4

11
1

文字

分享

4
11
1

細胞可以長生不老?海佛列克極限說不行!

劉馨香_96
・2019/02/12 ・1653字 ・閱讀時間約 3 分鐘 ・SR值 558 ・八年級

江湖上曾經流傳著一種傳說,認為只要在適當的溶液裡,細胞就可以無數次地複製自己,永生地活著。

這項傳說來自於對血管縫合與器官移植有重大貢獻,獲得 1912 年諾貝爾生理或醫學獎的亞歷克西.卡雷爾(Alexis Carrel)。他改良了細胞培養技術,宣稱成功在體外培養了雞心細胞,但神奇的是,每年他都會宣布這些雞心細胞還活著,如此持續數十年。「或許有一天能實現長生不老的美夢!」大眾媒體興奮地渲染著。

然而多年來,其他科學家都無法複製這項結果。

細胞能無止盡地分裂嗎?圖/pixabay

直到 1960 年代,李奧納多.海佛列克(Leonard Hayflick)才正式推翻卡雷爾的說法。

當時他在威斯達研究所(Wistar Institute)負責培養細胞提供研究所內的實驗室使用。他觀察到正常的人類細胞不能無限地分裂下去,而是有其極限。在進一步研究之後確認,不管是來自胎兒還是成人的多種細胞,大約都只能分裂40-60次,就會停滯不分裂或者細胞凋亡而死亡。他認為分裂能力的限制和細胞的衰老有關,而細胞衰老可能導致了身體的老化。

就像一部機器使用久了,零件自然會磨損,系統愈來愈容易故障,最終走向報廢一途。生命其實也是一樣的道理。細胞作為生物體的單位,如同構成一部機器的零件,老化的現象在細胞層級就發生了。

一部機器用久了,零件自然會磨損。圖/pixabay

日後,細胞分裂極限的概念被稱為「海佛列克極限(Hayflick limit)」。

到了 1980 年代,科學家們對於染色體末端的端粒(telomere)結構有愈來愈深入的認識,他們發現細胞每分裂一次端粒就會變短一點,於是隨著細胞分裂的次數增多,端粒長度也愈來愈短。當端粒短到無法再保護染色體結構及基因時,細胞就會抑制生長、停止複製,邁入衰老。

儘管仍有人反對海佛列克極限,認為細胞無法持續分裂,只是因為細胞有受損,或者是實驗室培養環境的問題,更多科學家則認可了海佛列克極限的概念,並套用在關於細胞老化的研究上,尤其是隨著細胞分裂愈來愈短的端粒,就像細胞內建的生命倒數計時器,應證了海佛列克極限的概念。

咦,所以「端粒」是什麼?

端粒是染色體末端的特殊結構,由不斷重複的 DNA 序列「TTAGGG」所構成,具有維持染色體結構穩定性的功能。當細胞要一分為二,就需要複製 DNA。但是 DNA 複製機制本身具有「末端問題(End replication problem)」,最末尾的 5 端處會有一小段序列沒辦法被複製到,因此 DNA 複製完成後的兩端都會損失一些序列,端粒因此愈來愈短。

隨著細胞分裂,DNA(端粒)會愈來愈短。圖/wikipedia

如果帶有遺傳資訊的 DNA 序列(也就是基因)丟失就太糟了,於是,位於染色體末端的端粒其實也扮演了重要的砲灰角色,每次 DNA 複製後,都能因著犧牲端粒一小段無意義的重複序列,得以保全染色體內的其他基因。如此看來,端粒雖然是生命倒數計時器,但其實它是在保護我們的生命,直至粉身碎骨啊!

身體的老化是每個人逃也逃不了的命運。圖/pixabay

那麼是不是只要把端粒加長,就能打破海佛列克極限,逃脫寫在細胞裡的老化命運了呢?

在細胞層面來說,或許是喔!

其實我們身體中的幹細胞有端粒酶(telomerase)在工作,能夠合成 DNA 末端的序列、加長端粒,讓幹細胞可以不斷分裂出新的細胞。然而,端粒酶活性的調控非常複雜,人人聞之色變的癌細胞往往具有失控的端粒酶活性,才獲得永生不死、不斷分裂的能力,進而侵害人體其他組織,癱瘓身體機能。如果我為了永生,開啟端粒酶基因,一個不小心,永生的只有癌細胞,我是活不下去的啊!

