Loading [MathJax]/extensions/tex2jax.js

0

4
0

文字

分享

0
4
0

明明念化學,最後卻致力於生科?一段自我探索之路 —專訪陳律佑

研之有物│中央研究院_96
・2023/07/14 ・5762字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文/林承勳
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

陳律佑是中央研究院分子生物研究所的副研究員,長期致力於端粒研究,並在該領域取得了豐碩的成果。此外,他也與臨床醫療機構合作,為兒童癌症治療制定一系列計畫。然而,即使是像陳律佑這樣的研究人才,也不是在一開始就確定自己想要投入的領域,他在學生時期經歷了一段自我探索的過程。他是怎樣一步步走進端粒研究?又是什麼機緣,促成學術研究與臨床醫療合作?請跟著中研院研之有物專訪一起看看。

陳律佑專注在端粒研究領域。圖/研之有物

染色體端粒的消長,牽動細胞老化與癌細胞發展,對於人的壽命有決定性影響力,端粒是當前人類健康與疾病的重要研究主題。陳律佑與他的研究團隊致力於端粒研究,揭開了 ALT 癌細胞如何逃避免疫機制的秘密,在「研之有物」之前的文章〈解密兒童癌症:ALT 癌細胞如何延長端粒、逃避免疫系統?〉有詳細討論,以下簡述研究內容。

首先是確認 ECTR DNA 會開啟 cGAS-STING 感知路徑,激發人體先天免疫反應;接著發現 ALT 癌細胞會讓 STING 蛋白消失,使 cGAS-STING 路徑失去作用,免疫機制無法啟動,癌細胞才能夠生生不息;目前,研究團隊正在積極尋找治療 ALT 癌症的潛在方法。

陳律佑的研究成果,不僅推進了端粒基礎研究,還與和信治癌中心醫院的陳榮隆醫師合作,結合學術研究與臨床醫療,在兒童罕病治療扮演重要角色。不過,擅長研究端粒的陳律佑,並非一開始就進到生命科學領域,他在求學時期也經歷了一段自我探索的過程。

-----廣告,請繼續往下閱讀-----
陳律佑和研之有物團隊解釋端粒構造。圖/研之有物

唸的是化學 卻成功在生科找到自己的歸屬

「我高中其實沒有唸過生物,當時對化學比較有興趣。」陳律佑笑著說,依著高中時的興趣,陳律佑進到清華大學化學系。但是讀著讀著,他逐漸發覺所學內容似乎跟自己想像的不大一樣,於是陳律佑開始到各系所修課,接觸不同領域的知識。

他到物理系、數學系的課堂學習,也去修生命科學系的課,生科成功喚起陳律佑的興趣。「細胞生物學、分子生物學、遺傳學等等,這些課程內容就發生在我們身體,與生活息息相關,實在非常吸引我。」陳律佑說。就讀化學系的他不僅修完生命科學系的必修課,還主動去修實驗課,更進入細胞生物學實驗室裡面研究專題,就讀生命科學系碩士。

剛開始他是研究細胞的熱休克反應。「研究熱休克的方法,簡單來說就是燙一下細胞,然後觀察細胞的反應。」陳律佑解釋,溫度上升 5 度,就會讓細胞內化學反應發生錯亂,熱休克蛋白會大量表現,可協助其細胞穩定蛋白結構,因應環境改變,維持細胞生理。

雖然陳律佑專題和碩士班都在研究「細胞熱休克反應」,但是他到美國攻讀博士時,決定挑戰全新的領域。「我覺得,自己碩士班到博士班這段時間,都還是持續地在自我探索。」陳律佑說。

-----廣告,請繼續往下閱讀-----

博士班一年級期間,除了修課以外,還投入時間進入三個不同領域的實驗室實習,兩個是研究蛋白質結構、一個是研究老化生物學。最終陳律佑選擇了與過去研究截然不同的主題:老化生物學,也就是研究端粒的實驗室進行博士論文研究。

「碩班是研究細胞生物學,但當時我想要投入自己沒有接觸過的領域。」陳律佑說。首先他在結構生物學的實驗室待了一年,閱讀文獻、純化蛋白質結晶、分析蛋白質結構,一年下來也頗有進展。

只是,陳律佑發現分析結構跟自己想要的不太相符。「我對細胞生物學還是比較有興趣,因為每個實驗的結果都可以學習新的生物學,有新的發現。」陳律佑提到,即使指導教授對於他想換研究主題這件事也頗為訝異,他還是決定照著自己的直覺走,轉換到研究端粒的實驗室。於是,陳律佑從 2005 年開始投入端粒研究,一直持續到現在。

