0

0
0

文字

分享

0
0
0

坐著雲霄飛車往生命終點的罕病:早衰症

葉綠舒
・2015/04/16 ・648字 ・閱讀時間約 1 分鐘 ・SR值 543 ・八年級

credit:Buzz60
credit:Buzz60

前幾天有一則新聞提到,英國的一位少女奧金尼斯(Hayley Okines,見上圖)因罹患罕見遺傳疾病早衰症,衰老速度比一般人快8倍。她的母親昨天說,奧金尼斯在她懷中嚥下最後一口氣,走完17年人生。

早衰症的全名是Hutchinson-Gilford progeria syndrome,患者出生時正常,但在嬰兒時期就開始出現發育不良、眼睛突出、尖鼻、薄唇、招風耳等面相。同時,皮下脂肪變少、皮膚變得像老人一樣、關節出現問題等等。

但一切都是因為一個基因LMNA,它負責產生lamin A這個蛋白質。lamin A負責維持細胞核的形狀,早衰症患者因為只有不正常的LMNA基因(LMNA基因的第1824個鹼基由胞嘧啶變為胸腺嘧啶,簡稱為C1824T突變,使lamin A蛋白少了50個氨基酸),使得細胞核形狀無法維持,造成細胞提早死亡。

早衰症是顯性遺傳,也就是說只要兩條染色體裡面的其中一條的LMNA基因出現問題,就會得到早衰症(筆者按:這應該是所謂的dominant-negative性狀,即損壞的蛋白質不僅失去正常的功能,還會把正常的那個蛋白質也一起拖下水)。

-----廣告,請繼續往下閱讀-----

這個疾病讓筆者想到「班傑明的奇幻旅程」,但班傑明是以小老頭的形貌出生,然後慢慢變成中年、青年、少年、嬰兒。不正常的老化過程總是會引人注目,幸好早衰症的發生率極低(四百萬分之一),全世界目前有記載的病歷大約只有130人左右。

原刊轉載自作者部落格

參考文獻:

-----廣告,請繼續往下閱讀-----
文章難易度
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

2
1

文字

分享

0
2
1
臺灣的水真的沒辦法生飲嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/13 ・6474字 ・閱讀時間約 13 分鐘

本文由 Amway 委託,泛科學企劃執行。 

根據衛福部建議,我國成人每天應該飲用約1500至2000 c.c. 的水,但在日本與歐美許多國家,只要一打開水龍頭,就能馬上擁有一杯能喝下肚的水。臺灣自詡為科技大國,為什麼卻無法擁有讓人安心的 Tap water?

冤有頭債有主,造成我們不敢生飲水的最大原因,其實不在自來水廠。從自來水廠出來的自來水,早已去除水源中的化學有機污染物、有害重金屬及致病性微生物,完全符合「飲用水水質標準」。在非常嚴密的檢驗和監控下,照理來說,你我都能夠非常安心的直接飲用這些自來水。然而,就連對水質信心滿滿的自來水廠,也大力呼籲民眾「不要直接飲用自來水」,這是怎麼一回事?

圖片來源:shutterstock

從水廠到家裡的自來水會經過哪些污染源?

首先,是管線老舊。不只是老舊管線內壁會積聚沉澱物和生物膜,管線本身若有生鏽、腐蝕的情形,還會在水中增加的鐵鏽和金屬離子。

-----廣告,請繼續往下閱讀-----

臺灣管線老舊的程度到底有多嚴重呢?根據台水公司108年的資料顯示,我國自來水管線長度超過6萬3千公里,其中超過48%的管線已經超過使用年限。再加上施工、地震、車輛超載等原因,使得管線容易破裂、漏水,進而影響水質。

除了管線品質外,蓄水池與水塔的清潔和維護也是影響自來水品質的重要因素。根據環境部指出,有高達7成以上的自來水污染事件,都是因為住戶疏忽清洗水塔的重要性,導致細菌和泥沙在儲水設施中繁衍和沉積。然而,超過45%的台灣民眾沒有定期清洗蓄水池和水塔的習慣。

這邊也要特別提醒,管線破損與蓄水池的污染,不只會讓飲用水再次受到重金屬與細菌的污染,更讓我們需要當心「新興污染物」的威脅。

什麼是「新興污染物」?