那麼還有可能長生不老嗎?來來來看動畫吧:

 

參考資料:

文章難易度
所有討論 4
劉馨香_96
5 篇文章 ・ 0 位粉絲
生科系畢業,喜歡腦、神經與心智。

0

3
0

文字

分享

0
3
0
原來這裡也有數學?病毒的形狀、DNA 的結構都與數學有關!——《生物世界的數學遊戲》
天下文化_96
・2022/10/25 ・2015字 ・閱讀時間約 4 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

二十面體與小兒麻痺病毒

菸草嵌紋病毒是螺旋柱狀體,還有一種常見的病毒形狀則是二十面體。有些科學家稱二十面體為「自然界偏好的形狀」,因為這種形狀在病毒上很是普遍,譬如天花病毒、小兒麻痺病毒、疱疹病毒,以及蕪菁黃嵌紋病毒(turnip yellow mosaic virus)。

一九八六年,荷格爾、周瑪麗及菲爾曼三人發現了小兒麻痺病毒的結構。這種病毒是由四種蛋白質單元(每一單元有六十個複本)所組成,排列出來的形狀帶有二十面體所具有的對稱性。要描述小兒麻痺病毒的結構,最簡單的方法是由一個十二面體和一個二十面體的合併來開始討論。組合成的立體看起來像一個每面都有微凹的五面體的十二面體(圖三二)。湯普生若知道這種結構,一定會很喜歡:這比放射蟲的主觀想像繪製圖還要使人信服。

足球的外型為截角二十面體。圖/維基百科

另外,這種結構是基於某種原因、某種病毒結晶學原理而存在的:正如晶格是由大量原子所形成的最小能量結構,近似球形的多面體則是由少量的相同單元所形成的最小能量結構。在規則的正立體當中,二十面體與球最為近似,但是你仍然可以利用五邊多面體和六邊多面體的混合體,來更逼近一個球。現在使用的足球就是一個例子:足球的外形基本上是二十面體,不過卻是截去了每一個角的二十面體。

在這樣一個多面體中,一定有剛好十二個面是五邊形;六邊形的面的數目,則取決於一系列特殊的代數形式,也就是所謂的「幻數」(magic number);大部分的數字都不是幻數。小於三百的幻數為 12、32、42、72、92、122、132、162 、192、212、252 及 272。這些數字在病毒的結構中扮演了特殊角色,正如費布納西數在植物結構中扮演的特殊角色。

(圖三二)小兒麻痺病毒的結構示意圖:把十二個五角錐(b 圖折疊後就是五角錐)黏在一個十二面體(a 圖是把十二個面攤開),做成一個三維的模型(如 c 圖)圖/
《生物世界的數學遊戲》。

事實上,能夠以大致規則的方式幾乎併成球面的同一蛋白質單元的數目,就是幻數。

下面這些證據,顯示病毒知道這種限制。蕪菁黃嵌紋病毒有三十二個單元,而人類多瘤性病毒、BK 病毒及兔子乳頭瘤病毒有七十二個單元。(人類多瘤性病毒與兔子乳頭瘤病毒幾乎相同,只不過互為鏡像。)

REO 病毒有九十二個單元,單純疱疹(由於第一型的感染部位大多為口腔周圍,所以也稱為口唇疱疹)病毒有一百六十二個單元,雞腺病毒有兩百五十二個單元,犬類傳染性肝炎病毒則有三百六十二(這也是幻數)個單元。

還是要靠數學

要證明數學模式對於形成地球生命(我們知道的唯一一種生命)的重要性,再沒有比 DNA 更令人信服的證據。DNA 之所以扮演這種角色,是因為本身的簡單幾何模式——雙螺旋。就某種意義而言,由於關鍵特徵不在螺旋,而是互補的鹼基配對,因此這不只是一種「合乎邏輯」的模式。

DNA 的關鍵特徵是互補的鹼基配對。圖/維基百科

演化在創造地球上的生命時所用的基礎,正是這個並存於觀念與物理定律中的模式,在這層基礎之上,其他的模式也建造了起來,特別是遺傳密碼——這種「準數學」之謎。為什麼是這種特殊的密碼? 基本上,任何密碼都可以,但捷足者先登,哪一種先被建造了,就有可能壓倒群雄,因為生命可以生生不息地繁衍。或許克里克是對的,遺傳密碼是一種「凍結的偶發事件」;或許何諾斯夫婦是對的,遺傳密碼亦來自深藏於物理定律中的深奧模式。

DNA 對於更廣義的生命(不再是這裡所談的生命)所扮演的角色有多重要?假定還有很多其他種類的分子可以複製,也可以把大量資訊編成密碼,那為什麼我們得到的是 DNA,而不是其他分子?

