0

0
1

文字

分享

0
0
1

嚴重恐懼症可能會加速老化

cleo
・2012/07/25 ・786字 ・閱讀時間約 1 分鐘 ・SR值 533 ・七年級

-----廣告,請繼續往下閱讀-----

你處於廣闊的開放空間,狹窄,或是封閉的空間時,會焦慮嗎?那很高的地方呢?唉噁!還是有蜘蛛出沒身邊時?如果這種恐懼常發生,且讓你全身無力,那你可能有恐懼性焦慮障礙(phobic anxiety)。而且你並不孤單--至少有8%的美國人對至少一種東西有恐懼性焦慮障礙。

這些心理壓力可能會對身理健康造成傷害。一項新研究顯示,嚴重的恐懼性焦慮障礙會加速生物老化--且可能對中年及年長女性造成相關的健康問題。

有些人會思考壓力到底會不會加速老化,及其中原因,此研究的共同作者,位於波士頓布里格姆婦女醫院的心理學家Olivia Okereke在一份早先的聲明中提到。因此她與同事著手測試這個想法。

此研究檢驗了血液樣本及5243位(42歲到69歲)參加Nurses Health Study女性的研究結果,發現恐懼性焦慮障礙程度最高的女性擁有與自身年長六歲女性相同的生物標誌(biological markers)(即她們出現較為老化的生物標誌)。研究結果七月十一日線上刊登刊於《PLoS ONE》上。

-----廣告,請繼續往下閱讀-----

Okereke與同事特別研究了端粒(telomeres)-染色體尾端,能夠保護基因訊息在細胞分裂時不會遺失。當我們老化,端粒會自然縮短。科學家認為縮短的現象是由氧化壓力(oxidative stress)及發炎造成。與同齡對照下,較短的端粒有可能會有較高機率罹患心臟疾病、癌症,及失智症。

這個新研究顯示,一種普遍的心理壓力-恐懼性焦慮障礙-及能解釋提早老化的合理機制之間的關連,Okreke說。她指出現今的研究都沒有仔細測試是否焦慮會造成較短的端粒。她和另一位共同作者在研究中寫到,即使這文獻資料仍在早期的研究階段,其中還是有生物合理性(biologic plausibility)來支持焦慮與較短端粒間的關連,特別是透過氧化壓力及發炎。

恐懼性焦慮障礙通常發於早年,且較常發於女性。但往好的方向來看,恐懼性焦慮障礙是可治療的。若恐懼症確實縮短了端粒,藉由治療焦慮現象,端粒也可能能控制提早老化,及危害千萬人的相關疾病。

資料來源:Major Phobias Might Hasten Aging. [Scientific American. July 11, 2012]

-----廣告,請繼續往下閱讀-----
文章難易度
cleo
49 篇文章 ・ 1 位粉絲
是個標準的文科生,最喜歡讀的卻是科學雜誌。一天可以問上十萬個為什麼。

0

4
0

文字

分享

0
4
0
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
193 篇文章 ・ 297 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
7

文字

分享

0
1
7
擁有「控制感」有助於維持心理健康?無助導致的憂鬱又是怎麼來的?——《選擇的弔詭》
一起來
・2023/12/31 ・3327字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

習得無助、控制感,以及憂鬱

提過塞利格曼等人發現的「習得無助」現象,他們進行了一系列動物基本學習歷程的實驗,訓練動物跳過柵欄以避開腳下的電擊。動物通常很快就能學會怎麼做,但有一組動物,因為先前經歷過一連串無法躲避的電擊,所以始終都學不會,牠們甚至放棄嘗試,只是待在原地乖乖接受電擊,而從不試著跳過柵欄。研究者的解釋是,當動物遭受自己無法控制的電擊,就會學到不管怎麼做都無濟於事,這樣的習得無助感會轉移到新情境,即使牠們能夠控制這個新情境,還是會放棄嘗試。