回想起當初的決定,陳律佑認為,選擇實驗室的時候,首先要考量自己的興趣。「每一個時刻,都可以去思考:這是不是我想要的、是不是真的喜歡?」陳律佑強調,如果無法肯定的回答,那可能就是還沒找到真的興趣與題目。第二考量就是實驗室的風格與自己個性是否合適。陳律佑提到,自己的個性比較開放,喜歡自由發揮,同樣的,在帶學生時也會給很大的自主空間,不過,往往個性獨立的學生比較能夠適應這種方式。

-----廣告,請繼續往下閱讀-----
陳律佑在學生時期也經歷了一段自我探索的過程,他強調每個時刻都要記得去思考:「這是不是我想要的?」。圖/iStock

有別於「美式」實驗室 到瑞士體驗獨特的「歐式」風格

結束博士班階段,陳律佑再度展開全新的研究旅程。原先他博士後研究曾考慮兩個實驗室,一個在美國史丹佛,另一個是位在瑞士洛桑的瑞士理工學院,陳律佑選擇了後者。「我會去瑞士,是因為我喜歡他們的端粒題目,這實驗室的端粒酶生化實驗技術是全世界最好的。」陳律佑笑著說。也因為從美國換到歐洲做研究,讓他見識到,世界上有別於美國的另一種實驗室。

「臺灣科學研究其實滿美式的,當初從臺灣到美國,我會覺得美國就是更進步、放大版的臺灣。」陳律佑說。美國地大物博,學術資源豐富,但研究氛圍跟臺灣很像,一樣是鼓勵埋頭努力工作,提倡競爭的精神。

位在歐洲的瑞士卻是截然不同的世界。「從美國德州到瑞士洛桑後,突然間什麼東西都縮小了,路上不見皮卡而盡是小車,更沒有 Costco 大量販店,換成了小超市,餐館,還有市集。」陳律佑提到,除了建築景物,研究的習慣也大相徑庭。一開始以為瑞士人比較悠閒、慵懶,但實際觀察後發現,其實他們做事非常有效率。

「不論是研究還是行政工作,都有建立完整的系統,讓大家能夠很有效率地處理事情。」陳律佑指出,因為做事有效率,所以工作日也會有許多時間可以喝咖啡聊天,而且沒有人會在晚上或週末到研究室加班。實驗室除了瑞士人,還有來自義大利、德國、法國、東歐……的人,聊天的內容除了實驗內容或科學新知,也可以是生活經驗。透過交流與腦力激盪,研究人員常常會有自發性的合作,也會靈光乍現,有新的創意想法。

-----廣告,請繼續往下閱讀-----

瑞士國土比臺灣大一些,人口只有 800 多萬,大約是臺灣的三分之一多一些,但是瑞士諾貝爾獎獲獎人數卻有將近 30 位,遠多過臺灣。陳律佑認為,強調做事高效率,以及實驗室之間一起喝咖啡交流的「閒聊文化」,絕對是關鍵之一。

瑞士跟美國相比,國土、人才跟資源都有相當大的差距。美國資源多,況且美國實驗室裡,來自亞洲國家的學生與研究人員都還特別認真埋頭工作;而瑞士學術界是把有限的時間跟資源做到最有效率的使用,空出來的時間則用來休息、好好陪伴家人,這方面是值得臺灣思考的。

除此之外,歐洲實驗室裡的指導風格也不太一樣。「在美國,實驗室的指導教授會被稱為 Boss;而在瑞士,我的指導教授卻像是 Advisor 。」陳律佑解釋,會被稱作 Boss 是因為美國的指導教授比較像是老闆、頂頭上司的角色,學生做的研究題目通常會是指導教授大計畫中的一小部分或是子計畫。

在瑞士的話,指導教授比較像是同事、顧問,學生或博士後對自己的研究都很有想法與主見,有疑問可以向指導教授請教討論。在瑞士實驗室做研究的自主性、自由度高,有興趣的人做著自己喜歡的題目,才會有更多動力來發揮創意。陳律佑於瑞士完成博士後研究,2013 年底就進到中研院。

-----廣告,請繼續往下閱讀-----
陳律佑提到,瑞士不論在研究還是行政工作,都有建立完整的系統,讓研究人員能夠很有效率地處理事情,沒有人會在晚上或週末到研究室加班,空出來的時間可以用來休息、好好陪伴家人。圖/陳律佑

一通電話 開啟臨床合作的新頁

目前陳律佑除了在中研院做基礎端粒生物學的研究,同時也與和信治癌中心醫院陳榮隆醫師合作,為患有端粒疾病的病人提供學術支援。談到他與臨床合作的開端,原來是一通請求協助的電話。