也許 DNA 是在宇宙各處都可運作的唯一一種,也許 DNA 是唯一能夠輕易從原始地球化學混合物質中演化出來的東西,也許 DNA 本身就是一次凍結的偶發事件——第一種脫穎而出的「可複製與編碼」的分子系統,開始時由於還沒有多少競爭,而使自己趁機占據地球,接下來又因為自己已經占據要津,使其他競爭者更加沒機會進行競爭,因而成為主宰者。

我不清楚。但我知道,如果沒有數學,我們就永遠無法探知。

——本文摘自《生物世界的數學遊戲》,2022 年 9 月,天下文化,未經同意請勿轉載。

天下文化_96
110 篇文章 ・ 597 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

9
4

文字

分享

0
9
4
一切都為了快快長大!斑馬魚的「無合成分裂」,「表面」到你難以察覺
研之有物│中央研究院_96
・2022/10/08 ・5419字 ・閱讀時間約 11 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/寒波
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

不用合成新 DNA 的細胞分裂——無合成分裂

細胞分裂,想來是再簡單不過的事情:一顆細胞先將遺傳物質複製為兩份,再一分為二,分配給兩顆細胞。然而,由中央研究院細胞與個體生物學研究所的陳振輝助研究員領軍,2022 年 4 月發表在《自然》(Nature)的論文,卻報告了過往未知的一種分裂方式:斑馬魚的皮膚細胞,可以直接一變二,再二變四,過程中不用合成新的 DNA!這項未來將改寫教科書的新知識,當初是如何發現、驗證,未來又有什麼衍生方向呢?中研院「研之有物」專訪陳振輝助研究員,請他和我們仔細分享斑馬魚的「表面功夫」。

陳振輝研究團隊發現斑馬魚表皮細胞有「無合成分裂」現象,研究成果於 2022 年 4 月發表在國際頂級期刊《自然》。圖為陳振輝(右)與第一作者陳潔盈(左)合影。圖/研之有物

將顏色植入斑馬魚的每一個細胞

陳振輝實驗室的研究大多著重於「再生生物學」,新研究算是「發育生物學」的領域。不過了解背後細胞行為調控的機制就會知道,這兩個領域其實是共通的。

陳振輝以斑馬魚作為實驗材料,基因改造後讓不同細胞被標記上不同顏色,使得不同細胞的動態行為,能夠被清晰地分辨和追蹤。這個研究方法可以用來探究逆境下複雜組織的再生,也能用來研究正常狀況下動物的發育進程,因為這些過程都涉及大量細胞的動態調控。

陳振輝以斑馬魚作為實驗材料,基因改造後讓不同細胞被標記上不同顏色,使得不同細胞的動態行為,能夠被清晰地分辨和追蹤。圖片這隻為斑馬魚的仔魚,年齡為受精之後第 8 天。(另開圖片可放大檢視)圖/陳潔盈、陳振輝

發育生物學是生物學研究的熱門領域,投入者眾,大部分的研究者都針對部分細胞或特定基因作探討,陳振輝團隊的技術讓他們能同時追蹤單一活體動物整個組織裡所有的細胞。這項技術除了用在皮膚組織(方法名為「palmskin」),陳振輝也用類似的方法探索肌肉、肝臟等各式器官的發育、再生過程。

創造色彩繽紛的細胞,原理其實很簡單,就是利用紅色、藍色、綠色的三原色不同比例的組合。具體作法是透過基因改造,將能製造紅、藍、綠色螢光蛋白質的基因組,植入斑馬魚的細胞,利用遺傳學的工具,讓表皮、肌肉、肝臟等目標組織的每一顆細胞,隨機表現出不同的顏色組合。

舉例來說,其中一個細胞可以表現「3 個紅色螢光蛋白 + 5 個藍色螢光蛋白 + 4 個綠色螢光蛋白」,隔壁細胞可能是「1 紅 + 2 藍 + 6 綠」,鄰近細胞間便能呈現不同顏色,讓長期追蹤所有不同細胞成為可能。

將能夠製造紅、藍、綠色螢光蛋白質的基因組,植入斑馬魚的細胞,利用遺傳學技術,讓表皮、肌肉、肝臟等目標組織的每一顆細胞,隨機表現出不同的顏色組合。圖/研之有物(資料來源/陳振輝