所謂新興污染物,指的是那些對環境有潛在威脅,但還沒有受到國家或國際法律廣泛監管的化學物質總稱。他們來自各種日常化工用品,並且透過城市、工業、家庭廢水進入河川與水體中。

-----廣告,請繼續往下閱讀-----

根據聯合國環境署的說明,「符合新興污染物資格的化合物清單很長,而且越來越長」。這些污染物其實離我們並不遠,是我們周遭常見的物質,例如抗生素、止痛藥、消炎藥、類固醇和荷爾蒙等藥物類,驅蟲劑、微塑膠、防腐劑、殺蟲劑、除草劑等環境荷爾蒙類,還有工業化學類的界面活性劑、火焰阻燃劑、工業添加劑、汽油添加劑、PFAS、鐵氟龍等等。

其中的全氟及多氟烷基物質PFAS,因為耐腐蝕、抗高溫,在自然環境中幾乎無法分解,又被稱為「永久性化學物質」。容易在環境及人體內累積,具有生物累積和生物放大性。而且PFAS衍伸的化合物超過一萬種,在防水、防油的紙袋、紡織品、化妝品中都很常看到。

PFAS成員全氟辛酸PFOA在2023年,被聯合國的國際癌症研究機構IARC,從2B級「可能對人類致癌」提升為一級「充分證據顯示對人類致癌」。另一個成員全氟辛烷磺酸PFOS則列為2B級致癌物。而環境部也在2024年,更針對PFOA、PFOS訂定飲用水濃度指引值。

PFOA 已被列入 IARC 第1類致癌物質,圖:Wikipedia

麻煩的是,這些新興污染物在都市中大多還未納入常規監測項目,我們對於他們對環境與人體的影響也還未全盤了解。甚至很多污染物,可能是十年前都還沒出現的。我們也不知道十年後,新興污染物的名單上,還會增加哪些名字。我們能做的事,就是盡量避免再避免。而徹底解決管線破損,與城市污水滲入蓄水池的可能性,我們才能避免這些新興污染物,進入到我們的飲用水中。

-----廣告,請繼續往下閱讀-----

使用淨水器過濾,會是淨化水質更好的方法嗎?

淨水器比起單純加熱煮沸,裡面包含了許多科技結晶,確實可以一口氣解決所有問題。但相對的,材料的選用與設計,就會更直接影響水質的好壞。

例如今天要介紹的eSpring益之源淨水器Pro,裡面用的濾材,是很常聽見的「活性碳」。

活性碳的作用是「過濾」,就像麵粉通過篩網,可以篩掉較大的顆粒。活性碳的製備,很多來自木材、椰子殼等高碳含量的原料。在經過高溫碳化,並通過活化劑或化學藥劑處理之後,會形成多孔結構,這些不規則的微小孔隙可以有效過濾水中的污染物。然而,活性碳的作用遠不止如此!其實,活性碳的過濾原理是「吸附」雜質。

活性碳是常見的濾材,圖:Wikipedia

有研究透過光譜和密度泛函理論(DFT)分析顯示,活性碳表面的含氧官能團,如羧基(carboxyl groups)和酚基(phenol groups),能夠與鉛離子(Pb(II))形成穩定的化合物,達到淨水的效果。這意味著活性碳能有效吸附和去除水中的重金屬,如鉛、銅、汞等重金屬,從而保證飲用水的安全性。

-----廣告,請繼續往下閱讀-----

也就是說,活性碳不僅通過物理吸附去除水中的懸浮物和大分子,還可以通過化學吸附來處理更複雜的污染物。除了重金屬以外,眾多的有機物、臭味分子甚至是餘氯,也都在活性碳的守備範圍內。一篇發表在《Reviews in Chemical Engineering》的論文也指出,面對日益增加的新興污染物,活性碳也正是一種具有前景的選擇之一,尤其農藥、個人保健與衛生藥(PPCPs)以及內分泌干擾物質(EDC)與活性碳有很強的吸附性,能有效的過濾這些新興污染物。

更進一步,科學家們正在研究各種農業廢棄物和不同的活化方式。他們發現,透過不同的原料和活化方式,活性碳表面官能基和結構的差異可以提高對不同污染物的吸附能力。例如,當使用鷹嘴豆、甜菜甘蔗渣或咖啡渣作為前驅物時,這些活性碳材料展現出對銅離子、鉻離子、染料及其他重金屬和有機污染物的優異吸附能力。

接下來,如果你的淨水器功能只有過濾,能確保的只有有機物與重金屬的去除,細菌可能還是存在。

當我們談論淨水器的功能時,許多人誤以為只要經過過濾就能確保水質的安全。實際上,這樣的理解並不全面。如果淨水器的功能僅限於過濾,它能確保的只有去除水中的有機物質和重金屬,然而,過濾並不能消除所有細菌,因此水中的微生物仍然可能殘留。這就是為什麼,即便過濾器

-----廣告,請繼續往下閱讀-----

之外,還需要強效殺菌來進一步保證水質。

紫外線是我們日常生活中常見且高效的殺菌工具,從居家用的烘碗機到手術室、圖書館的空氣或表面消毒,紫外線技術的應用無所不在。在淨水系統中,特別是UV-C 紫外線(波長範圍100-280nm)被證明能夠有效殺滅水中的微生物。許多先進的淨水器配備 UV-C LED ,這種燈能夠針對細菌、病毒進行消毒。

圖片來源:Amway

怎樣算是一個合格的淨水器?

