0

0
0

文字

分享

0
0
0

大暴龍的小鋸齒─台灣團隊參與研究揭開肉食恐龍牙齒的奧祕

timd_huang
・2015/07/29 ・5907字 ・閱讀時間約 12 分鐘 ・SR值 530 ・七年級

-----廣告,請繼續往下閱讀-----

《侏羅紀世界》打破多項影史票房紀錄,全球再度掀起恐龍熱,當然,我們很難不去挑剔電影中的女主角穿著不知幾吋高跟鞋狂跑的荒唐鏡頭,以及它的劇情根本只是套以前《侏羅記公園》的老套公式,再把影劇內的人事物換了一下了事,但這和四千萬年前的蚊子能吸到六千五百萬年前就已經死光光的恐龍血(算術不及格),和白堊紀恐龍跑到侏羅紀公園湊熱鬧,張飛打岳飛等大笑話、負面教材一比,前述的缺點可說是無關緊要了!反正電影嘛,搏君一笑就好了,就如我們看台灣當下那些政客名嘴所說的,能認真地「ㄏㄠˋㄍㄨㄛ」嗎?同樣的道理,哈哈一笑,可也,認真不得。

不過,這一系列的電影主角,兇猛的暴龍以及其它敏捷的肉食性恐龍張開血盆大口、追逐吃咬獵物的鏡頭,肯定是令觀眾印象深刻。先撇開到底這些獸腳類出現於地球的時間對不對、身上有沒有毛髮等問題不談,牠們咬食的最基本工具--牙齒,到底是怎麼一回事?

牙齒決定了吃什麼

我們老中自古以來有句俗諺說「民以食為天」!美國人則有一句話說:「你就是你吃的東西(You are what you eat.)」,我們所吃的食物,決定你我如何:吃得好吃得對,身體健康,做事有幹勁;吃不好吃不對,健康出問題,昏聵人生。有好的牙齒,可享受營養可口的大餐,沒有好牙齒,空有山珍海味在眼前,也無福消受,豈不是折磨嗎?

除了要有好的牙齒之外,更需要有對的牙齒,沒有對的牙齒,同樣只能流口水,有看吃不到,滿口假牙的老人家應該最能體會這些話。換一個角度來說,牙齒的結構,決定吃什麼,當然,整個嘴巴上下頜骨的構造,也是非常關鍵,不過那是本文的題外話。

-----廣告,請繼續往下閱讀-----

回到恐龍話題,以食性作區分,恐龍可分成「肉食性」、「雜食性」、和「植食性」等三大類。在說下去之前,我要先罵罵人--經常看到無知或糊塗蛋記者使用「草食性」這個用詞;但侏羅紀的時候,我們現今所認知的「草」根本還沒出現於地球上,直至今天,也尚未發現任何恐龍吃「草」的證據,所以若要問我恐龍究竟吃的是什麼草?恐怕得請不用功的記者大德代為回答了。

過去,研究學者對於恐龍的食性分類,是依據骨盤裡面的坐骨和恥骨方向:然而問題來了,恥骨指向尾巴的鳥臀目恐龍的確都是吃素的沒錯,但恥骨指向頭部的蜥臀目恐龍又分為吃素的蜥腳類和吃葷的獸腳類;我個人總覺得,看屁股決定吃葷吃素,會不會太鬼扯了一點?天下豈有看屁股吃東西的道理?牙齒才是決定該動物吃什麼的最主要直接關鍵,恐龍的食性判斷,也應該要以牠的牙齒基準。因此,恐龍牙齒的型態與結構,才是我們玩恐龍食性者該探討的課題項目。

圖片1
圖一:長達 18 公尺的姜驛元謀龍,頭顱長度不到 50 公分(相片中紅圈處);左邊中央插上的頭顱照片是清理到一半的頭顱,請注意到鉛筆狀的牙齒,左下照片是我 2005 年正在清理這個頭顱的樣子。

說到了牙齒型態和結構,要先從型態,也就是牙齒的形狀說起。侏羅紀的植食性恐龍,牙齒形狀像鉛筆,可能會稍微往內彎,外型構造相對簡單;而且整個頭部相對於實際的身體長度和大小來說,簡直不成比例:這類恐龍的身長可達 20、30,甚至 40、50 公尺,就算是體型更大的蜥腳類恐龍,頭部長度也頂多 60 公分而已。牠們頭顱裡面的牙齒像耙子,把植物的葉子一股腦地往肚子裡面送,完全沒有經過咀嚼、切碎的步驟。