有天他接到一位病患家長的電話,「家長說小朋友被診斷出可能有遺傳疾病,想請我協助判斷是不是端粒相關的基因變異。」陳律佑說到,回想起當時情況,那位小朋友先在和信醫院,由陳榮隆醫師診斷出重度再生不良性貧血,但其他異常狀況也讓陳醫生懷疑可能有端粒功能缺陷的因素存在,於是家長想到要向國內研究的權威機構中研院來尋求協助。

陳律佑與實驗室團隊鑑定之後,確認端粒缺陷,也找到導致疾病的變異基因,證實病童的確患有端粒遺傳疾病,因此他得以接受特殊方式進行骨髓移植手術。「雖然他是造血功能有問題,但因為原因出在端粒身上,無法藉由一般標準的骨髓移植治療。」陳律佑解釋。

研究團隊與醫療機構合作,讓一位罕見疾病的兒童獲得醫治,這讓陳律佑留下深刻的印象。「之前都是做研究然後發表論文,但我第一次感受到,原來我們的研究工作確實可以直接幫助他人。」陳律佑表示,這次經驗對他來說意義非凡。

-----廣告,請繼續往下閱讀-----

雖然成功移植骨髓解決造血問題,令人遺憾的是,三年之後病童還是因肺臟功能喪失而不幸離世。陳律佑提到,當時他們確認是端粒疾病,也找出合適的療法、解決造血系統的問題,然而病童全身細胞的端粒都有缺陷,還有很多問題並沒有得到解決。「對我而言,這又是另一個衝擊:原來我們的研究其實相當有侷限。」陳律佑說。

這也給陳律佑帶來一些啟發。他提到:「對我來說,做研究就是為了要解決問題。而這次的經驗,讓我思考如何將基礎端粒生物學的研究,更進一步導向與疾病相關的課題,期望未來的研究成果,有機會能為民眾解決問題。」

之後,陳律佑與和信治癌中心醫院的陳榮隆醫師保持著緊密合作。每當陳榮隆在臨床上碰到棘手的病例,就會聯繫陳律佑,一起尋找疾病的源頭。

「因為兒童罕見疾病個案不多,一年就幾個,除非是大型醫療機構,不然無法投入穩定資源。」陳律佑解釋,兒童罕見疾病在診斷或治療上,往往不易獲足夠的醫療資源,秉持著回饋社會的初衷,實驗室就盡量提供協助。

-----廣告,請繼續往下閱讀-----

「中研院的研究資源相對豐富,所以在能力許可之下,我們會協助端粒疾病方面的鑑定。」陳律佑說,一開始他是自己撥出實驗室的研究能量來協助病童。行善的人不孤單,幾年之後,陳榮隆接觸到的病童家長們,便成立了「台灣重症兒童協會」,讓臨床治療與研究端能夠執行一系列計畫,為更多患者服務。

陳律佑(右 1)、陳榮隆醫師(右 2)與台灣重症兒童協會楊慈雲理事長(右 3)合影。圖/中央研究院分子生物研究所

為罕病建立基因資料庫

在協會支持之下,陳律佑與陳榮隆結合中研院研究資源與和信治癌中心醫院臨床醫療,開啟了「重症基因庫暨細胞/藥物研發」計畫,為的就是照顧更多的兒童癌症患者。計畫分為幾個部分:建立重症病人基因變異資料庫、製備特異性免疫細胞,以及精準化藥物治療與規劃。

首先要建立資料庫:一個症狀出現背後有非常多可能性,當患者來尋求醫療協助時,第一件要做的事情就是「檢查」,找出身體問題,了解生病原因。「兒童罕見疾病五花八門,我們從基因下手,先把患者的基因全部定序,然後跟一般人比對,找出可能導致疾病的『突變點』。」陳律佑說。

研究端建立病人的基因變異資料、找出致病突變,作為臨床診斷和治療的參考與指引。

另外,資料庫的資訊也會用來協助製備特異性免疫細胞。「簡單說,特異性免疫細胞就是被訓練好,專門對付某個特定目標的免疫細胞。」陳律佑解釋,以兒童癌症為例,就是把免疫細胞拿到體外,教會它認識癌細胞後,再增加數量、放回病人身體內,讓這些免疫細胞去消滅癌細胞。

除了跟和信治癌中心醫院合作之外,高雄醫學大學的團隊也有加入計畫,負責規劃患者用藥的部分。「治療疾病時,用藥是很重要的一個環節。」陳律佑指出,要用什麼藥物、要用多少劑量,就由高雄醫學大學團隊以藥物動力學來監測。透過建立基因庫,將設計特異性免疫細胞,還有精準的藥物治療方法,期待未來能提高兒童癌症重症治癒率,同時降低併發症或副作用。

建立平台、完善系統,讓研究有溫度、與社會連結

跟醫院的跨機構合作計畫所蒐集到的患者檢體與疾病資料,會經由實驗室定序、找出「突變點」,並且分析基因突變與疾病之間的關聯。不過,即使找出問題的可能關鍵,也不能直接在病人身上做實驗,所以都需要回歸到實驗室先從細胞或動物測試做起。