將調色盤植入細胞的原理看似簡單,做起來卻要耗費不少功夫,尋找適合的基因轉殖魚需要半年到一年的時間。陳振輝解釋用斑馬魚當實驗材料的優點:它們容易繁殖,生長的週期不用等太久,體積小,容易操作;更重要的是魚體扁平,容易拍攝大面積、高解析度的細胞影像,進行系統性的量化分析。搭配讓每一顆細胞,從誕生到凋逝都無所遁形的全面「監控」影像平台,才有機會觀察到前人視而不見的細胞分裂方式。

圖片為斑馬魚的仔魚(上圖)和成魚(下圖)的透視圖,仔魚年齡為受精之後第 3~21 天。斑馬魚當實驗材料的優點是:容易繁殖,生長週期不長,體積小,容易操作;更重要的是魚體扁平,容易拍攝大面積、高解析度的細胞影像。圖/研之有物(資料來源/J Clin Invest.

隱藏在「表面之中」的無合成分裂

斑馬魚的皮膚和人類的皮膚基本構造類似。唯一不同是人類的皮膚有角質層覆蓋,斑馬魚皮膚的外層是沒有角質化的活細胞,適合拍照觀察。斑馬魚的另一優點是在顯微鏡下活體觀察時不會傷害到魚體,麻醉後可以直接拍照,再放回水中喚醒;如此才能追蹤同一條魚從出生到長大,身上所有皮膚細胞的動態行為。

研究斑馬魚的學者很多,皮膚發育這回事可謂天天在人們的眼前發生,可是其它人為什麼都視而不見,沒有注意到陳振輝團隊發現的無合成分裂呢?事情其實沒有說起來那麼簡單。

斑馬魚皮膚剖面示意圖,從顯微鏡看到的斑馬魚細胞是最上層的表皮細胞。圖/研之有物(資料來源/陳振輝)

斑馬魚的皮膚分為上中下三層,下層的幹細胞,會分裂產生新的細胞,送到上層成為覆蓋身體最外側的皮膚細胞。其它研究人員如果見到表皮細胞的數目變多,直觀的想法會是下層的幹細胞又送上新的細胞,不會想到是上層既有已分化的細胞可以直接進行分裂。

陳振輝表示,一開始見到表皮細胞的數量增加時,直覺也認為是下層幹細胞產生的新細胞,可是連續追蹤後卻發現不是這麼回事。由於他的技術可以對斑馬魚身上 2,000 到 3,000 顆皮膚細胞進行同時監測,才意外察覺到上層已分化的細胞竟然會不用複製遺傳物質,就直接分裂成兩顆,甚至是四顆細胞!

陳振輝團隊觀察到斑馬魚表皮上層已分化的細胞可以不用複製遺傳物質,直接分裂成兩顆,甚至是四顆細胞。影/陳振輝

顛覆認知:不用合成 DNA 的細胞分裂

外行人聽起來好像沒什麼,上述發現其實開拓了細胞分裂研究的新領域。精子和卵子這類生殖細胞(germline cell),在複製遺傳物質以後會經過 2 次分裂,形成 4 顆細胞,也就是減數分裂(meiosis)。構成身體的體細胞(somatic cell)則會先複製內部的遺傳物質,再分裂 1 次成兩顆細胞,稱為有絲分裂(mitosis)。

還有較少見的狀況,如 DNA 複製後細胞不分裂,變成多套遺傳物質的 1 顆細胞(endoreplication);或是多個細胞融合在一起,成為 1 顆多核細胞(cell-cell fusion,例如骨骼肌細胞)。

然而不管怎麼分裂,過去研究沒有發現不用複製 DNA 就能分裂的細胞!正常細胞分裂的過程有許多監控機制,如果細胞的遺傳物質沒有完整複製,一般情況細胞應該會啟動相關的監控機制,阻止分裂過程的進行。癌症細胞不受控制的分裂,就是相關機制沒有正常運作。

斑馬魚表皮細胞竟然能在沒有複製遺傳物質的情況下,避免細胞凋亡的命運,持續分裂,是一個很特別的例外。

斑馬魚從仔魚到成魚的發育過程中,表皮細胞可以在沒有複製遺傳物質的情況下持續分裂。圖/研之有物

論文投稿到《自然》期刊後,四位同儕審查者一致給予正面評價,但是顛覆認知的新發現仍受到不少質疑,需要陳振輝團隊進行許多額外的實驗來回答。

有沒有觀察失誤的可能?