這些出現於侏羅紀中晚期出現的蜥腳類恐龍可說是地球史上身體最長、體型最大,也是噸位最重的動物,至今沒有任何其它的動物可以和牠們比擬。一個很有趣的問題出現了,吃素的牠們到底為什麼會長得這麼大?成長速度還能這麼快?牠們一天要吃幾噸的樹葉?拉出幾噸的大便?這種「巨大現象 (Gigantism)」,到底怎麼一回事情?實在令人好奇。

-----廣告,請繼續往下閱讀-----

另外,這些龐然大物就是讓一般人,特別是媒體記者們所喜歡使用「恐龍XX」取笑某些遲鈍、腦筋不靈光、不食人間煙火者的由來,但牠們真是如此顢頇、行動遲鈍嗎?這群古老而巨大的動物用尾巴當作自我防禦的武器,鞭打想吃牠們的獵食性恐龍,科學家算過,牠們甩動尾巴的速度可能高達每小時 60 英哩(相當於時速95.56公里)!可別忘了這群大傢伙可是在地球上興盛存活了一億年,令人不禁懷疑那些挪揄、謾罵別人是「恐龍XX」者,到底是在譏嘲罵人,或是在捧人?又或只是彰顯罵人者自己的無知?

接下來到了白堊紀,特別是白堊紀晚期的植食性恐龍,牙齒的演化就更為有趣了。角龍類和鴨嘴龍類的體型雖然沒有蜥腳類恐龍那麼大,但部分種類的體型還是可達十多公尺,嘴巴裡面的牙齒數目可能高達兩千以上,並具備咀嚼、磨碎樹葉的功能。

恐龍有一副怎樣的牙齒?

說了半天還沒進入主題,該打屁股!現在馬上就回來談肉食性恐龍的牙齒。

在 2015 年 7 月 28 日美國東部時間上午 5 點鐘(台灣時間 28 日下午 5 點鐘),本團隊在自然出版集團的重量級期刊《科學報告 (Scientific Reports)》發表〈獸腳類恐龍有鋸齒之牙齒發展和演化的重要性 (Developmental and evolutionary novelty in the serrated teeth of theropod dinosaurs)〉,這篇文章可說是國際兩岸聯合科研團隊在研究世界最古老恐龍胚胎課題中,無心插柳得到的意外成果。

-----廣告,請繼續往下閱讀-----

此項研究本來是團隊老大賴茲 (Robert Reisz)院士的博士生,克絲丁●布林克 (Kirstin Brink)的博士論文研究課題,和台灣團隊並無直接關係,在一次賴茲院士提起後,我主動為台灣團隊爭取機會,雖然他多次指責我們多管閒事,表示這項研究和我們無關,別想攪局參一咖!但我還是懇求他務必讓台灣團隊試試看,承諾若我們不能為該研究做出貢獻,便不必放進論文裡,就當作是我們團隊額外的練習題。

沒想到,台灣團隊四人(佔作者群的一半)的努力成果,竟促使克絲丁整個研究計畫,回歸最原本的繪畫版,重新檢討原本的論點,更提出強而有力的證據、推翻了過去對於肉食恐龍鋸齒的認知,說明這些具關鍵意義的小鋸齒的來龍去脈。我們難道不該浮一大白慶祝一下?

圖片2
圖二:牙齒於牙床外部的構造──最外面是琺瑯層,最裡面是牙本質層,牙本質裡面有很多牙小管,兩層之間是琺瑯/牙本介面。

先從最基本的牙齒構造來開始說明:每根牙齒可分為露出在牙床外面,以及埋在牙床內的牙根等兩大部份,牙床外面的部份,如圖二的結構,最外面的是琺瑯層,最裡面的是牙本質,兩者之間有個被稱為「琺瑯/牙本介面 (Dentin Enamel Junction, DEJ)」的區塊,而牙本質內還有很多的牙小管 (Dentinal Tubules)。牙齒的強弱,取決於這三層裡的構造,也影響了動物會吃哪些東西。

我們的研究發現,吃素的恐龍牙齒,部份牙小管從牙本質區域直直地延伸到琺瑯/牙本介面區域,少數又延伸到琺瑯層;相對地,吃葷的恐龍牙齒,牙小管會從牙本質延伸到琺瑯牙本質介面區域裡面,並打結成球狀、形成被戲稱大家為「干貝」的構造,我們認為這些「干貝」可能俱備了力學緩衝的功能;吃素恐龍的牙齒,不若吃葷恐龍需要進行咬碎骨頭、撕開肌肉等大力道的動作,在此區域內的牙小管型態,就沒有必要有力學緩衝的機制,所以直直的也就夠了。此介面區域內的牙小管型態構造不同,決定了該恐龍的葷素食性;現在就來考考看倌們的眼力,圖二的恐龍,究竟是吃葷的,抑或是吃素的?很有趣吧!