建立完善體外實驗系統是陳律佑接下來的課題。「我們想要建立一些平台,來進行體外細胞、以及動物的 ALT 癌症實驗。」他說。因為研究已經揭發 ALT 癌細胞逃離免疫系統的招數,之後如果想要做一些藥物測試,或是嘗試修復被中斷的 cGAS-STING 感知路徑,以找出消滅癌細胞的方法,這些工作都需要倚賴體外細胞或動物實驗系統的建立。

不論是 ALT 癌症,或其他端粒相關罕見疾病的研究,陳律佑的終極目標都是回饋社會、幫助有需要的患者。他認為,學者能夠無後顧之憂地埋頭做實驗,也是因為有國家、社會的資源支持,所以研究工作不是特權而是責任。

「研究不是只有發表文章、或自己開心就好,我想做的是跟大眾有關、『有溫度』的研究。」陳律佑笑著說。

陳律佑想繼續從事與大眾有關,同時也「有溫度」的研究。圖/研之有物

延伸閱讀

-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3651 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

4
1

文字

分享

0
4
1
解開兒童癌症之謎:ALT 癌細胞如何逃避免疫系統?
研之有物│中央研究院_96
・2023/05/12 ・6358字 ・閱讀時間約 13 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文/林承勳
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

找尋 ALT 癌細胞的存活機制

癌症種類很多,有些是長時間基因突變與細胞受損發炎導致,少部分癌症則好發於兒童時期。兒童癌症往往有個共通點,就是癌細胞會用同源重組方式來延長端粒,好讓自己不斷大量複製,稱為 ALT 癌細胞(替代性延長端粒癌細胞)。長期研究端粒的中央研究院分子生物研究所陳律佑副研究員,他的研究成果揭露了 ALT 癌細胞逃避人體免疫系統的關鍵路徑,目前他正與臨床醫療機構合作,擬定治療兒童癌症的一系列計畫。至於端粒是什麼?ALT 癌細胞要如何延長端粒?請跟著中研院「研之有物」的專訪內容一同探索吧!

染色體末端的「端粒」是細胞壽命的限制器,理解癌細胞如何延長端粒,對癌症治療相當重要。
 圖/iStock

近 40 年來,癌症一直是國人死亡的頭號殺手,已邁入高齡社會的臺灣,癌症醫療已成為衛生福利的重要焦點。然而,罹患癌症的不只是成年人。根據衛生福利部統計資料,在 2015 年之後,癌症也是兒童非事故死亡的主要原因(1-11 歲)。

不過,成人與兒童罹患的癌症種類有所不同。成人癌症通常是大腸癌、肝癌、肺癌等,這些發生在上皮組織的癌症(carcinoma),通常是經過長時間累積基因變異與細胞損壞才會發生;至於兒童癌症,主要是中胚層癌或胚胎型癌,例如腦瘤、軟組織瘤及骨癌等,不是經由體細胞基因變異累積,通常很早就發病。

-----廣告,請繼續往下閱讀-----

目前因為兒童癌症病例比較少,投入的研究與醫療資源也相對缺乏。然而,中央研究院分子生物研究所副研究員陳律佑,他與研究團隊從端粒研究出發,解開兒童癌症的免疫逃避機制,後續將進一步找出預防和治療的方法,這對兒童癌症患者來說,將會是一大福音。

「端粒」是什麼?細胞壽命的限制器

生物身體成長與傷口復原都倚賴細胞分裂,以生產新細胞來汰換老舊或受損的細胞。然而,正常細胞會有分裂次數限制,當次數逐漸達到上限時,細胞就會慢慢停止生長或走向死亡,這就是所謂的「細胞衰老」。

癌細胞不一樣,當細胞突變成癌細胞之後,就沒有分裂次數限制。不會老化的癌細胞可以無限次數分裂和增長,最後,大量癌細胞會奪去身體的營養與資源,讓病者衰弱而死。造成正常細胞與癌細胞如此迥異的命運,關鍵就在於「端粒」的使用期限。

端粒是真核細胞染色體的保護構造。端粒的主要功能,就是維持染色體的完整性,並調控細胞分裂週期。

端粒(telomere)是真核生物染色體末端的特殊結構,由一段重複的相同序列 DNA 與許多蛋白質組成。以人類來說,端粒的重複 DNA 序列是「TTAGGG/CCCTAA」,最長可達約 15,000 個鹼基對

-----廣告,請繼續往下閱讀-----
端粒(telomere)是真核生物染色體末端的特殊結構,由一段重複的相同序列 DNA 與許多蛋白質組成。以人類來說,端粒的重複 DNA 序列是「TTAGGG/CCCTAA」 圖/研之有物(資料來源:Labster