陳振輝團隊同時標記下層、上層的細胞,證實進行分裂的細胞確實位於上層。為了證明遺傳物質沒有複製,他們進一步測量細胞內 DNA 的量,包覆 DNA 的組蛋白(histone)的量,以及施加阻止 DNA 複製的藥劑。

結果顯示分裂後的細胞,遺傳物質的含量確實有等比下降,分裂過程不受阻止 DNA 複製藥劑的影響。顯然細胞沒有合成新的 DNA 就直接分開,陳振輝稱之為「無合成分裂」(asynthetic fission)。

所以,究竟是怎麼分裂的?

顯微鏡下看來似乎沒有一定的章法,有些表皮細胞會分裂 2 次成 4 顆細胞,有些分裂 1 次成 2 顆細胞,還有些不會分裂,維持 1 顆細胞;也發現有少數細胞可以逆轉分裂過程,形成雙核細胞。

陳振輝團隊現有的研究技術,尚無法辨明胞器的分配,以及每一條染色體的分配模式;團隊預計使用單細胞定序(single cell DNA sequencing),在無合成分裂後,分別定序每一顆細胞分配到的染色體組成,以釐清細胞的遺傳物質是否有特定的拆分方式。

斑馬魚表皮上的無合成分裂(影片箭頭處),還有很多細節尚待研究。陳振輝團隊預計要釐清在無合成分裂之後,細胞的遺傳物質是否有特定的拆分方式。影/陳振輝

一切都是為了節省資源!努力長大的表皮細胞

無合成分裂對斑馬魚有什麼意義呢?斑馬魚由受精卵孵化後,仔魚在前 8 天不用吃東西,成長速度緩慢;第 8 天起開始進食,體型也像吹氣球般迅速膨脹,第 14 天時成長速度達到最快。觀察發現從第 8 天 到 21 天,皮膚細胞會發生無合成分裂,團隊推測此一分裂現象與身體表面積的快速延展息息相關。

斑馬魚的仔魚從受精卵孵化之後的第 8 天到第 21 天,表皮細胞會發生無合成分裂,陳振輝團隊推測此一分裂現象與身體表面積的快速延展息息相關。
圖/研之有物(資料來源/Nature

僅管省略掉複製遺傳物質的階段,細胞進行無合成分裂所花費的時間,卻比一般細胞分裂稍慢,所以其優點並非單純的縮短時間,應該是節省資源。斑馬魚仔魚身體的表面積在特定時間迅速增加,體表需要皮膚細胞的完整覆蓋,團隊發現細胞進行 1 次無合成分裂,表面積能增加 26%,兩次能達到 59%,這些細胞能在斑馬魚體表存活 2 到 3 週的時間。

陳振輝團隊發現,斑馬魚表皮細胞進行 1 次無合成分裂,表面積能增加 26%,兩次則能增加到 59%,這些細胞能在斑馬魚體表存活 2 到 3 週的時間。
圖/研之有物(資料來源/陳振輝)

斑馬魚如何啟動無合成分裂呢?目前仍不太清楚,團隊發現其過程受到表面張力變化的影響。皮膚細胞有感應張力變化的特定離子通道,利用藥物影響這些離子通道的活性,無合成分裂也會受到影響,詳細作用機制仍有待更多的研究。

生活數量的密度也會影響斑馬魚長大

另一項十分有趣的發現是,無合成分裂和仔魚生活的密度有關。斑馬魚從仔魚長到成體,最終的體型都差不多,但是生長過程則有很大的差異,個體成長速度有快有慢。假如將許多仔魚養在一起,處於高密度的生活環境,個別仔魚的生長速度會較慢。

奇妙的是,一旦換到低密度的環境,仔魚的成長速度會瞬間暴增,體表面積快速增加又要維持皮膚細胞的完整覆蓋,會導致更多的無合成分裂。斑馬魚如何感知、在生理上反應周遭環境鄰居密度的變化,是另一個有趣的研究方向。

斑馬魚若處於高密度的生活環境,仔魚的生長速度會較慢。奇妙的是,一旦換到低密度的環境,仔魚的成長速度會瞬間暴增,體表面積快速增加,導致更多的無合成分裂。圖/研之有物(資料來源/陳振輝)

進行無合成分裂的細胞缺乏完整的遺傳物質,還能算是有生命的活細胞嗎?陳振輝提醒我們,多細胞生物的生理機能由各式各樣的細胞一起維持,某些特化的細胞還沒有細胞核。例如紅血球的成熟會經過脫核的過程,完全沒有細胞核的紅血球有重要的生理功能也可以存活超過 100 天。在斑馬魚體表進行無合成分裂的皮膚細胞,或許也有它們短暫卻不可或缺的使命。

有可能其它生物的細胞也會無合成分裂嗎?