-----廣告,請繼續往下閱讀-----
圖片3
圖三:肉食恐龍的牙齒 左一:牙齒在頭顱裡的位置示意(方框處)。左三:一根實際的肉食恐龍牙齒,左二和左四為左三兩側之鋸齒狀結構,左四附有細微結構名稱。 圖片取自於論文。

除了上述的「牙齒結構決定恐龍的食性」外,肉食性,也就是獸腳類恐龍的牙齒,為了方便咬撕獵物,牠們的牙齒除了會往口內彎曲,以防止獵物掙脫外,從橫切面來看,這些接近橢圓型的牙齒的前後兩邊,都有小鋸齒存在(如圖三所示),就像牛排刀的刀鋒一樣,可以用來撕咬獵物的肌肉。雖然大部分的肉食恐龍牙齒並不是特別巨大,但是暴龍口中最大的「牛排刀牙齒」連同齒根可達 30 公分,若滿口都是這種類似牛排刀的粗壯牙齒,一次吃下幾百公斤恐龍肉恐怕也稱不上什麼難事。

底下的圖四是裝設在美國蒙大拿州立大學,洛基山脈博物館外的原尺寸暴龍銅複製,頭部離地大約三公尺(一層樓高)。試想,如果在你的頭頂上,出現這麼一個血盆大口,眼睛緊盯著你,隨時準備要一口把你吞下,你不會嚇得屁滾尿流?不過我們其實大可以放心,人類出現在地球才不到一千萬年,這些活在陸地上不會飛的恐龍,早在六千五百萬年前就滅絕殆盡了,絕對不可能如某些話唬爛騙人的報導:「恐龍之所以會滅絕,是因為牠們原本是人類的寵物,那時的人類未盡到該有的責任,沒有好好照顧恐龍,導致牠們的滅絕」--嘿,不要說我亂扯蛋,曾經就有台大外文系畢業當老師的某人,真相信有這麼一回事情,還特地跑到雲南要證實這種荒謬。

圖片4
圖四:美國蒙大拿州立大學洛基山脈博物館外面裝架的原尺寸銅複製暴龍,我常問同行小朋友:「要幾個小孩才能塞滿這恐龍的嘴巴?」

肉食性恐龍上面的小鋸齒

又扯遠了一點,讓我們再回到肉食恐龍牙齒上面的小鋸齒上;圖三中最右邊有註解的這張相片,請仔細看到從自最下方數到第二個的註解「牙間皺摺 (inter-dental fold)」。以往,包括本次研究的中期以前,這個結構都被稱為「牙間洞 (Ampulla)」,普遍的認知是,當肉食恐龍咬到獵物骨頭和撕裂肌肉時,會對獵者牙齒的小鋸齒產生很大的壓力,容易導致兩個小鋸齒間產生裂隙,並在裂線底部產生一個小洞,作為應力的緩衝,以保護小鋸齒和整根牙齒不會繼續受損,產生更嚴重的傷害。

過去曾有無數篇論文都以「牙間洞 」為前提來展開討論,我們團隊一開始也延續這個想法;依照此說,這些「牙間洞」有可能藏著當年的食物碎屑,就像我們的蛀牙那樣會塞食物,並有細菌跑進「洞」裡來消化這些食物碎屑。如果能透過國家同步輻射研究中心的 BL-14A 工作站傅立葉轉換紅外線 (sr-FTIR)掃描,我們應該有機會在這些牙齒化石切片中,找到殘留有機物的證據;這也是我用來說服賴茲院士的有力說詞,於是乎他終於答應提供台灣團隊相關樣本,進行一系列的掃描。

-----廣告,請繼續往下閱讀-----

團隊中服務於同步輻射研究中心的江正誠先生,以他笑傲江湖、獨領風騷的高超製作試片技巧,磨了不知多少試片,我和該中心世界頂尖的光譜專家李耀昌博士則花了不知多少時間,做了無數次的顯微紅外線掃描,卻始終未能在牙間「洞」裡發現機殘留物的波峰、找出任何有機物殘留的證據;也就是說「牙間洞」的存在很可能並非向大家過去所認知的那樣,而是一個需要重新思考的課題。

在我粗淺紅外線光譜分析中,雖然沒找到任何有機物殘留物的蛛絲馬跡,卻看到了相對未成熟的磷灰石群礦物(即構成牙齒的基本礦物質),這意味著有新的牙本質形成於過去所謂的「牙間洞」內,這就很有趣啦!「洞」裡沒有有機物,反倒有新的牙本質形成,這意味者可能根本沒有所謂牙間的「洞」存在;再者,李博士在分析用同步輻射傅立葉轉換顯微紅外線形成的光譜後,又有另一個更重大的發現。