「端粒跟染色體的關係,可以想像成鞋帶與尾端的塑膠套。」陳律佑舉例說,就像末端的塑膠套可以避免鞋帶繩逐漸鬆脫,端粒就是在染色體的端點發揮保護與區隔的功能。這樣一來,有端粒保護的染色體就不會被核酸酶降解;另外,端粒也能防止染色體彼此連結起來。

陳律佑指出,「如果沒有端粒,染色體的末端就會被細胞辨認為處於『斷掉』的異常狀態,於是 DNA 修復蛋白質就會把染色體末端相互連結,來試圖『修補』染色體。」

端粒的存在,確保了染色體不會錯誤連接、持續消耗,也確保染色體不會在複製及分裂時斷裂、遺失。

But!就像鞋帶塑膠套會逐漸磨損一樣,端粒也沒辦法無限期地保護染色體。每經過一次細胞分裂,端粒就會縮短數十到數百個鹼基,因此隨著分裂次數越多,端粒就會越來越短。

正常細胞每經過一次細胞分裂,染色體的端粒就會縮短數十到數百個鹼基,因此隨著分裂次數越多,端粒就會越來越短,直到失去保護染色體的功能。 圖/研之有物(資料來源:Labster

當端粒縮短到一定長度就會失去保護染色體的功能,使細胞產生 DNA 損害反應,或出現相互連接的染色體,接著因細胞分裂而導致 DNA 斷裂的現象,這些狀況都將使細胞停止生長,進入衰老。此時身體會啟動細胞凋亡(apoptosis)的機制,將無法再分裂的老化細胞汰除。

-----廣告,請繼續往下閱讀-----

如何延長細胞壽命?特殊恢復酵素,端粒酶

隨著端粒縮短,體細胞持續老化,直到端粒無法使用,細胞生命就走到盡頭。在體細胞裡,端粒縮短是不可逆的過程,細胞衰老無法停止。

然而,在生殖細胞跟胚胎幹細胞中,有種酵素叫作端粒酶(telomerase),可以把「TTAGGG」序列添加回到端粒,所以端粒可以補充、維持,甚至變得更長!因此相較於體細胞,生殖細胞與胚胎幹細胞可以有更多的分裂次數。

在生殖細胞跟胚胎幹細胞中有端粒酶,端粒酶可以延長端粒,維持端粒的序列長度。 圖/研之有物(資料來源:Cardiovascular Research

其實,成體幹細胞也有端粒酶,但數量不足,因此修補端粒的速度趕不上消耗速度,端粒會逐漸縮短。所以即使帶有端粒酶,但成體幹細胞還是會衰老,只是速度比體細胞慢些。

至於人體的生殖細胞裡,端粒酶數量就很足夠,而且一直存在。「研究發現,有些年長者生殖細胞染色體的端粒長度,甚至比年輕人的端粒還要長。」陳律佑提到。在端粒酶的幫助之下,生殖細胞就可以一直分裂,以產生精子。

-----廣告,請繼續往下閱讀-----

延長端莉的第二種方法:DNA 同源重組

除了端粒酶,真核生物還有另一種延長端粒的方法,利用細胞內 DNA 同源重組(Homologous recombination)來進行。「 藉由 DNA 同源重組的機制,較短的端粒,會去找另一條來配對,接著 DNA 聚合酶會以長的那條染色體當模板,幫助短的端粒加長。」陳律佑說。

DNA 同源重組機制也可以延長端粒,但平常被抑制住了。

不過,在一般人體體細胞裡,是不會觀察到端粒 DNA 同源重組的,所以體細胞還是沒有辦法藉此延長端粒;而幹細胞或是被活化的免疫細胞中偶爾才會發生。同樣是真核生物的酵母菌平常也都是藉由端粒酶延長端粒。

早期端粒領域的研究發現,去除端粒酶的酵母菌,成長過程中端粒雖如預期般逐漸縮短,然後酵母菌慢慢地停止生長。但持續培養一段時間後,酵母菌居然能夠使用 DNA 同源重組來延長端粒,又重新開始生長。

陳律佑表示, DNA 同源重組機制在生物演化過程中,可能扮演重要的角色,但不知道什麼原因,這個機制在細胞中是被抑制住的。「其中一種可能性是,DNA 同源重組機制被大量活化可能會給細胞帶來負擔或是不好的後果,所以才被抑制住。但這些還需要進一步研究。」陳律佑說。

-----廣告,請繼續往下閱讀-----
DNA 同源重組機制也可以延長端粒,同一對染色體中,比較短的端粒,會去找另一條較長的端粒配對,接著 DNA 聚合酶會以長端粒的序列當複製模板,加長短端粒。 圖/研之有物(資料來源:Trends in Biochemical Sciences

兩種恢復法,癌細胞選哪個?