無合成分裂目前只在斑馬魚表皮的發育過程中觀察到,其它細胞、其它生物、其它情境下是否也存在呢?事實上陳振輝自己也很好奇。

以人體來舉例,體表的皮膚,口腔內膜、消化道組織,時時刻刻都需要大量的表皮細胞覆蓋,而且耗損甚鉅,有不斷補充的需求。這些必須持續維持完整覆蓋表面的情境,或許無合成分裂也參與在其中。

然而,無合成分裂不容易在活體動物直接觀察。例如小鼠的模式,就算能引進三原色調色盤的細胞標誌技術,也不像斑馬魚仔魚那般透明容易拍照。話說回來,知道某個現象有可能發生,就是發現的第一步。假如其它細胞或是生物也存在無合成分裂,在陳振輝團隊邁出第一步以後,未來一定有人能克服相關的技術門檻來進行研究。

發現斑馬魚表皮細胞的無合成分裂,像是開啟一扇新的大門,可以通往過去想像不到的研究方向。會有醫學應用的可能嗎?像癌症是細胞的不正常分裂,任何細胞分裂機制的基礎研究,應該有機會對癌症的治療有所啟發。陳振輝同意這是潛在的研究方向之一,但是他也強調從基礎研究到醫學應用,是很漫長的一段路,科學家能做的就是一步一步踏實前進。

對沒預期的發現保持警覺,在探索過程中充分滿足自己的好奇心,將支持陳振輝持續前進,挑戰下一個研究課題。

對沒預期的發現保持警覺,在探索過程中充分滿足自己的好奇心,將支持陳振輝持續前進,挑戰下一個研究課題。圖/研之有物
研之有物│中央研究院_96
253 篇文章 ・ 2190 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

1

5
4

文字

分享

1
5
4
第三種細胞分裂方式「無合成分裂」背後的發現之旅——《科學月刊》
科學月刊_96
・2022/09/03 ・4233字 ・閱讀時間約 8 分鐘

  • 採訪編輯/張樂妍|本刊編輯

Take Home Message

  • 由於想繪製出再生藍圖的想法,陳振輝踏上以多顏色標誌技術解構再生過程細胞行為的研究旅程。
  • 12 年間他面對各項挑戰,而實驗中一次意外的發現,竟在後來成為突破性的研究,發表在《自然》(Nature)期刊。
  • 陳振輝分享自己一路上所領悟的研究精神,強調科學家不會失敗、有自己的觀點、專心做一件自己覺得好玩的事情,還要勇於妄想。

實驗室的顯微鏡底下,銳利的刀片輕劃過魚尾組織,精確地切除斑馬魚尾鰭固定的面積。但不過一陣子,許多細胞就會開始在傷口邊緣快速移動、增生、修復傷口,數天後完整再生全新的尾鰭組織。

這是斑馬魚(Danio rerio)的再生實驗。為了找出與再生能力調控有關的基因,這隻斑馬魚身上有隨機誘發的突變基因,如果尾鰭的再生出現問題,就可以回頭尋找突變點發生的位置及它所影響的基因。然而,突變發生在相關基因的機率非常低,想找到「再生基因」得全憑運氣。

12 年前,在美國杜克大學(Duke University)生物學家波斯(Ken Poss)實驗室的陳振輝,每一天都重複這項實驗,有時候一天要切上 1000 多條斑馬魚。

蓋房子絕不能缺少藍圖,而細胞再生也是!

因為需要長時間在顯微鏡下觀察再生的過程,陳振輝對於再生從無到有的發生過程感受極深,他覺得「再生」在細胞的層級中,其實和蓋房子很像。

「你覺得蓋房子最重要的是什麼?」

他認為蓋房子最重要的,是一張詳細的設計藍圖。有了設計藍圖,才可以知道每一層樓需要多少建材,要從何處開始建蓋,水管和電路要如何設計安排;就如同再生過程中,各式各樣不同的細胞,一定也依循著某種既定的藍圖移動、增生,最後建構出型態、功能完整的複雜組織。

如果可以即時、完整記錄所有參與此過程中個別細胞的動態行為,是不是就可以畫出一張最詳細的再生藍圖?某天就可以在人類身上把這個叫做「再生的房子」蓋起來?