圖片5
圖五:肉食恐龍牙齒小鋸齒間的同步輻射傅立葉轉換紅外線光譜與分析,詳見內文說明。取自論文中的圖六。

圖五是李博士所做的光譜分析,可說是精彩絕倫。先解說最上面一排的圖片 A – F:

  • A 是在紅外線光源下掃描區域的光學影像,可以明顯看到所謂的「牙間洞」。
  • B 是一般的光學影像,「牙間洞」更為明顯(按:同樣的樣本,在不同的光源下,所「看」到的影像會有所不同)。從影像 C 到影像 F,越是紅色的區域代表濃度越高,越是藍色代表濃度越低。
  • C 為二氧化碳在 2345 cm-1 位置的分布,主要見於琺瑯層和少量在「牙間皺摺」。
  • D 為碳酸磷灰石A 在 879 cm-1 的分布,存在於「牙間折摺」的球狀牙本質內。
  • E 為碳酸磷灰石B 在 867 cm-1 的分布,存在於「牙間折摺」的球狀牙本質內。
  • F 在 3000 – 2800 cm-1 之間的烷基,請注意,這些有機物殘留物,基本上不存在於所謂的「牙間洞」內,而是在四周的牙本質(牙小管)內。
  • G 是傅立葉轉換紅外線光譜與解讀。
  • H 為琺瑯質的傅立葉轉換紅外線光譜。
  • I 為牙本質的傅立葉轉換紅外線光譜。
  • J 為琺瑯層內的碳酸磷灰石A 和 碳酸磷灰B 解析圖。
  • K 為保存在牙本質內的有機烷基。

到此為止,我們徹底打破了過去對於「牙間洞」的認知,進而提出新的正確名稱──在兩小鋸齒間的這個構造,應該稱為「牙間皺摺」。對於不是搞光譜分析的芸芸眾生來說,這些技術性說法,這些內容同天書般難以閱讀,看倌們也不必勉強自己一定得讀懂這部份,我只希望能在本文留下個人的心路歷程,讓子孫們知道,當年爺爺有幹過此等大事。

-----廣告,請繼續往下閱讀-----

現在我來試著講講普通人的話,說明這些光譜掃描和分析的重要結果:

  1. 從 F 可以明顯看到,在過去所謂的牙間「洞」內,沒有看到有機殘留物存在,反倒是在牙本質內出現了烷基。
  2. 二氧化碳 (CO2)和牙齒化石有著很密切的關係──中生代比現在氣溫高上很多,南北極都沒有冰層覆蓋,大氣中的二氧化碳濃度更是現在的好幾倍。因此,溶解到地下水裡面的二氧化碳濃度高於現在,這些溶解於水中的二氧化碳與它和水所形成碳酸,在牙齒石化過程中滲入其中。但就如 C 所顯示的,二氧化碳只滲透到琺瑯層,加上少部分跑進「牙間皺摺」,並沒有擴展到牙本質區域內;換句話說,二氧化碳的侵入就到此處為止。
  3. 水中的碳酸成分跑進「牙間皺摺」區域裡面,並與磷灰石起了作用,產生兩種不同的碳酸磷灰石A 和 碳酸磷灰石B。
  4. 綜合以上兩點,可以看到二氧化碳和碳酸在石化過程中,扮演了一個非常有趣而獨特的作用:它們在琺瑯層和「牙間皺摺」等地方,形成「水泥覆蓋 (Cementing)」作用(水泥就是碳酸鈣),這個「覆蓋作用」或許就是讓牙本質內得以保存有機殘留物的重要原因!

為了探究「牙間皺摺」的形成,克絲丁又做了許多切片,觀察尚未長出牙床的小鋸齒間;依據以前的說法,「牙間洞」是在牙齒使用過程中產生的,所以還沒長出來使用的牙齒,理論上應該不會有這些結構。然而克絲丁卻在許多尚未長出牙床的牙齒邊緣同樣看到了「牙間皺摺」(圖六),這更是壓垮老駱駝的致命一槍,徹底推翻了過去的「牙間洞」說法!

哈哈哈!雖然我們推翻的只是一個一般人根本不會關注的、非常學術的小小課題,但能在浩瀚學海中,留下了一點點小記錄,人生也就夠本啦!

圖六 蛇髮女怪龍近似種未長出牙床的切片,明顯可看到,即便牙齒還沒長出牙床,也就是還沒用過的牙齒,已經有很清晰明顯的「牙間皺摺」結構,對於「牙間洞」說法來說,一槍斃命。
圖六:蛇髮女怪龍(學名:Gorgosaurus)近似種未長出牙床的切片,可看到沒長出牙床的牙齒,已經有很清晰明顯的「牙間皺摺」結構,對「牙間洞」說法可算是最有力的反證。

原始論文

-----廣告,請繼續往下閱讀-----

Developmental and evolutionary novelty in the serrated teeth of theropod dinosaurs 
Scientific Reports. [July 28, 2015]

文章難易度
timd_huang
24 篇文章 ・ 0 位粉絲
跟我玩恐龍去!