癌細胞之所以不會走向細胞凋亡的結局,關鍵就在於擁有延長端粒的能力。癌細胞跟生殖細胞一樣,擁有充份的端粒酶活性。所以癌細胞在分裂過程中,消耗了的端粒還是能持續補充回來,癌細胞因此擁有無限分裂次數的能力,一直保持在最佳生理狀態。

不過,並非所有種類癌細胞都是端粒酶富翁。大約有 80%~90% 的癌症,其癌細胞中有大量端粒酶可以修補端粒;其餘 10%~20% 的癌症,例如兒童腦瘤、軟組織瘤及骨癌等癌症,則主要是用同源重組機制來延長端粒。

一般的情況下, DNA 同源重組機制在體細胞中會被抑制,但 ALT 癌細胞中的抑制作用消失了,於是 DNA 同源重組機制就能順利運行,延長癌細胞端粒、讓癌細胞生生不息。

使用 DNA 同源重組機制延長端粒的癌細胞,稱為替代性延長端粒(alternative lengthening of telomeres)癌細胞,簡稱 ALT 癌細胞。

ALT 癌細胞漏出的馬腳:ECTR DNA

當細胞啟用 DNA 同源重組機制來延長端粒時,會產生許多副產物:染色體外端粒 DNA(extrachromosomal telomere repeat DNA,簡稱 ECTR DNA)。「簡單來說,就是在端粒加長時,DNA 同源重組機制出現錯誤,讓 DNA 片段掉出來,變成 ECTR 。」陳律佑解釋。

-----廣告,請繼續往下閱讀-----

也就是說,端粒增長時,失控的 DNA 同源重組使端粒 DNA 斷裂,進而形成長短不一、呈片段狀的 ECTR ;另一方面,端粒 DNA 尋找延長模板時,也可能反折,用自己的序列複製,端粒會彎曲形成一個圓圈來複製序列,這時偏差的 DNA 同源重組反應也會讓 DNA 斷掉, 變成圓圈的 ECTR。

總之,DNA 同源重組機制產生長短與形狀不一的 ECTR ,會從端粒附近慢慢向外游離,接著從細胞核一路漂到細胞質。

正常的體細胞,細胞質裡不會有遺傳物質。只要在細胞質中觀察到 ECTR DNA,表示該細胞的端粒正在進行同源重組,很可能已經突變成 ALT 癌細胞。

因此陳律佑認為,ECTR DNA 可以作為 ALT 癌細胞的一種生物標記。

用不尋常的 ECTR DNA,召喚免疫大軍

在真核生物的細胞裡頭,只有兩個部位會出現 DNA ,一個是細胞核,存放著大量重要的遺傳物質;另一個是細胞能量工廠粒線體,它擁有自己的 DNA 。正常情況下,在細胞質裡不應該有遺傳物質出現。

-----廣告,請繼續往下閱讀-----

「細胞質出現遺傳物質,大部分是受到病原入侵。」陳律佑指出,例如病毒感染細胞後,會把自己的遺傳物質注射進到細胞質,並且利用宿主細胞資源來複製所需的各種零件與遺傳物質,重新組裝成更多病毒顆粒。

當細胞遭遇入侵者時,會啟動一連串免疫反應來抑制外來入侵者。然而,從偵測 DNA 到啟動免疫反應中的詳細機制,多年前都還是眾說紛紜,近幾年才逐漸明朗。

陳律佑表示,cGAS-STING 反應路徑(cGAS-STING pathway),就是細胞質游離 DNA 啟動免疫機制的關鍵。

cGAS-STING 路徑,是藉由細胞質裡的一種合成酶 cGAS(cyclin GMP-AMP synthase)來偵測並結合游離在細胞質中的 DNA 。結合後,cGAS 會被活化,接著會把三磷酸腺苷(ATP)與三磷酸鳥苷(GTP)合成一種環狀二核苷酸(cGAMP)。

這種分子會進一步啟動干擾素刺激因子 STING(stimulator of interferon genes)以及後續的連鎖反應,誘導免疫細胞產生干擾素、細胞激素等物質,並引起發炎等非專一性的先天免疫反應。

這樣一來,感染細胞的一切運作會被強制停止。原本受病毒感染的細胞,其內部幫助病毒複製零件的生產線就會被切斷。同時,被干擾素吸引來的樹狀細胞(dendritic cell)、巨噬細胞(macrophage)等先天免疫細胞,也會清除被感染的細胞。

陳律佑表示,cGAS-STING 反應路徑(cGAS-STING pathway),就是細胞質游離 DNA 啟動免疫機制的關鍵。 圖/研之有物

本來應該要啟動免疫系統,實際上卻毫無反應

ECTR DNA 也是不該在細胞質出現的基因碎屑。當 DNA 同源重組機制因為未知原因,被細胞重新啟動來延長端粒時,作為副產物的 ECTR 會從細胞核往外漂到細胞質。

正常來說,細胞偵測到細胞質不應有的遺傳物質片段 ECTR,就會判定異常並發出警報,經由 cGAS-STING 路徑啟動免疫連鎖反應。

等等!既然 ECTR 會觸發 cGAS-STING 路徑,那麼使用 DNA 同源重組機制延長端粒的 ALT 癌細胞不是就會被免疫系統察覺和消滅才對嗎?