美國國家衛生基金會(NSF)制定了一系列針對淨水器的性能、安全性和耐用性的標準,稱為NSF/ANSI標準。

針對台灣飲用水可能遇到的問題:細菌、重金屬、新興污染物、餘氯,各有專門的訂定標準。

-----廣告,請繼續往下閱讀-----
NSF/ANSI 標準指的是美國國家科學基金會下美國國家標準協會的所訂定的標準,

eSpring益之源淨水器Pro通過的第一跟二項標準是NSF/ANSI 53和401標準,53項針對的是健康相關的污染物,包含重金屬如鉛、銅、汞等有害金屬離子,還包括一些有機污染物如揮發性有機化合物(VOCs)。401項則是針對來自農藥、藥物等新興的有機污染物,因為在傳統的水處理過程中難以去除,因此特別訂定。

第三項,則是針對UV-C LED紫外線滅菌艙殺菌效果的NSF/ANSI 55標準。這個標準不僅規定了紫外線強度,還包括了水流量和微生物減少效果的測試與持久性,確保淨水器具有足夠的殺菌消毒能力。根據實驗數據,UV-C  LED紫外線能夠有效消滅高達99.9999% 的細菌,99.99% 的病毒,以及99.9% 的囊胞菌,為飲用水提供極高的安全保障。

最後一項標準是NSF/ANSI 42,他針對的餘氯和其他會影響味道與氣味的雜質。也就是像eSpring益之源淨水器Pro有通過第42項標準的,在確保飲用安全的標準之上,還能讓你的水更好喝哦。

這邊也要補充,除了第42、53、以及401項規定的標準,eSpring益之源淨水器Pro還請NSF做了標準之外的各項過濾性能檢測,總共有超過170種污染物的過濾符合標準,包含各種化學物質、重金屬、生物性、農藥、藥物、甚至是近年大家關注的石綿、氡氣與塑膠微粒,都在可被有效過濾的列表之中。這真的很重要,如同一開始我們講的,隨著工業文明的發展,新興污染物的名單只會越來越長而不會減少,多做幾項檢測,絕對是更安心的。如果你的淨水器已經用了很久,但擔心新興污染物沒有在獵捕名單內,可以考慮換成有通過更高標準的淨水器哦。

-----廣告,請繼續往下閱讀-----

另外,一些品牌雖然也有NSF認證,但很多都只有零件認證。eSpring益之源淨水器Pro不只針對濾心,還通過「全機認證」,確保從淨水器流出來的每一滴水都符合標準。

進一步了解商品: eSpring益之源淨水器Pro

參考資料:

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
206 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

4
0

文字

分享

0
4
0
明明念化學,最後卻致力於生科?一段自我探索之路 —專訪陳律佑
研之有物│中央研究院_96
・2023/07/14 ・5762字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文/林承勳
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

陳律佑是中央研究院分子生物研究所的副研究員,長期致力於端粒研究,並在該領域取得了豐碩的成果。此外,他也與臨床醫療機構合作,為兒童癌症治療制定一系列計畫。然而,即使是像陳律佑這樣的研究人才,也不是在一開始就確定自己想要投入的領域,他在學生時期經歷了一段自我探索的過程。他是怎樣一步步走進端粒研究?又是什麼機緣,促成學術研究與臨床醫療合作?請跟著中研院研之有物專訪一起看看。

陳律佑專注在端粒研究領域。圖/研之有物

染色體端粒的消長,牽動細胞老化與癌細胞發展,對於人的壽命有決定性影響力,端粒是當前人類健康與疾病的重要研究主題。陳律佑與他的研究團隊致力於端粒研究,揭開了 ALT 癌細胞如何逃避免疫機制的秘密,在「研之有物」之前的文章〈解密兒童癌症:ALT 癌細胞如何延長端粒、逃避免疫系統?〉有詳細討論,以下簡述研究內容。

首先是確認 ECTR DNA 會開啟 cGAS-STING 感知路徑,激發人體先天免疫反應;接著發現 ALT 癌細胞會讓 STING 蛋白消失,使 cGAS-STING 路徑失去作用,免疫機制無法啟動,癌細胞才能夠生生不息;目前,研究團隊正在積極尋找治療 ALT 癌症的潛在方法。

陳律佑的研究成果,不僅推進了端粒基礎研究,還與和信治癌中心醫院的陳榮隆醫師合作,結合學術研究與臨床醫療,在兒童罕病治療扮演重要角色。不過,擅長研究端粒的陳律佑,並非一開始就進到生命科學領域,他在求學時期也經歷了一段自我探索的過程。