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

3
2

文字

分享

0
3
2
誠實面對人類參與的「自然」——太田欽也專訪
顯微觀點_96
・2024/07/11 ・3228字 ・閱讀時間約 6 分鐘

本文轉載自顯微觀點

斑馬魚是最知名的模式生物之一,其基因、型態與發育深受了解,並用於探討深度同源等重要演化生物學問題。但也有科學家提出,演化生物學該持續隨環境演進,並嘗試以新的實驗物種——金魚——探討人類世(Anthropocene)環境下的生物演化。

育種歷史與基因巧合 奠定金魚的演化生物學價值

例如有千年馴化歷史、型態千變萬化的金魚,就相當適合探討人類因素與生物型態演化的關聯。

中研院細生所派駐臨海研究站的演化與發育生物學家太田欽也指出,斑馬魚與金魚兩者的胚胎都可以透過顯微鏡仔細觀察,相對於受精一年後才成熟的金魚,斑馬魚有成熟較快,基因組較為單純等優點,也具備許多現成基因研究工具。

-----廣告,請繼續往下閱讀-----

但斑馬品系間仍以其生理機能與基因為主要差別,對型態差異的演化並未那麼明顯。因為,科學家為了操作基因與細胞特徵而培育斑馬魚,使不同品系的差異大多來自目標明確的基因工程。

金魚型態演化圖。Courtesy of Kinya Ota and Gembu Abe

而金魚的型態變異,則完全來自飼養者對型態的偏好和育種,蘊藏更多元的型態變化與發育差異。其悠長的馴養歷史以及更古老的基因重複(Gene Duplication)機遇,使其值得成為演化發育生物學的新模式生物。研究器材和方法上的調整,則是生物學家展現才智的機會。

太田欽也舉例,「一般的解剖顯微鏡工作距離適合觀察和操作斑馬魚,但是經過我們自己的創意,也改裝出可以對金魚進行顯微手術的器具和適合拍攝的大型解剖顯微鏡。設備上的差異並不難克服。」

金魚胚胎的發育生物學優勢

太田欽也說,現代生物學家以果蠅和微生物育種進行遺傳與演化實驗,擴大時間維度來看,千年來金魚愛好者挑選、強化金魚外觀特徵的過程,可以比擬長時間的人擇實驗。

金魚不僅適合用來觀察人擇壓力如何影響成年生物的型態。太田欽也更想進一步探索,從胚胎階段的差異進行選擇,是否可能改變生物的型態。

-----廣告,請繼續往下閱讀-----

太田欽也提到,人工育種對發育與型態的影響力也展現在其他物種上,例如家犬與鴿子也被培育出許多特殊表型。但是哺乳動物和鳥類的胚胎觀察不易,需要相當高的技術與成本。

相對於動物子宮與鳥類蛋殼內的胚胎,在透明卵囊中發育的半透明金魚胚胎,就是非常容易觀察的研究對象。只要有恰當的複式顯微鏡、解剖顯微鏡和顯微手術能力,金魚的胚胎從受精到孵化都可以全程順利紀錄,而且每次繁殖可以蒐集到上百筆資料。

現代顯微攝影技術搭配容易觀察的金魚胚胎,讓太田欽也可以拍攝清晰影片,在網路上生動地分享發育生物學知識。攝影:楊雅棠

自製影片 盼演化生物學跨過學院圍牆

除了將金魚研究成果發表在 Nature 等科學期刊,太田欽也同時努力當起「Youtuber」。他希望能將演化發育生物學、金魚飼育經驗、臨海研究站的學術特色,甚至是宜蘭的風光,透過網路傳達給大眾。

武漢肺炎導致的漫長隔離,是他學習影音製作的契機。最初他在百無聊賴之下看了大量影片,後來逐漸萌發「我也要拍自己的題材!」的企圖心。開始搜尋拍攝、後製、配樂等網路教學,在隔離的單人房中逐漸進步。

-----廣告,請繼續往下閱讀-----

太田欽也說,拍攝影片最重要的動機是「分享」。他解釋,「科學的頻道不管累積再多追蹤者,例如數十萬人追蹤的 Nature, Science, 觀眾也以科學領域工作者為主。現代知識逐漸朝向『專家』與『外人』的兩極化狀態發展,我不喜歡這樣的社會。」

如同他推進學術研究的方法,他也透過自學、自己組裝基礎設備如空拍機、手機等,在節省開支的情況下拍出了中研院同僚為之驚艷的影片。

太田欽也為臨海研究站拍攝的簡介影片,基本款空拍機呈現了頭城的舒暢美景。

在早已開始的人類世 何謂自然?