陳振輝當時有個簡單的想法:多顏色細胞標誌技術(Brainbow)[註]可以提供很特別的機會,即時解構每一顆細胞在再生過程中扮演的角色,釐清複雜組織如何完整恢復的過程,以及它的調控機制。

只不過要將這個簡單的想法實現並不容易,小小尾鰭的再生其實有上萬個不同種類的細胞 (比如皮膚細胞、骨骼細胞、神經細胞) 參與在其中。面對許多技術層面上的挑戰,一晃眼就是五年。

  • 註:利用隨機表現三個不同顏色的螢光蛋白(紅、藍、綠),當三種螢光蛋白表現不同的比例,可以產生更多額外的顏色來標誌不同細胞。在理想的實驗條件下,有機會產生上百種不同顏色來標誌有興趣的細胞種類。由於此技術第一次的應用對象是腦神經細胞,因此被命名為 Brainbow(brain + rainbow)。

最適合的模式生物——斑馬魚

「當你在一個研究題目或技術上專注了多年的時間,通常這個過程會反過來改變你這個人和你看問題的觀點。」

在 2016 年,陳振輝結合三種實驗技術——多顏色細胞標誌技術、活體長時間追蹤、大尺度定量分析——首次達到在再生過程中即時、同時追蹤所有皮膚細胞的動態行為,並將此技術另名為「Skinbow」。

以「Skinbow」技術標誌斑馬魚的皮膚表皮細胞,藉由個別的表皮細胞具有不同的顏色,可以長時間追蹤、觀察組織再生的過程。圖/陳振輝提供

這項初步的研究成果帶給陳振輝一些啟發。第一,Brainbow 的應用門檻高,許多細節須注意;第二,要結合上述三種不同的實驗技術,只有斑馬魚這個模式生物最適合;第三,全世界或許只有長時間跟這些技術奮戰的自己最適合這個研究方向。不過在恍然大悟的陳振輝面前,還有許多現實層面的挑戰等待著他。

彩色斑馬魚的實驗若要繼續進行,需要大規模的飼養空間、專屬客製化的影像設備,以及能看到此一研究方向潛力而願意全力支持的學術機構。很幸運地,中央研究院細胞與個體生物學研究所的謝道時前所長提供他最適合的環境。當陳振輝以為所有研究工具都到位的情況下,卻又馬上遇到下一道挑戰。

意外發現第三種細胞分裂方式

在探索表皮幹細胞行為的過程中,陳振輝和博士班研究生陳潔盈意外發現到表皮已分化的上皮細胞竟然會持續分裂,而且這些分裂的細胞不會在過程中複製 DNA。由於目前已知的有絲分裂和減數分裂過程中都包含複製 DNA 的步驟,因此他們觀察到的細胞分裂過程並不屬於任何一種。

「當下不會去思考這是不是第三種的細胞分裂方式。」陳振輝表示,看見與教科書完全不同的發現,就像是突然看到外星人在地球出現一樣讓人難以置信。要推翻過去多年來學界認定的現象,對科學研究者來說是充滿挑戰的。一方面若是能發現一個全新的生物現象,可以開創新的研究領域,是讓人興奮的一刻;但另一方面也有到頭來一場空的風險。

在四年多的時間裡,研究團隊持續觀察與試驗,發現斑馬魚幼魚在特定的發育階段生長快速,表皮下層的表皮幹細胞以有絲分裂增生,但上層已分化的表皮細胞,不需要 DNA 複製就可以直接分裂產生四個子細胞,是一個有效率延展體表面積的細胞機制。研究團隊將觀察到的現象定義為一種新的細胞分裂方式,終於,他們在 2020 年 12 月將成果投稿到《自然》(Nature)期刊。

但此時,嚴重特殊傳染性肺炎(COVID-19)疫情突然在英國升溫,使得研究團隊時隔兩個月才收到期刊的第一次審稿意見。好不容易收到的回覆,內容卻是四個審稿員多達 60 幾道問題,需要一一詳細解釋。

經過來來回回的審查、修改、補充數據之後,終於在今(2022)年 5 月,第三種細胞分裂方式——無合成分裂(asynthetic fission),正式發表在《自然》期刊中,讓全世界見證這項挑戰學界對基礎生命現象了解的發現。

科學家就是要不斷挑戰、勇敢前進

如果讀者從一篇新聞去看科學家光鮮亮麗的發表,其實很難看見研究團隊背後付出了多少血汗(有時還會加上淚)。陳振輝的斑馬魚細胞再生研究已經走了 12 年,路途上充滿一次又一次的峰迴路轉。

所以,科學家都是怎麼想「發現的過程」呢?