實際上並沒有。

陳律佑指出,研究團隊的實驗結果顯示,在正常人類細胞中,ECTR 的累積的確會活化 cGAS-STING 蛋白感知路徑,促使細胞分泌出干擾素,激發先天免疫反應並抑制細胞生長。

但在 ALT 癌細胞株裡面,cGAS-STING 蛋白的感知反應消失了!不論是 ECTR 或是其他細胞質游離 DNA,都不會開啟 cGAS-STING 路徑,免疫反應也就不會啟動。於是,癌細胞就能逃避免疫系統的攻擊,並肆無忌憚地不斷增生。

正常肺纖維母細胞(WI38),細胞質沒有 ECTR。但是 ALT 癌細胞(WI38-VA13、U2OS、Saos2)的細胞質存在 ECTR(箭頭處),ECTR 的存在沒有成功啟動免疫系統。 圖/研之有物(資料來源:陳律佑)

「我們設計了體外的癌細胞實驗,證明出 STING 蛋白在 ALT 癌細胞株裡被抑制。」陳律佑表示,目前 STING 蛋白被抑制的原因還有待進一步實驗來探討,但團隊已經確認 ECTR 並沒有啟動 cGAS-STING 路徑、沒有激發免疫反應,都是因為 STING 蛋白消失的緣故。

讓 ALT 癌細胞逃脫的秘密,就是消失的 STING 蛋白。

但是,即使促進 STING 蛋白的表現,也不能保證能夠解決癌細胞,因為免疫系統很複雜,促進免疫表現也可能誘發免疫風暴。目前臨床已有的溶瘤病毒療法(oncolytic virus therapy)是一個可行的方案,因為 ALT 癌細胞關閉了 cGAS-STING 反應路徑,很容易被病毒感染,可以透過病毒專一性感染癌細胞,讓癌細胞消退(regression)。

雖然還有很多謎題有待釐清,例如 ECTR DNA 如何觸發 cGAS-STING 路徑、影響癌症生成等。然而陳律佑團隊的研究成果,已經對於兒童癌症治療有重要貢獻和知識引導作用,特別是腦瘤、軟組織瘤及骨癌等 ALT 癌症,有助於後續人們針對 ALT 癌症開發更有效的治療方法。陳律佑最近與和信治癌中心醫院的醫師陳榮隆展開合作,結合中研院豐沛的研究成果與前線臨床醫療,讓更多病者可以得到妥善照護。

溶瘤病毒療法是 ALT 癌症的可行療法之一,因為 ALT 癌細胞關閉了 cGAS-STING 反應,很容易被病毒感染,可以透過病毒專一性感染癌細胞,讓癌細胞消退。 圖/研之有物(資料來源:EMBO Reports

延伸閱讀

-----廣告,請繼續往下閱讀-----
研之有物│中央研究院_96
296 篇文章 ・ 3651 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

2
3

文字

分享

0
2
3
鑑識故事系列:是兒童性侵,還是罕見疾病?
胡中行_96
・2023/05/11 ・1880字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

來自非洲加彭(Gabon)的5歲女孩,跟雙親以及4名手足,居於盧森堡。有天,母親發現她的內褲沾了血漬(照片)。下體雖無明顯外傷,卻血流不止。翌日,這對母女便前往醫院。兒童急診室的醫師判斷,女孩的外生殖器大概受到創傷。用經腹部超音波,確認沒有異物卡在陰道後,醫師推論是性侵,並隨即報警。警察問訊的過程中,女孩反覆地說,下面癢她就抓。母親則表示,女孩一天如廁加總大約15至30分鐘,剩餘時間都在自己的視線裡。[1]言下之意,就是沒人有機會對她不軌。

另一邊,同樣也在盧森堡,有一名7個月大的南歐女嬰,罹患巨頭畸形(macrocephaly)。醫師幫她做檢查時,碰巧看到會陰有道傷口。雙親說辭模糊,其中母親承認自己未曾察覺有異。於是,醫療人員視之為疑似性侵案,立刻通報。[1]