-----廣告,請繼續往下閱讀-----
陳律佑和研之有物團隊解釋端粒構造。圖/研之有物

唸的是化學 卻成功在生科找到自己的歸屬

「我高中其實沒有唸過生物,當時對化學比較有興趣。」陳律佑笑著說,依著高中時的興趣,陳律佑進到清華大學化學系。但是讀著讀著,他逐漸發覺所學內容似乎跟自己想像的不大一樣,於是陳律佑開始到各系所修課,接觸不同領域的知識。

他到物理系、數學系的課堂學習,也去修生命科學系的課,生科成功喚起陳律佑的興趣。「細胞生物學、分子生物學、遺傳學等等,這些課程內容就發生在我們身體,與生活息息相關,實在非常吸引我。」陳律佑說。就讀化學系的他不僅修完生命科學系的必修課,還主動去修實驗課,更進入細胞生物學實驗室裡面研究專題,就讀生命科學系碩士。

剛開始他是研究細胞的熱休克反應。「研究熱休克的方法,簡單來說就是燙一下細胞,然後觀察細胞的反應。」陳律佑解釋,溫度上升 5 度,就會讓細胞內化學反應發生錯亂,熱休克蛋白會大量表現,可協助其細胞穩定蛋白結構,因應環境改變,維持細胞生理。

雖然陳律佑專題和碩士班都在研究「細胞熱休克反應」,但是他到美國攻讀博士時,決定挑戰全新的領域。「我覺得,自己碩士班到博士班這段時間,都還是持續地在自我探索。」陳律佑說。

-----廣告,請繼續往下閱讀-----

博士班一年級期間,除了修課以外,還投入時間進入三個不同領域的實驗室實習,兩個是研究蛋白質結構、一個是研究老化生物學。最終陳律佑選擇了與過去研究截然不同的主題:老化生物學,也就是研究端粒的實驗室進行博士論文研究。

「碩班是研究細胞生物學,但當時我想要投入自己沒有接觸過的領域。」陳律佑說。首先他在結構生物學的實驗室待了一年,閱讀文獻、純化蛋白質結晶、分析蛋白質結構,一年下來也頗有進展。

只是,陳律佑發現分析結構跟自己想要的不太相符。「我對細胞生物學還是比較有興趣,因為每個實驗的結果都可以學習新的生物學,有新的發現。」陳律佑提到,即使指導教授對於他想換研究主題這件事也頗為訝異,他還是決定照著自己的直覺走,轉換到研究端粒的實驗室。於是,陳律佑從 2005 年開始投入端粒研究,一直持續到現在。

回想起當初的決定,陳律佑認為,選擇實驗室的時候,首先要考量自己的興趣。「每一個時刻,都可以去思考:這是不是我想要的、是不是真的喜歡?」陳律佑強調,如果無法肯定的回答,那可能就是還沒找到真的興趣與題目。第二考量就是實驗室的風格與自己個性是否合適。陳律佑提到,自己的個性比較開放,喜歡自由發揮,同樣的,在帶學生時也會給很大的自主空間,不過,往往個性獨立的學生比較能夠適應這種方式。

-----廣告,請繼續往下閱讀-----
陳律佑在學生時期也經歷了一段自我探索的過程,他強調每個時刻都要記得去思考:「這是不是我想要的?」。圖/iStock

有別於「美式」實驗室 到瑞士體驗獨特的「歐式」風格

結束博士班階段,陳律佑再度展開全新的研究旅程。原先他博士後研究曾考慮兩個實驗室,一個在美國史丹佛,另一個是位在瑞士洛桑的瑞士理工學院,陳律佑選擇了後者。「我會去瑞士,是因為我喜歡他們的端粒題目,這實驗室的端粒酶生化實驗技術是全世界最好的。」陳律佑笑著說。也因為從美國換到歐洲做研究,讓他見識到,世界上有別於美國的另一種實驗室。

「臺灣科學研究其實滿美式的,當初從臺灣到美國,我會覺得美國就是更進步、放大版的臺灣。」陳律佑說。美國地大物博,學術資源豐富,但研究氛圍跟臺灣很像,一樣是鼓勵埋頭努力工作,提倡競爭的精神。

位在歐洲的瑞士卻是截然不同的世界。「從美國德州到瑞士洛桑後,突然間什麼東西都縮小了,路上不見皮卡而盡是小車,更沒有 Costco 大量販店,換成了小超市,餐館,還有市集。」陳律佑提到,除了建築景物,研究的習慣也大相徑庭。一開始以為瑞士人比較悠閒、慵懶,但實際觀察後發現,其實他們做事非常有效率。