  • 研究的路上不會失敗

科學研究從來不是一條直線,從「觀察」到「發現」的過程總是曲折、充滿挑戰、沒有捷徑,而且無一例外,但是科學家不會擔心失敗。因為他們相信自己不會失敗——因為科學家不是剛剛克服完前一個挑戰,就是在往下一個挑戰前進的路上

陳振輝表示,科學研究從來都不是一條直線的道路,從觀察到發現的過程有 90% 的時間都在面對挑戰、解決問題。圖/陳振輝提供
  • 要有自己的觀點

克服挑戰的過程要相信自己,但是也不可以盲目地前進,一定要有自己獨特的觀點。大部分領域裡的科學家都專注在觀察細胞的微構造,陳振輝因為一直很想繪製再生藍圖而有了不同的研究方向:在公分等級觀察細胞的集體行為。

「珍奇異獸通常都躲在人煙稀少的地方!」

也因為這個特別的觀點,陳振輝才有機會可以發現無合成分裂的生理意義。

  • 專心地做一件好玩的事

陳振輝每個禮拜天都在實驗室餵魚,餵魚的時候都會回想到生命中一些特別的時刻,像是第一次拍到 Skinbow 影像的當下。記得當時自己只有一個簡單的想法:「我想讓斑馬魚身上的每一個細胞都變成這樣!」因為科學家都在專心地做一件自己覺得好玩的事情,他們才能一直堅持下去。

「因為發自內心覺得很好玩,所以才會想盡辦法,讓學生、助理、期刊編輯和審稿員都覺得好玩!」

  • 勇敢去妄想

最後、也是最重要的一件事,要知道自己的妄想是什麼。

「妄想」(delusion)和「夢想」(dream)不一樣,它可以支撐我們走過最痛苦、掙扎的時刻。他以各種人物作比喻:「就像《灌籃高手》裡面的赤木,即使再打下去腳會斷掉、再也不能走路,他還是要上場打球,只因他想『稱霸全國』;還有中研院的廖俊智院長,每一次演講都會提到要『阻止全球暖化』的決心;而我自己的妄想,就是繪製『最完整的再生藍圖』。有了妄想,才會不計代價且樂在其中。」

「請問你的妄想是什麼呢?」陳振輝問道。

努力不如預期?換個角度看事情吧!

陳振輝鼓勵所有正在路途上努力的人,不論是實驗結果不如預期、難以解釋,或是論文被拒絕,又或是個人心情低迷、團隊士氣低落時,都可以用 wow 這個字來轉換看事情的角度。

  • 表皮幹細胞的實驗結果不如預期怎麼辦?
    → Wow!那去看看以分化的表皮細胞在做什麼搞不好更有趣!
  • 看到不符合已知觀念的細胞分裂模式,沒辦法解釋實驗結果!
    → Wow!它們不會複製 DNA!實在太酷了!
  • 實驗室的士氣好低落…… 
    → Wow!難道你會是發現第三種細胞分裂的人嗎?
  • 論文通通被期刊拒絕了……  
    → Wow!《細胞》(Cell)跟《科學》(Science)都不接受,難道是在叫我們去試《自然》(Nature)嗎?

無合成分裂的意外發現,只是研究工作長遠路途的一隅。背後的調控機制尚有待更多的研究,而這種分裂方式是否會發生在皮膚細胞之外的其他細胞、組織,甚至不同的物種上?讓人充滿想像。

顛覆想像的意外發現,除了是再生機制裡一小塊缺失的拼圖,或許也會有機會影響其它領域,像是癌症 (不正常的細胞分裂) 或是傷口癒合 (加速的細胞分裂) 等研究。

抱持樂觀、對意外發現充滿好奇與熱忱的態度,陳振輝將與研究團隊繼續向繪製「全彩再生藍圖」的道路上前進。

2022「中研講堂」宜蘭場

本文感謝陳振輝研究員協助校稿,提供圖片及精彩的演講內容。

  • 〈本文選自《科學月刊》2022 年 9 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

延伸閱讀

  1. Chen, C.H., et al. (2016). Multicolor cell barcoding technology for long-term surveillance of epithelial regeneration in zebrafish. Developmental Cell, 36, 668–680.
  2. Chan, K.Y., et al. (2022). Skin cells undergo asynthetic fission to expand body surfaces in zebrafish. Nature, 605, 119–125.
所有討論 1
科學月刊_96
231 篇文章 ・ 2261 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。