太田欽也熱衷以空拍影片介紹宜蘭的郊野與人文,但他對主流輿論的「自然環境」內涵存疑,他認為「自然」早已被人類行為大幅改變。自從農業擴張、工業革命發生,人類對環境與生物的改變程度早已無法恢復「自然原貌」。

他以金魚的馴化過程為例,從宋朝開始的愛好者,透過育種極力凸顯特殊形態,從沒有背鰭的「蛋種」,到眼周水泡足以遮蔽視線的「水泡眼」。都不是基於適應「自然」而進行的育種。

-----廣告,請繼續往下閱讀-----

太田欽也強調,「如果是宋朝或明朝人有今天的生物學工具,以他們的追求珍奇的育種態度,一定會用 CRISPR 編輯金魚基因,製造出更奇特的變異型態。」

他說,這樣的行為會在現代科學圈與社會輿論上遭到反對,「認為動物被修改基因、型態變異很可憐」,但人類採用動物進行藥物實驗或經濟用途時,也並未優先考慮「自然原則」。

太田欽也反問,「若是透過基因編輯技術將金魚修改回類似野生鯽魚的型態,更適應野外環境,這樣算是自然或不自然呢?」

建立科技倫理 而非堅守「自然」想像

他指出,金魚的馴化與育種反映著東亞社會的自然觀念,不同於西方基督教倫理的「人統御、保護自然」意識形態。可以促進人們反思,人類也身在其中的「自然」的標準是什麼?而非執著於保護想像中的自然「原狀」。

太田欽也強調,「本質化『自然』、建構一個保守不變的形象,不會幫助人們了解生物學。」

他認為,宋朝人、明朝人的自然觀念與今日不同;甚至現代人常引用的「道法自然」倡議者老子,他所提倡的自然,與現代許多人想像、意圖恢復的也是不同的自然。

背鰭退化、尾鰭倍增的蛋種雙尾金魚,是古代貴族最青眼有加的奇特型態之一。作者:清 馬文麟 來源:國立故宮博物院

太田欽也建言,科學地面對人類因素影響世界各地生態的現實、建立基因科技的社會倫理與規範,都是比恢復建構出的「自然」意象更重要的生物學議題。

-----廣告,請繼續往下閱讀-----

來自日本和歌山縣鄉間的太田欽也說,長期駐守宜蘭頭城的臨海研究站不僅是因為設施與職位,也是因為此處環境與故鄉有幾分神似。

「但我不會說這兩個地方都很『自然』,在人們對我說『這裡很自然!』的時候。」太田欽也無奈地笑說,「想到周遭可以釣起吳郭魚的溪流、被整治疏濬成田園的原洪氾濕地,反而會讓我很疑惑彼此對『自然』的共識。」

1995 年諾貝爾化學獎得主克魯岑(Paul Crutzen)指出,現代已是由人類行為影響地質特性的人類世。此概念引起地質科學界激烈討論,從新石器時代、工業革命到核彈試爆頻繁的 1960 年代都有學者認為是人類世的開端。

最後由國際地層委員會的人類世工作小組投票決定,視第二次世界大戰後、人口與人類活動高速成長的20世紀中葉為人類世起點。

查看原始文章

參考資料

  1. Li IJ, Lee SH, Abe G, Ota KG. Embryonic and postembryonic development of the ornamental twin-tail goldfish. Dev Dyn. 2019 Apr;248(4):251-283.
  2. Abe G, Lee SH, Chang M, Liu SC, Tsai HY, Ota KG. The origin of the bifurcated axial skeletal system in the twin-tail goldfish. Nat Commun. 2014 Feb 25;5:3360.
  3. 太田欽也實驗室

討論功能關閉中。

0

0
0

文字

分享

0
0
0
民眾黨是未來台灣政治的樞紐?
林澤民_96
・2024/01/30 ・3382字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

一、前言

選後的立法院三黨不過半,但民眾黨有八席不分區立委,足以與民進黨或國民黨結成多數聯盟,勢將在國會居於樞紐地位。無獨有偶的是:民眾黨主席柯文哲在總統大選得到 26.5% 的選票,屈居第三,但因其獲得部分藍、綠選民的支持,在選民偏好順序組態的基礎上,它卻也同樣地居於樞紐地位。這個地位,將足以讓柯文哲及民眾黨在選後的台灣政壇持續激盪。

二、柯文哲是「孔多塞贏家」?