塞利格曼深入研究習得無助現象之後,驚訝地發現,這些無助的動物跟憂鬱症患者有許多共同點,尤其是兩者的消極心態,憂鬱症患者有時連「今天要穿什麼衣服」這樣的小事都力不從心。塞利格曼推論,至少有部分憂鬱症患者是因為經歷過一次強烈的失控感,於是開始相信自己對任何事都無能為力,並認為這種無助感會一直持續出現在各種情境。根據塞利格曼的假設,擁有控制感對於心理健康至關重要。

五十多年前,一項研究以三個月大的嬰兒為受試者,凸顯了控制感的重要性。研究者將嬰兒分成兩組,A 組是有控制權的嬰兒,他們躺在嬰兒床上,頭靠著枕頭,床的上方倒掛著一把半透明的傘,裡面用彈簧黏著幾隻動物玩偶,如果嬰兒轉一下頭,傘裡的燈就會亮起,嬰兒就可以看到那些玩偶在「跳舞」,但一會兒燈就熄滅了。當 A 組嬰兒碰巧轉頭,讓傘裡的燈亮起並看到玩偶,他們就會表現出好奇、開心和興奮的樣子,而且很快就學會利用轉頭來控制玩偶的出現,然後一次又一次重複這個動作,看起來一直都很開心。B 組嬰兒則沒有控制權,只有在 A 組轉頭時,他們床上的燈也跟著亮起,才可以「順便」看到玩偶, 所以 B 組看到玩偶的次數和時間都跟 A 組一樣多,但他們只有在一開始表現得跟 A 組一樣開心,然後很快就因為適應而失去興趣。

研究使用玩偶測試後發現嬰兒的快樂似乎源自於「控制感」。圖/envato

研究者從兩組嬰兒的反應差異,得到下列結論:讓嬰兒一直很開心的原因,並不是會跳舞的動物玩偶,而是控制感。A 組嬰兒之所以對著玩偶咯咯笑個不停,是因為他們似乎知道是自己讓這一切發生,「是我幹的好事,很棒吧,而且只要我想要,隨時都可以再來一次」。B 組嬰兒雖然什麼都不用做就可以看到玩偶,但是卻沒有體驗到這種令人興奮的控制感。

-----廣告,請繼續往下閱讀-----

小嬰兒幾乎無法控制任何事物,既不能任意靠近自己想要的東西,也無法離討厭的東西遠遠地。他們無法靈活控制自己的手,所以抓取或操作物品都很吃力。他們還會無預警地被被東戳戳、西捏捏,或是被抱起又放下。小嬰兒的世界就是只能被動讓事情發生在自己身上,任由別人擺佈。或許正是基於這個原因,當他們偶然發現自己可以控制那麼一點小事, 就異常在意和興奮。

另一項研究以生命的另一端——老年人為受試者,也戲劇化地證明了「控制感」對於幸福快樂的重要性。研究者告訴 A 組養老院的住民必須為自己負責、照顧好自己;B 組住民則被告知他們的一切生活起居都由工作人員打理。此外,A 組每天都要決定一些簡單的事,並照顧一盆植物;B 組則沒有任何決定權,他們的植物也由工作人員照顧。結果,A 組老人(對自己的生活有一定的控制權)比 B 組(沒有控制權)更有活力、更靈敏,主觀幸福感也更高。最引人注目的是,A 組的平均壽命比 B 組多好幾年。可見,從出生到死亡,人都需要擁有對生活的掌控權。 

從出生到死亡,人都需要擁有對生活的掌控權。 圖/envato

無助感、憂鬱和歸因風格

塞利格曼的「無助-憂鬱理論」仍然受到質疑,最大的問題是,並非每個失去掌控感的人都會陷入憂鬱。因此,塞利格曼和同事在 1978 年修正了這一理論,並指出在無助感和憂鬱之間,還存在另一個重要的心理歷程。根據修正後的新理論,人在失敗和失去掌控感之後,會問自己為什麼,像是「為什麼他要跟我分手?」「為什麼我被刷下來?」「為什麼我沒有談成那筆生意?」「為什麼我的成績這麼爛?」。換句話說,人會尋找失敗的原因。