「不論是研究還是行政工作,都有建立完整的系統,讓大家能夠很有效率地處理事情。」陳律佑指出,因為做事有效率,所以工作日也會有許多時間可以喝咖啡聊天,而且沒有人會在晚上或週末到研究室加班。實驗室除了瑞士人,還有來自義大利、德國、法國、東歐……的人,聊天的內容除了實驗內容或科學新知,也可以是生活經驗。透過交流與腦力激盪,研究人員常常會有自發性的合作,也會靈光乍現,有新的創意想法。

-----廣告,請繼續往下閱讀-----

瑞士國土比臺灣大一些,人口只有 800 多萬,大約是臺灣的三分之一多一些,但是瑞士諾貝爾獎獲獎人數卻有將近 30 位,遠多過臺灣。陳律佑認為,強調做事高效率,以及實驗室之間一起喝咖啡交流的「閒聊文化」,絕對是關鍵之一。

瑞士跟美國相比,國土、人才跟資源都有相當大的差距。美國資源多,況且美國實驗室裡,來自亞洲國家的學生與研究人員都還特別認真埋頭工作;而瑞士學術界是把有限的時間跟資源做到最有效率的使用,空出來的時間則用來休息、好好陪伴家人,這方面是值得臺灣思考的。

除此之外,歐洲實驗室裡的指導風格也不太一樣。「在美國,實驗室的指導教授會被稱為 Boss;而在瑞士,我的指導教授卻像是 Advisor 。」陳律佑解釋,會被稱作 Boss 是因為美國的指導教授比較像是老闆、頂頭上司的角色,學生做的研究題目通常會是指導教授大計畫中的一小部分或是子計畫。

在瑞士的話,指導教授比較像是同事、顧問,學生或博士後對自己的研究都很有想法與主見,有疑問可以向指導教授請教討論。在瑞士實驗室做研究的自主性、自由度高,有興趣的人做著自己喜歡的題目,才會有更多動力來發揮創意。陳律佑於瑞士完成博士後研究,2013 年底就進到中研院。

-----廣告,請繼續往下閱讀-----
陳律佑提到,瑞士不論在研究還是行政工作,都有建立完整的系統,讓研究人員能夠很有效率地處理事情,沒有人會在晚上或週末到研究室加班,空出來的時間可以用來休息、好好陪伴家人。圖/陳律佑

一通電話 開啟臨床合作的新頁

目前陳律佑除了在中研院做基礎端粒生物學的研究,同時也與和信治癌中心醫院陳榮隆醫師合作,為患有端粒疾病的病人提供學術支援。談到他與臨床合作的開端,原來是一通請求協助的電話。

有天他接到一位病患家長的電話,「家長說小朋友被診斷出可能有遺傳疾病,想請我協助判斷是不是端粒相關的基因變異。」陳律佑說到,回想起當時情況,那位小朋友先在和信醫院,由陳榮隆醫師診斷出重度再生不良性貧血,但其他異常狀況也讓陳醫生懷疑可能有端粒功能缺陷的因素存在,於是家長想到要向國內研究的權威機構中研院來尋求協助。

陳律佑與實驗室團隊鑑定之後,確認端粒缺陷,也找到導致疾病的變異基因,證實病童的確患有端粒遺傳疾病,因此他得以接受特殊方式進行骨髓移植手術。「雖然他是造血功能有問題,但因為原因出在端粒身上,無法藉由一般標準的骨髓移植治療。」陳律佑解釋。

研究團隊與醫療機構合作,讓一位罕見疾病的兒童獲得醫治,這讓陳律佑留下深刻的印象。「之前都是做研究然後發表論文,但我第一次感受到,原來我們的研究工作確實可以直接幫助他人。」陳律佑表示,這次經驗對他來說意義非凡。

-----廣告,請繼續往下閱讀-----

雖然成功移植骨髓解決造血問題,令人遺憾的是,三年之後病童還是因肺臟功能喪失而不幸離世。陳律佑提到,當時他們確認是端粒疾病,也找出合適的療法、解決造血系統的問題,然而病童全身細胞的端粒都有缺陷,還有很多問題並沒有得到解決。「對我而言,這又是另一個衝擊:原來我們的研究其實相當有侷限。」陳律佑說。

這也給陳律佑帶來一些啟發。他提到:「對我來說,做研究就是為了要解決問題。而這次的經驗,讓我思考如何將基礎端粒生物學的研究,更進一步導向與疾病相關的課題,期望未來的研究成果,有機會能為民眾解決問題。」