非洲女孩和南歐女嬰的案子,後來都被送去盧森堡國家衛生實驗室(Laboratoire national de santé),尋求婦科與鑑識專業意見。以下為法醫在學術期刊中,所分享的破案過程。[1]

陰戶(vulva):陰阜(mons pubis)、陰蒂(clitoris)、尿道口(urethral opening)、陰唇(lips of vagina)、陰道口(vaginal opening)和會陰(perineum);以及肛門(anus)。圖/Anatomy Note on Wikimedia Commons(Public Domain)

尿道脫垂

非洲女孩接受檢查時,看起來毫無不適,並配合指示做出平躺以及翹屁股的趴跪姿勢。她的下體有個從尿道擠出來,覆蓋至陰道口的深紅圓圈(照片),一觸碰便出血。除此之外,既無創傷、感染,也沒有受虐跡象,醫師認為她得了尿道脫垂(urethral prolapse)。[1]

-----廣告,請繼續往下閱讀-----

尿道脫垂好發於4到8歲的非洲女孩,[1]以及停經後的婦女。[2]成因可能是便秘或咳嗽增加腹部壓力,或是缺乏雌激素(estrogen)。常見的症狀,包括:出血(86%)、腫塊遮蔽陰道口(47%)和排尿困難(32%)等。醫師要女孩以坐浴保持清潔,並局部塗抹雌激素。幾天之後,血果然止了,也不需要更多治療。[1]

會陰溝

至於那個頭部異常的南歐女嬰,本來就計劃10天後,在鎮靜狀態下照核磁共振。此機會於是也被用來,從側臥、平躺和蛙腿平躺的姿勢,檢查她的下體。女嬰會陰中線的那道淺層病灶,在某些角度下,可見一路延伸至肛門;而她肛門的位置,又太過前面,與陰道間的距離甚短(照片)。另外,在其他無關的方面,女嬰的眼距過寬、眼球凸出、耳朵的高度偏低,[1]而背上則有個俗稱「蒙古斑」(Mongolian spot),長大應該就會消失的胎記。[1, 3]

不同於外力造成的創傷,女嬰的下體不見血腫、瘀青。更怪的是這10天來,病灶竟絲毫沒有癒合。為了瞭解會陰的問題始於何時,警察聯絡幫女嬰例行檢查的醫師。可惜後者一般不會特別去留意這種細節,所以無法提供資訊。最後,她被認定罹患先天會陰融合不全的會陰溝(perineal groove)。[1]

會陰溝不一定和肛門前置(anteriorly placed anus)一起出現,亦可獨立存在。[4]其與會陰撕裂傷的差別,在於前者從陰唇後到肛門前的凹陷深度一致,輪廓規則,而且不會痛,只是需要的復原時間較長;後者則通常傷口較深,伴隨瘀青和疼痛,但數天至幾週內會改善。多數的會陰溝患者,無須醫療介入,2歲前就會自行康復。因此,醫師決定不提供女嬰相關的治療。[1]

-----廣告,請繼續往下閱讀-----

兒童性侵與罕見疾病

尿道脫垂流血,難免嚇壞小病患的家長,醫療人員也傾向聯想到人為插入的傷害。機警通報疑似性侵案件,的確是好事。然而,針對10個月大到10歲女性的研究,指出下體出血的肇因,其實以有異物、陰唇陰道炎(vulvovaginitis)和意外的陰戶創傷等佔多數。單從流血難以分辨是否為性侵個案;而真實的性侵發生後,有時要隔幾個鐘頭,才會流出血來[1]

相對地,會陰溝的位置隱密,症狀又不明顯。根據統計,其延誤診斷的時間,從1天到58個月不等。愈晚發現,就愈可能被誤判為受傷。不過,在某些男孩的案例中,同時會有其他性器畸形的毛病,所以比較不易被誤診。[1]

作為罕見的兒童疾病,尿道脫垂和會陰溝首次就被診斷出來的機率,分別只有21%與9%。介紹這兩則個案的論文作者,建議遇到疑似兒童性侵案的時候,最好找有經驗的婦科醫師與法醫,協助將各種重要的線索納入考量,再進行鑑別診斷。[1]

  

-----廣告,請繼續往下閱讀-----
  1. Schaul M, Schwark T. (2022) ‘Rare (uro-)genital pathologies in young girls mimicking sexual abuse’. International Journal of Legal Medicine, 136, 623–627.
  2. Urethral Prolapse’. (19 SEP 2022) Cleveland Clinic.
  3. Dermatology department. ‘Congenital dermal melanocytosis’. (AUG 2020) The Royal Children’s Hospital, Melbourne.
  4. AlAbidi GA, Al Hamidi S, Wahid FN. (2021) ‘Perineal groove in a female newborn: Report of two cases’. Journal of Pediatric Surgery Case Reports, 66, 101794.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。