊卡標誌的磁場感應範圍內,即可透過電磁感應的原理,驅使電子標籤內的線圈產生感應電流,此電流供應電子標籤傳送資訊至讀卡機,以解讀晶片資料。

或許讀者會好奇,沒有電池的悠遊卡怎麼產生電流呢?這個問題也需要以法拉第電磁感應定律說明。

依法拉第電磁感應定律,悠遊卡的線圈迴路會因為磁場強弱的變化,以及通過的面積區域角度變化而產生類似電池驅動電流功能的「感應電動勢」,或稱為感應電壓。此感應電壓大小與線圈匝數及每匝線圈中磁場隨時間的變化率有關。匝數愈多,磁場變化率愈大,悠遊卡迴路中的感應電壓愈大,產生的感應電流就愈大。

當卡片靠近標誌的磁場感應範圍內,即透過電磁感應產生感應電流。圖/《我們的生活比你想的還物理

因此,悠遊卡雖然沒有內建電池,但可以透過電磁波的應用,採用無線射頻辨識系統,在運作時,讀卡機持續發出電磁波,當卡片接近時,其內部線圈產生感應電動勢,再進一步驅動感應電流。此感應電流讓卡片內的晶片發出電磁波,回傳必要的資訊給讀卡機,完成感應過閘的流程。

以臺北、臺中和高雄的悠遊卡來說,採用的是無線射頻辨識系統模式,屬於比較低頻率的電磁波,卡片必須距離讀卡機約 14 公分內,才能讀取卡片的晶片資料。因此若將悠遊卡裝在比較厚的皮夾或兩張磁卡疊在一起,可能無法第一時間完成讀卡,而形成「卡片無法讀取」的「卡卡」現象,建議單純使用悠遊卡過閘,較能順暢通過閘門。

其他如進出家門的感應磁扣、停車場的票卡、信用卡感應支付、國道收費系統 ETC 等,皆是應用無線射頻辨識系統 RFID 的技術,只不過國道收費系統 ETC 的感應器的感應距離約需 60 公尺內,才能順利讀取通過車輛的相關資訊。

台灣高速公路的電子道路收費系統(electronic toll collection, ETC)。圖/維基百科

物理小教室

  • 手機行動支付的物理學原理

手機支付的運作原理也是基於 RFID 發展而出的近場通訊(near-field communication,NFC) 技術。目前近場通訊技術採用頻率為 13.56 MHz 的電磁波,以 106 kbit/s、212 kbit/s 或 424 kbit/s 這 3 種速率傳輸資料,bit 翻譯為位元,是電腦資料的最小單位。

利用手機支付時,須靠近刷卡機約 4 公分距離內,此時可藉由電磁波傳遞相關資訊,完成付款手續。近場通訊技術不只有用在手機支付, 也可運用傳輸文字、照片、音樂檔案,是目前手機常見的內建功能。

  • 電磁感應的進階說明

電動勢(electromotive force, emf)可以驅動導體內的電荷移動, 產生電流。電池因為內部材料的屬性,會在正負極產生固定的電位差或電壓。電動勢是電池正負極間的電位差,也常稱為電壓,其國際單位制(SI)單位為伏特(V)。

導體內的電流與電壓成正比,假設導線的電阻及電池的內電阻都可略去不計,電路中流動的電流是電壓與電阻相除後的數值。可知電池的電動勢,可以驅動迴路上的電流,讓燈泡發光發熱。

然而,一個未接電源的迴路導線圈,可不可能產生電流?可以。若是通過迴路導線圈的磁場變化或磁通量改變,也會產生感應電流,這是發電機的原理,也是物理學家法拉第和冷次的電磁感應概念。

電磁爐和捷運列車的磁煞車也是運用電磁感應的概念。電磁爐內部的主要構造是由絕緣體包覆的導線環繞的線圈,當交流電通過線圈時, 電磁爐表面就會產生隨時間改變的磁場,這個磁場的變化會同時在鍋子底面產生應電流,再透過電流熱效應加熱鍋子,也加熱食物。

——本文摘自《我們的生活比你想的還物理》,2022 年 11 月,商周出版,未經同意請勿轉載。

商周出版_96
111 篇文章 ・ 349 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

4
1

文字

分享

0
4
1
達文西教你一起動手玩能量!——《天才達文西的科學教室:像科學家一樣,發明、創造和製作STEAM科展作品》
快樂文化
・2021/01/28 ・1234字 ・閱讀時間約 2 分鐘 ・SR值 452 ・五年級

無所不在的能量

彩虹、跳繩與藍天,這些都是開始了解能量的好主題。首先要知道,能量可以改變形式。舉例來說,能量可能先以風能的形式出現,然後變成了電能。能量無法消失毀滅,也無法增補重生;能量只能轉換形式。現今宇宙所有的能量,也是未來能量的總和。

達文西曉得空氣(風)的能量和水波的能量有關,兩者又都與太陽的能量有關。波動可以在水裡、陸上與空中傳播,他對此深深著迷:「水波從生成點快速遠離,但是水並沒有改變位置,就像五月清風拂過麥田一樣。你看到麥浪經過,但是麥穗還是在原本的位置。」

波動與水流讓達文西著迷,此畫作完成於1510年左右。圖/天才達文西的科學教室

用跳繩舞動能量、興風作浪!

讓繩子以波動舞動起來,是解釋電磁波光譜的好範例,就先從跳繩開始吧!電磁波,也是彩虹與藍天的起源。接下來,你要縱身跳入一起動手玩的實驗中,體驗能量守恆

電磁波以波浪的形式傳播,如同跳繩產生的波浪一樣。圖/天才達文西的科學教室

雙手抓緊跳繩的一端,手臂上下擺動,讓繩子跳起波浪舞。不管你身在何處,現在就被無所不在的能量波動撞擊著,而跳舞的繩子就是能量波動的絕佳模型。這些能量波動就是電磁波——真的是透過磁場與電場的緊密關係產生的。打開電燈開關、收看電視、收聽收音機、使用微波爐、以手機互相溝通等,利用的能量都是電磁波。電磁波以波浪的方式傳播,如同跳繩產生的波浪一樣。

能量的原理讓彩虹變成你的畫筆

實驗材料:小型LED手電筒紅色藍色與紫色各一個、夜光紙或銀色布膠帶擇一,貼在厚卡紙上 (12.7公分 × 17.7公分)、筆、普通的手電筒、筆記本

只需紅藍紫色小型LED手電筒,加上貼上夜光紙或銀色布膠帶的厚卡紙,就能用可見光書寫啦!
圖/天才達文西的科學教室
  1. 打開紅色LED手電筒,把手電筒當成筆,投射在夜光紙上,會產生怎樣的效果?
  2. 你看到什麼?每種色光和夜光紙之間,交互作用有什麼不同?
  3. 接著以藍色光做測試,再以紫色光做測試。
  4. 最後,以普通的手電筒照射夜光紙,光產生的反應又是什麼?
——本文摘自《天才達文西的科學教室:像科學家一樣,發明、創造和製作STEAM科展作品》,2020 年 10 月,快樂文化

快樂文化
5 篇文章 ・ 1 位粉絲