塞利格曼等人認為,人對事情的解釋——即歸因風格(attributional style)大致有兩種,每種風格都傾向接受特定類型的原因,而這些原因不一定跟實際情形有關。根據歸因風格的特性,造成失敗的原因可以分成三個向度:全面或特定、長期或短暫、內在或外在。

-----廣告,請繼續往下閱讀-----

假設你去應徵一份行銷業務的職缺,卻沒被錄取,你在分析自己為什麼會失敗時,下面是一些可能的原因: 

全面:我的自傳和履歷都寫得不好,面試時又很緊張,看來不管找什麼工作都不會被錄取了。

特定:我對那家公司的產品類型不太了解,我得多做一些功課,面試時才能脫穎而出。

長期:我的個性不是很主動積極,也無法擔負責任,這份工作根本不適合我。

短暫:我最近感冒,好幾天沒睡好,面試時狀態不佳。

內在:原本應該可以順利得到這份工作,是我自己搞砸了。

-----廣告,請繼續往下閱讀-----

外在:他們應該早就內定好了,找人去面試只是做做樣子,大家都是去陪榜的。

如果你用特定、短暫、外在因素去解釋自己為何沒被錄取,那麼你對下次找工作的預期會是什麼?你也許會想:如果去應徵自己熟悉的領域,並且保持睡眠充足,自己也更主動機靈一點,而且面試沒有黑箱作業,一切就會很順利。換句話說,這次的失敗經驗不太會影響下次找工作的表現。

反之,假設你用全面、長期、內在角度看待自己的失敗,認為自己的履歷毫不起眼, 面試時老是緊張得說不出話,而且個性太被動,別人都比自己更適合這份工作,那麼你預期的未來就會黯淡無光,你不但沒得到這份工作,接下來要找任何工作都會很困難。

修正後的「無助-憂鬱理論」認為,如果用全面、長期、內在因素去解釋失敗,那麼由失敗或失去掌控所引發的無助感才會導致憂鬱,因為在這種情況下,人有充分理由預期自己將不斷遭遇失敗。既然註定會失敗,那麼每天起床、換好衣服,繼續應徵下一份工作又有什麼意義? 

如果用全面、長期、內在因素去解釋失敗,人有充分理由預期自己將不斷遭遇失敗,那麼由失敗或失去掌控所引發的無助感會導致憂鬱。圖/envato

對上述理論的檢驗已得到令人矚目的結果。人確實會表現出不同的歸因風格,「樂觀者」會將自己的成功解釋為全面、長期、內在因素所致,而認為失敗是由特定、短暫、外在因素造成。「悲觀者」則恰好相反。如果兩個人得到同樣的分數,樂觀者會說「我得了 A」 或「她給我成績打 C」,悲觀者卻說「她給我打 A」或「我得了 C」,因此悲觀者更可能陷入憂鬱。此外,從一個人的歸因風格也可以預測他未來遭受失敗時是否會憂鬱。如果認為失敗的原因是全面性的,就會預期自己在其他生活領域也會遭遇失敗,而如果歸因於特定因素則不會這麼想;如果認為失敗的原因是長期性的,就會預期失敗將一直發生,而如果歸因於短暫因素就不會這麼想;如果認為失敗是跟個人內在因素有關,自尊就會遭受嚴重打擊,而如果歸因於外在因素則不會如此。

-----廣告,請繼續往下閱讀-----

這並不表示,把功勞都歸於自己,把失敗都歸咎於外在環境,就是擁有成功、幸福人生的祕訣。最好的方法是面對現實、做出正確歸因,雖然這樣做可能會造成情緒負荷,但準確分析成敗原因,並找出問題所在,才可能在下一次獲得更好的結果。不過平心而論,在大多數情況下,過度自責確實會造成不良心理後果。正如接下來所要探討的,在擁有無限選擇的世界,人們更容易因為結果不如意而自責。