之後,陳律佑與和信治癌中心醫院的陳榮隆醫師保持著緊密合作。每當陳榮隆在臨床上碰到棘手的病例,就會聯繫陳律佑,一起尋找疾病的源頭。

「因為兒童罕見疾病個案不多,一年就幾個,除非是大型醫療機構,不然無法投入穩定資源。」陳律佑解釋,兒童罕見疾病在診斷或治療上,往往不易獲足夠的醫療資源,秉持著回饋社會的初衷,實驗室就盡量提供協助。

-----廣告,請繼續往下閱讀-----

「中研院的研究資源相對豐富,所以在能力許可之下,我們會協助端粒疾病方面的鑑定。」陳律佑說,一開始他是自己撥出實驗室的研究能量來協助病童。行善的人不孤單,幾年之後,陳榮隆接觸到的病童家長們,便成立了「台灣重症兒童協會」,讓臨床治療與研究端能夠執行一系列計畫,為更多患者服務。

陳律佑(右 1)、陳榮隆醫師(右 2)與台灣重症兒童協會楊慈雲理事長(右 3)合影。圖/中央研究院分子生物研究所

為罕病建立基因資料庫

在協會支持之下,陳律佑與陳榮隆結合中研院研究資源與和信治癌中心醫院臨床醫療,開啟了「重症基因庫暨細胞/藥物研發」計畫,為的就是照顧更多的兒童癌症患者。計畫分為幾個部分:建立重症病人基因變異資料庫、製備特異性免疫細胞,以及精準化藥物治療與規劃。

首先要建立資料庫:一個症狀出現背後有非常多可能性,當患者來尋求醫療協助時,第一件要做的事情就是「檢查」,找出身體問題,了解生病原因。「兒童罕見疾病五花八門,我們從基因下手,先把患者的基因全部定序,然後跟一般人比對,找出可能導致疾病的『突變點』。」陳律佑說。

研究端建立病人的基因變異資料、找出致病突變,作為臨床診斷和治療的參考與指引。

另外,資料庫的資訊也會用來協助製備特異性免疫細胞。「簡單說,特異性免疫細胞就是被訓練好,專門對付某個特定目標的免疫細胞。」陳律佑解釋,以兒童癌症為例,就是把免疫細胞拿到體外,教會它認識癌細胞後,再增加數量、放回病人身體內,讓這些免疫細胞去消滅癌細胞。

除了跟和信治癌中心醫院合作之外,高雄醫學大學的團隊也有加入計畫,負責規劃患者用藥的部分。「治療疾病時,用藥是很重要的一個環節。」陳律佑指出,要用什麼藥物、要用多少劑量,就由高雄醫學大學團隊以藥物動力學來監測。透過建立基因庫,將設計特異性免疫細胞,還有精準的藥物治療方法,期待未來能提高兒童癌症重症治癒率,同時降低併發症或副作用。

建立平台、完善系統,讓研究有溫度、與社會連結

跟醫院的跨機構合作計畫所蒐集到的患者檢體與疾病資料,會經由實驗室定序、找出「突變點」,並且分析基因突變與疾病之間的關聯。不過,即使找出問題的可能關鍵,也不能直接在病人身上做實驗,所以都需要回歸到實驗室先從細胞或動物測試做起。

建立完善體外實驗系統是陳律佑接下來的課題。「我們想要建立一些平台,來進行體外細胞、以及動物的 ALT 癌症實驗。」他說。因為研究已經揭發 ALT 癌細胞逃離免疫系統的招數,之後如果想要做一些藥物測試,或是嘗試修復被中斷的 cGAS-STING 感知路徑,以找出消滅癌細胞的方法,這些工作都需要倚賴體外細胞或動物實驗系統的建立。

不論是 ALT 癌症,或其他端粒相關罕見疾病的研究,陳律佑的終極目標都是回饋社會、幫助有需要的患者。他認為,學者能夠無後顧之憂地埋頭做實驗,也是因為有國家、社會的資源支持,所以研究工作不是特權而是責任。

「研究不是只有發表文章、或自己開心就好,我想做的是跟大眾有關、『有溫度』的研究。」陳律佑笑著說。

陳律佑想繼續從事與大眾有關,同時也「有溫度」的研究。圖/研之有物

延伸閱讀

-----廣告,請繼續往下閱讀-----
研之有物│中央研究院_96
296 篇文章 ・ 3610 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

0
0

文字

分享

0
0
0
坐著雲霄飛車往生命終點的罕病:早衰症
葉綠舒
・2015/04/16 ・648字 ・閱讀時間約 1 分鐘 ・SR值 543 ・八年級

credit:Buzz60
credit:Buzz60

前幾天有一則新聞提到,英國的一位少女奧金尼斯(Hayley Okines,見上圖)因罹患罕見遺傳疾病早衰症,衰老速度比一般人快8倍。她的母親昨天說,奧金尼斯在她懷中嚥下最後一口氣,走完17年人生。