這次總統大選,誰能脫穎而出並不是一個特別令人殷盼的問題,更值得關心的問題是藍白綠「三跤㧣」在選民偏好順序組態中的消長。台灣總統大選採多數決選制,多數決選制英文叫 first-past-the-post(FPTP),簡單來講就是票多的贏,票少的輸。在 10 月中藍白合破局之後,賴蕭配會贏已經沒有懸念,但這只是選制定規之下的結果,換了另一個選制,同樣的選情可能就會險象環生。

從另一個角度想:選制是人為的,而選情反映的是社會現實。政治學者都知道天下沒有十全十美的選制;既定的選制推出了一位總統,並不代表選情的張力就會成為過眼雲煙。當三股社會勢力在制度的帷幕後繼續激盪,台灣政治將無法因新總統的誕生而趨於穩定。

圖/作者自製

如果在「三跤㧣」選舉之下,選情的激盪從候選人的得票多少看不出來,那要從哪裡看?政治學提供的一個方法是把候選人配對 PK,看是否有一位候選人能在所有的 PK 中取勝。這樣的候選人並不一定存在,如果不存在,那代表有 A 與 B 配對 A 勝,B 與 C 配對 B 勝,C 與 A 配對 C 勝的 A>B>C>A 的情形。這種情形,一般叫做「循環多數」(cyclical majorities),是 18 世紀法國學者孔多塞(Nicolas de Condorcet)首先提出。循環多數的存在意涵選舉結果隱藏了政治動盪。

-----廣告,請繼續往下閱讀-----

另一方面,如果有一位候選人能在配對 PK 時擊敗所有的其他候選人,這樣的候選人稱作「孔多塞贏家」(Condorcet winner),而在配對 PK 時均被擊敗的候選人則稱作「孔多塞輸家」(Condorcet loser)。三角嘟的選舉若無循環多數,則一定會有孔多塞贏家和孔多塞輸家,然而孔多塞贏家不一定即是多數決選制中贏得選舉的候選人,而多數決選制中贏得選舉的候選人卻可能是孔多塞輸家。

如果多數決選制中贏得選舉的候選人不是孔多塞贏家,那與循環多數一樣,意涵選後政治將不會穩定。

那麼,台灣這次總統大選,有沒有孔多塞贏家?如果有,是多數決選制之下當選的賴清德嗎?我根據戴立安先生調查規劃的《美麗島電子報》追蹤民調第 109 波(1 月 11 日至 12 日),也是選前最後民調的估計,得到的結果令人驚訝:得票墊後的柯文哲很可能是孔多塞贏家,而得票最多的賴清德很可能是孔多塞輸家。果然如此,那白色力量將會持續地激盪台灣政治!

我之前根據美麗島封關前第 101 波估計,侯友宜可能是孔多塞贏家,而賴清德是孔多塞輸家。現在得到不同的結果,顯示了封關期間的三股政治力量的消長。本來藍營期望的棄保不但沒有發生,而且柯文哲選前之夜在凱道浩大的造勢活動,還震驚了藍綠陣營。民調樣本估計出的孔多塞贏家本來就不準確,但短期內的改變,很可能反映了選情的激盪,甚至可能反映了循環多數的存在。

-----廣告,請繼續往下閱讀-----

三、如何從民調樣本估計孔多塞贏家

根據這波民調,總樣本 N=1001 位受訪者中,如果當時投票,會支持賴清德的受訪者共 355 人,佔 35.4%;支持侯友宜的受訪者共 247 人,佔 24.7%。支持柯文哲的受訪者共 200 人,佔 19.9%。

美麗島民調續問「最不希望誰當總統,也絕對不會投給他的候選人」,在會投票給三組候選人的 802 位支持者中,一共有 572 位對這個問題給予了明確的回答。《美麗島電子報》在其網站提供了交叉表如圖:

根據這個交叉表,我們可以估計每一位明確回答了續問的受訪者對三組候選人的偏好順序,然後再依這 572 人的偏好順序組態來判定在兩兩 PK 的情形下,候選人之間的輸贏如何。我得到的結果是:

  • 柯文哲 PK 賴清德:311 > 261(54.4% v. 45.6%)
  • 柯文哲 PK 侯友宜:287 > 285(50.2% v. 49.8%)
  • 侯友宜 PK 賴清德:293 > 279(51.2% v. 48.8%)

所以柯文哲是孔多塞贏家,賴清德是孔多塞輸家。當然我們如果考慮抽樣誤差(4.1%),除了柯文哲勝出賴清德具有統計顯著性之外,其他兩組配對可說難分難解。但在這 N=572 的小樣本中,三位候選人的得票率分別是:賴清德 40%,侯友宜 33%,柯文哲 27%,與選舉實際結果幾乎一模一樣。至少在這個反映了選舉結果的樣本中,柯文哲是孔多塞贏家。依多數決選制,孔多塞輸家賴清德當選。