——本書摘自《選擇的弔詭》,2023 年 11 月,一起來出版,未經同意請勿轉載。

討論功能關閉中。

一起來
4 篇文章 ・ 0 位粉絲

0

1
1

文字

分享

0
1
1
發育中胚胎如何淘汰異常細胞?——《生命之舞》
商周出版_96
・2023/10/21 ・2937字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

為了理解染色體異常細胞對鑲嵌型胚胎的影響,我們必須要創造出數百個小鼠胚胎,並研究數千個胚胎不同部位的細胞。這麼龐大的工作量需要有一位專職的科學家,也需要資金。

在匯整如何測試這個假設的思緒時,我在絨毛膜採樣檢查後又進行了另一個羊膜穿刺檢查,這個檢查一樣在超音波影像的引導下,將針插入包圍發育胎兒的羊膜囊中,以取得少量的透明羊水樣本來進行分析。保護胎兒的羊水會帶有胎兒細胞,可以用來確認是否具有染色體問題。這次的檢查結果是沒有問題的,我們都鬆了一口氣。不過,得要到我把孩子抱在手上那時,我才能百分之百地放心。

圖/unsplash

還有其他的好消息是,我有了資源可以進行了解我檢查結果的研究。我在發現懷孕那天所進行的面試,讓我獲得惠康基金會的資深研究補助金。這筆補助金原本打算用在另一個計畫上,不過他們給我足夠的自由度,可以直接挪用其中部分資金來為鑲嵌型胚胎建立模型。

如何製造染色體異常的細胞?

我們有一大堆事情要做。首先,我們得要找到一種可信的方式(最好不只一種)來製造染色體異常的細胞。然後我們還要找到一種方式來標記這些細胞,好讓它們在正常細胞旁發育時,我們可以追蹤到它們。製造異常細胞比我們原先所想得更加困難。海倫測試許多種不同的方法來干擾染色體分離的過程,我們最後用到一種名為逆轉素(reversine)的藥物,這是我們實驗室中另一個研究計畫使用過的藥物。

-----廣告,請繼續往下閱讀-----

逆轉素是種小分子抑制劑。我們想要使用逆轉素來抑制染色體分離中的一個關鍵過程。那是一個分子檢查點,在正常情況下會暫停細胞分裂(有絲分裂),直到有正確數目的染色體(帶有 DNA)被拉開,並分離到兩個不同的子細胞間為止。逆轉素會阻斷名為單極紡錘體蛋白激酶(monopolar spindle 1 kinase)的酵素,而這種酵素會在細胞分裂時確保染色體公平分配。

圖/unsplash

為了確認逆轉素確實會造成染色體異常,我們經由標記隨機選出的三個染色體來分析有用藥及無用藥的胚胎。我們所使用的標記方法名為螢光原位雜合技術(fluorescence in situ hybridization, FISH),這種技術會外加一個探針(短 DNA 序列)及一個螢光標記。當探針在樣本中碰到類似的 DNA 片段時,就會在螢光顯微鏡下發光。經由螢光原位雜合技術的追蹤,確認了海倫使用逆轉素後,確實會增加染色體異常胚胎的數量。

逆轉素的效用是暫時性的,海倫一把藥劑洗掉,檢查點就恢復正常功能。這很重要,因為這表示我們可以將胚胎染色體異常的發生限制在特定的發育期間內。

染色體異常的胚胎能正常發育嗎?