早衰症的全名是Hutchinson-Gilford progeria syndrome,患者出生時正常,但在嬰兒時期就開始出現發育不良、眼睛突出、尖鼻、薄唇、招風耳等面相。同時,皮下脂肪變少、皮膚變得像老人一樣、關節出現問題等等。

但一切都是因為一個基因LMNA,它負責產生lamin A這個蛋白質。lamin A負責維持細胞核的形狀,早衰症患者因為只有不正常的LMNA基因(LMNA基因的第1824個鹼基由胞嘧啶變為胸腺嘧啶,簡稱為C1824T突變,使lamin A蛋白少了50個氨基酸),使得細胞核形狀無法維持,造成細胞提早死亡。

-----廣告,請繼續往下閱讀-----

早衰症是顯性遺傳,也就是說只要兩條染色體裡面的其中一條的LMNA基因出現問題,就會得到早衰症(筆者按:這應該是所謂的dominant-negative性狀,即損壞的蛋白質不僅失去正常的功能,還會把正常的那個蛋白質也一起拖下水)。

這個疾病讓筆者想到「班傑明的奇幻旅程」,但班傑明是以小老頭的形貌出生,然後慢慢變成中年、青年、少年、嬰兒。不正常的老化過程總是會引人注目,幸好早衰症的發生率極低(四百萬分之一),全世界目前有記載的病歷大約只有130人左右。

原刊轉載自作者部落格

參考文獻:

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

2
3

文字

分享

0
2
3
鑑識故事系列:是兒童性侵,還是罕見疾病?
胡中行_96
・2023/05/11 ・1880字 ・閱讀時間約 3 分鐘

來自非洲加彭(Gabon)的5歲女孩,跟雙親以及4名手足,居於盧森堡。有天,母親發現她的內褲沾了血漬(照片)。下體雖無明顯外傷,卻血流不止。翌日,這對母女便前往醫院。兒童急診室的醫師判斷,女孩的外生殖器大概受到創傷。用經腹部超音波,確認沒有異物卡在陰道後,醫師推論是性侵,並隨即報警。警察問訊的過程中,女孩反覆地說,下面癢她就抓。母親則表示,女孩一天如廁加總大約15至30分鐘,剩餘時間都在自己的視線裡。[1]言下之意,就是沒人有機會對她不軌。

另一邊,同樣也在盧森堡,有一名7個月大的南歐女嬰,罹患巨頭畸形(macrocephaly)。醫師幫她做檢查時,碰巧看到會陰有道傷口。雙親說辭模糊,其中母親承認自己未曾察覺有異。於是,醫療人員視之為疑似性侵案,立刻通報。[1]

非洲女孩和南歐女嬰的案子,後來都被送去盧森堡國家衛生實驗室(Laboratoire national de santé),尋求婦科與鑑識專業意見。以下為法醫在學術期刊中,所分享的破案過程。[1]

陰戶(vulva):陰阜(mons pubis)、陰蒂(clitoris)、尿道口(urethral opening)、陰唇(lips of vagina)、陰道口(vaginal opening)和會陰(perineum);以及肛門(anus)。圖/Anatomy Note on Wikimedia Commons(Public Domain)

尿道脫垂

非洲女孩接受檢查時,看起來毫無不適,並配合指示做出平躺以及翹屁股的趴跪姿勢。她的下體有個從尿道擠出來,覆蓋至陰道口的深紅圓圈(照片),一觸碰便出血。除此之外,既無創傷、感染,也沒有受虐跡象,醫師認為她得了尿道脫垂(urethral prolapse)。[1]

-----廣告,請繼續往下閱讀-----

尿道脫垂好發於4到8歲的非洲女孩,[1]以及停經後的婦女。[2]成因可能是便秘或咳嗽增加腹部壓力,或是缺乏雌激素(estrogen)。常見的症狀,包括:出血(86%)、腫塊遮蔽陰道口(47%)和排尿困難(32%)等。醫師要女孩以坐浴保持清潔,並局部塗抹雌激素。幾天之後,血果然止了,也不需要更多治療。[1]

會陰溝

至於那個頭部異常的南歐女嬰,本來就計劃10天後,在鎮靜狀態下照核磁共振。此機會於是也被用來,從側臥、平躺和蛙腿平躺的姿勢,檢查她的下體。女嬰會陰中線的那道淺層病灶,在某些角度下,可見一路延伸至肛門;而她肛門的位置,又太過前面,與陰道間的距離甚短(照片)。另外,在其他無關的方面,女嬰的眼距過寬、眼球凸出、耳朵的高度偏低,[1]而背上則有個俗稱「蒙古斑」(Mongolian spot),長大應該就會消失的胎記。[1, 3]