-----廣告,請繼續往下閱讀-----

不過以上的分析有一個問題:各陣營的支持者中,有不少人無法明確回答「最不希望看到誰當總統,也絕對不會投給他做總統」的候選人。最嚴重的是賴清德的支持者,其「無反應率」(nonresponse rate)高達 34.5%。相對而言,侯友宜、柯文哲的支持者則分別只有 24.1%、23.8% 無法明確回答。為什麼賴的支持者有較多人無法指認最討厭的候選人?一個假設是因為藍、白性質相近,對許多綠營選民而言,其候選人的討厭程度可能難分軒輊。反過來說,藍、白陣營的選民大多數會最討厭綠營候選人,因此指認較無困難。無論如何,把無法明確回答偏好順序的受訪者歸為「遺失值」(missing value)而棄置不用總不是很恰當的做法,在這裡尤其可能會造成賴清德支持者數目的低估。

補救的辦法之一是在「無法明確回答等於無法區別」的假設下,把「遺失值」平分給投票對象之外的其他兩位候選人,也就是假設他們各有 1/2 的機會是無反應受訪者最討厭的候選人。這樣處理的結果,得到

  • 柯文哲 PK 賴清德:389 > 413(48.5% v. 51.5%)
  • 柯文哲 PK 侯友宜:396 > 406(49.4% v. 50.6%)
  • 侯友宜 PK 賴清德:376 > 426(46.9% v. 53.1%)

此時賴清德是孔多塞贏家,而柯文哲是孔多塞輸家。在這 N=802 的樣本中,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%。雖然依多數決選制,孔多塞贏家賴清德當選,但賴的得票率超過實際選舉結果(40%)。用無實證的假設來填補遺失值,反而造成賴清德支持者數目的高估。

如果擔心「無法明確回答等於無法區別」的假設太勉強,補救的辦法之二是把「遺失值」依有反應受訪者選擇最討厭對象的同樣比例,分給投票對象之外的其他兩位候選人。這樣處理的結果,得到

-----廣告,請繼續往下閱讀-----
  • 柯文哲 PK 賴清德:409 > 393(51.0% v. 49.0%)
  • 柯文哲 PK 侯友宜:407 > 395(50.8% v. 49.2%)
  • 侯友宜 PK 賴清德:417 > 385(52.0% v. 48.0%)

此時柯文哲又是孔多塞贏家,而賴清德又是孔多塞輸家了。這個樣本也是 N=802,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%,與上面的結果一樣。

以上三種無反應處理方法都不盡完美。第一種把無反應直接當遺失值丟棄,看似最不可取。然而縮小的樣本裡,三位候選人的支持度與實際選舉結果幾乎完全一致。後兩種以不同的假設補足了遺失值,但卻過度膨脹了賴清德的支持度。如果以樣本中候選人支持度與實際結果的比較來判斷遺失值處理方法的效度,我們不能排斥第一種方法及其結果。

無論如何,在缺乏完全資訊的情況下,我們發現的確有可能多數決輸家柯文哲是孔多塞贏家,而多數決贏家賴清德是孔多塞輸家。因為配對 PK 結果缺乏統計顯著性,我們甚至不能排除循環多數的存在。此後四年,多數決選制產生的總統能否在三角嘟力量的激盪下有效維持政治穩定,值得我們持續觀察。

四、結語

柯文哲之所以可以是孔多塞贏家,是因為藍綠選民傾向於最不希望對方的候選人當總統。而白營的中間偏藍位置,讓柯文哲與賴清德 PK 時,能夠得到大多數藍營選民的奧援而勝出。同樣的,當他與侯友宜 PK 時,他也能夠得到一部份綠營選民的奧援。只要他的支持者足夠,他也能夠勝出。反過來看,當賴清德與侯友宜 PK 時,除非他的基本盤夠大,否則從白營得到的奧援不一定足夠讓他勝出。民調 N=572 的樣本中,賴清德得 40%,侯友宜得 33%,柯文哲得 27%。由於柯的支持者討厭賴清德(52.5%)遠遠超過討厭侯友宜(23.7%),賴雖然基本盤較大,能夠從白營得到的奧援卻不多。而侯雖基本盤較小,卻有足夠的奧援。柯文哲之所以成為孔多塞贏家,賴清德之所以成為孔多塞輸家,都是這些因素的數學結果。

-----廣告,請繼續往下閱讀-----

資料來源

討論功能關閉中。

林澤民_96
37 篇文章 ・ 243 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。