確信可以製造出染色體異常的胚胎後,我們需要確定這些施用過逆轉素的胚胎是否會完全發育。海倫對四細胞胚胎施用逆轉素,並觀察到在發育 4 天後,它們的細胞數量比未施藥的胚胎要來得少。不過雖然細胞數量較少,還是可以形成三組基本的細胞世系。

-----廣告,請繼續往下閱讀-----

為了找出施用內逆轉素的胚胎是否可以長成小鼠,我們將這些胚胎植入母體中。這個時間點是在我們創造出體外培養胚胎的技術之前。每 10 個正常胚胎有 7 個會著床,而這個比例在施藥後的胚胎上則降了一半。最重要的是,施用逆轉素的胚胎沒有一個能夠成長為活生生的老鼠。這個實驗顯示,當胚胎中大多數的細胞都出現染色體異常時,它們的發育最終會以失敗收場,即使它們著床了、也發育了一陣子。

圖/unsplash

製造同時有異常與正常細胞的胚胎

現在我們可以進一步來探討那個重要的問題:若是只有部分胚胎細胞帶有染色體異常,發育又會受到何種程度的影響?為了找出答案,我們必須製造出鑲嵌型胚胎,也就是混合了染色體異常細胞與染色體正常細胞的胚胎。因此我們決定經由製造嵌合體來達到這個目的。

因為我們無法在對同個胚胎施用逆轉素時只讓其中一些細胞出現染色體異常,所以無法經由這個方式製造出鑲嵌型胚胎,因此我們想到了運用嵌合體的作法,將來自不同胚胎的細胞結合建構成嵌合體(鑲嵌型胚胎是由單顆受精卵生長發育而成的)。創造嵌合體而非鑲嵌型胚胎的好處是,我們可以系統性地去研究要具有多少異常細胞才會干擾到發育。很幸運地,這個作法成功了。

圖/unsplash

海倫在小鼠胚胎從兩細胞階段分裂到四細胞階段時,經由口吸管的方式施用逆轉素,並在八細胞階段將細胞一個個地分開。然後她將來自正常胚胎的四個細胞與來自施藥胚胎的四個細胞結合創造出八細胞嵌合體胚胎。

-----廣告,請繼續往下閱讀-----

我們要追蹤細胞的命運就需要標記。我朋友凱特.哈迪安東納基斯(Kat Hadjantonakis)與金妮.帕帕約安努在紐約對小鼠進行基因改良,讓牠們的細胞核具有綠色螢光蛋白,所以我們就採用了具有這種特性的小鼠。我們將這類小鼠胚胎施予逆轉素,施過藥的細胞會與未施過藥的細胞有不同的顏色,這樣我們就可以做出區別。具有綠色螢光蛋白的細胞讓我們可以明確看到新細胞是在何時與何處誕生以及新細胞的後續分裂,還有,若是細胞死亡了,我們也可以看到是在何時與何處死亡的。我們可用此種方式為個別細胞建立「譜系圖」。

染色體異常細胞在胚胎發育過程中會被清除嗎?

我們為這些鑲嵌型胚胎拍攝了影片,以精準追蹤每個細胞的命運。海倫在螢幕上看見,異常細胞數量的下降主要發生在產生新個體組織的那一部分胚胎,也就是上胚層。這些異常細胞會在凋亡的過程中死去,也就是經歷程序性的細胞死亡。在注定成為胚胎本體的那一部分胚胎中,施用過逆轉素的細胞經歷凋亡的頻率是未施藥細胞的兩倍以上。

圖/unsplash

這個結果表示,在注定成為胎兒的那一部分胚胎中,異常細胞有被清除的傾向。這支持了我的假設,也就是在這一部分的胚胎中,異常細胞競爭不過正常細胞,不過實際運用的機制跟我原來所想的不一樣。

我簡直不敢相信。這是我們真的會研究出重要成果的第一個徵兆,發育中的胚胎不僅可以自我建構,也同樣可以自我修復。幾年前當我懷著賽門那時,絨毛膜採樣檢查所檢測到的染色體異常細胞的後代,有沒有可能在成長為賽門的那部分胚胎中自我毀滅了呢?

-----廣告,請繼續往下閱讀-----
這張圖片的 alt 屬性值為空,它的檔案名稱為 0823--300.jpg

——本文摘自《生命之舞》,2023 年 9 月,出版,未經同意請勿轉載。

商周出版_96
119 篇文章 ・ 359 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。