不同於外力造成的創傷,女嬰的下體不見血腫、瘀青。更怪的是這10天來,病灶竟絲毫沒有癒合。為了瞭解會陰的問題始於何時,警察聯絡幫女嬰例行檢查的醫師。可惜後者一般不會特別去留意這種細節,所以無法提供資訊。最後,她被認定罹患先天會陰融合不全的會陰溝(perineal groove)。[1]

會陰溝不一定和肛門前置(anteriorly placed anus)一起出現,亦可獨立存在。[4]其與會陰撕裂傷的差別,在於前者從陰唇後到肛門前的凹陷深度一致,輪廓規則,而且不會痛,只是需要的復原時間較長;後者則通常傷口較深,伴隨瘀青和疼痛,但數天至幾週內會改善。多數的會陰溝患者,無須醫療介入,2歲前就會自行康復。因此,醫師決定不提供女嬰相關的治療。[1]

-----廣告,請繼續往下閱讀-----

兒童性侵與罕見疾病

尿道脫垂流血,難免嚇壞小病患的家長,醫療人員也傾向聯想到人為插入的傷害。機警通報疑似性侵案件,的確是好事。然而,針對10個月大到10歲女性的研究,指出下體出血的肇因,其實以有異物、陰唇陰道炎(vulvovaginitis)和意外的陰戶創傷等佔多數。單從流血難以分辨是否為性侵個案;而真實的性侵發生後,有時要隔幾個鐘頭,才會流出血來[1]

相對地,會陰溝的位置隱密,症狀又不明顯。根據統計,其延誤診斷的時間,從1天到58個月不等。愈晚發現,就愈可能被誤判為受傷。不過,在某些男孩的案例中,同時會有其他性器畸形的毛病,所以比較不易被誤診。[1]

作為罕見的兒童疾病,尿道脫垂和會陰溝首次就被診斷出來的機率,分別只有21%與9%。介紹這兩則個案的論文作者,建議遇到疑似兒童性侵案的時候,最好找有經驗的婦科醫師與法醫,協助將各種重要的線索納入考量,再進行鑑別診斷。[1]

  

-----廣告,請繼續往下閱讀-----

參考資料

  1. Schaul M, Schwark T. (2022) ‘Rare (uro-)genital pathologies in young girls mimicking sexual abuse’. International Journal of Legal Medicine, 136, 623–627.
  2. Urethral Prolapse’. (19 SEP 2022) Cleveland Clinic.
  3. Dermatology department. ‘Congenital dermal melanocytosis’. (AUG 2020) The Royal Children’s Hospital, Melbourne.
  4. AlAbidi GA, Al Hamidi S, Wahid FN. (2021) ‘Perineal groove in a female newborn: Report of two cases’. Journal of Pediatric Surgery Case Reports, 66, 101794.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 66 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

0
0

文字

分享

0
0
0
坐著雲霄飛車往生命終點的罕病:早衰症
葉綠舒
・2015/04/16 ・648字 ・閱讀時間約 1 分鐘 ・SR值 543 ・八年級

credit:Buzz60
credit:Buzz60

前幾天有一則新聞提到,英國的一位少女奧金尼斯(Hayley Okines,見上圖)因罹患罕見遺傳疾病早衰症,衰老速度比一般人快8倍。她的母親昨天說,奧金尼斯在她懷中嚥下最後一口氣,走完17年人生。

早衰症的全名是Hutchinson-Gilford progeria syndrome,患者出生時正常,但在嬰兒時期就開始出現發育不良、眼睛突出、尖鼻、薄唇、招風耳等面相。同時,皮下脂肪變少、皮膚變得像老人一樣、關節出現問題等等。

但一切都是因為一個基因LMNA,它負責產生lamin A這個蛋白質。lamin A負責維持細胞核的形狀,早衰症患者因為只有不正常的LMNA基因(LMNA基因的第1824個鹼基由胞嘧啶變為胸腺嘧啶,簡稱為C1824T突變,使lamin A蛋白少了50個氨基酸),使得細胞核形狀無法維持,造成細胞提早死亡。

-----廣告,請繼續往下閱讀-----

早衰症是顯性遺傳,也就是說只要兩條染色體裡面的其中一條的LMNA基因出現問題,就會得到早衰症(筆者按:這應該是所謂的dominant-negative性狀,即損壞的蛋白質不僅失去正常的功能,還會把正常的那個蛋白質也一起拖下水)。

這個疾病讓筆者想到「班傑明的奇幻旅程」,但班傑明是以小老頭的形貌出生,然後慢慢變成中年、青年、少年、嬰兒。不正常的老化過程總是會引人注目,幸好早衰症的發生率極低(四百萬分之一),全世界目前有記載的病歷大約只有130人左右。

原刊轉載自作者部落格

參考文獻:

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。