0

0
1

文字

分享

0
0
1

麻省理工學院發明可以模擬光反應的半導體電池

葉綠舒
・2011/10/01 ・904字 ・閱讀時間約 1 分鐘 ・SR值 529 ・七年級

-----廣告,請繼續往下閱讀-----

光合作用(photosynthesis)是自然界最奇妙的反應之一,包含了光反應(light reaction)與卡爾文循環(Calvin cycle)。其中光反應負責把光能轉換為化學能,而卡爾文循環則將光反應所產生的化學能再次轉換為有機分子,醣類(carbohydrate)。

從醣類,以及卡爾文循環的反應的中間產物,植物可以再合成脂肪、蛋白質、核酸,而在整個地球的食物鏈裡,植物位於食物鏈的底層。因此,我們可以說光合作用是地球上最重要的反應,它餵養了地球上所有的人。

OEC(oxygen evolving complex)位於植物的葉綠體中,它是光反應的成員之一,與photosystem II直接連結;它的功能是儲存植物的光能,再把這個光能用來分解水,產生氫離子(H+)、電子(e-)、以及氧氣(O2)。

水是非常安定的化合物,在常溫下要分解它並不容易;但是,植物卻演化出了OEC,不但可以在常溫下分解水,只要有陽光,在低溫下也照樣可以分解水。

-----廣告,請繼續往下閱讀-----

OEC所產生的氫離子,接著會被植物拿去供作光反應中合成推動卡爾文循環(Calvin cycle)的能量(ATP);而電子則提供給位於photosystem II反應中心的葉綠素a(chlorophyll a),使它能在下一輪的光反應裡面繼續提供電子。

前天(2011/9/29)的「科學」雜誌上,麻省理工學院(MIT)教授Daniel Nocera發表了一篇文章,內容就是他們發明了一個以矽(Si)為原料的半導體電池,它可以在接受光能後,將水分解為氫氣(H2)與氧氣(O2)(2);接著只要把氫氣收集起來,就可以做為燃料了。

Artificial Leaf at MIT

這樣的發明,其實在研究植物的人看來,當然是非常了不起的發明;不過如果要說就這樣能趕上植物的光合作用,還是有點過度解釋(3),畢竟植物的光合作用,可以把光能轉換為化學能(ATP),接著再用化學能去合成醣類。文中提到Nocera教授的光電池轉化光能的效率比植物高,筆者不知道他的比較基準在哪裡,但是植物只吸收特定波長的陽光,然後再把這部分的光能轉化為化學能,就目前所知,抓不到的光能不算,抓到的光能在photosystem中的能量損失其實很低,不知「時代」雜誌中提到的數字(低於2.5%)是如何計算的?

-----廣告,請繼續往下閱讀-----

參考文獻:
1. Taiz and Zeiger. Plant Physiology 4th ed.
2. Steven Y. Reece, Jonathan A. Hamel , Kimberly Sung, Thomas D. Jarvi, Arthur J. Esswein, Joep J. H. Pijpers, Daniel G. Nocera. 2011. Wireless Solar Water Splitting Using Silicon-BasedSemiconductors and Earth-Abundant Catalysts.Science DOI: 10.1126/science.1209816
3. Bryan Walsh. 2011/9/29. How an artificial leaf could boost solar power. Time.

文章難易度
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

1
1

文字

分享

1
1
1
數學藏在哪裡?絕對難不倒你!隱藏在植物中的「費布納西數列」——《生物世界的數學遊戲》
天下文化_96
・2022/10/24 ・1626字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

大多數植物和費布納西數列有密不可分的關係

生物世界的數學本質,在植物王國裡更能顯現出美麗而神祕的形式。

在《論生長與形態》這部書裡,有一整章就是在專門討論植物與眾不同的幾何學及數術,諸如葉子沿著莖的排列、花朵裡形成的奇特螺線模式(圖十一),以及花瓣的數目等等。這部分所隱含的數學真的很奇特。

在絕大多數的情形下,植物的結構牽涉到一串被稱為「費布納西數列」(Fibonacci sequence)的有趣數字:

1、2、3、5、8、13、21、34、55、89、144……

-----廣告,請繼續往下閱讀-----
呈現出費布納西數列的巨大向日葵 Helianthus maximiliani。圖十一/天下文化

費布納西數列的規則

費布納西數列本身就有漂亮的模式:

從「3」以後的每一項,都是前兩項的和,例如 55=34+21。

這個數列,是比薩的雷奧納多(Leonardo of Pisa,約 1170-1250)在 1202 年所創。雷奧納多是位偉大的數學家,偶然發現了印度人與阿拉伯人所發明的新記數法,不同於當時通用的羅馬記數法;在這兩種系統中,相同的符號若放在不同的位置,可能代表著不同的意義:以費布納西數列裡的 55 為例,第一個 5 代表「50」,而第二個則代表「5」。

雷奧納多為阿拉伯記數法,寫下一部劃時代的專書。圖/Wikipedia

雷奧納多為印度——阿拉伯記數法,寫下一部劃時代的專書,於是西方世界便將現行的算術體系,歸功於他的大力推廣。

-----廣告,請繼續往下閱讀-----

十八世紀的法國數學家李布里(Guillaume Libri),給了他一個綽號「費布納西」(Fibonacci),由於這個綽號一直廣為沿用,所以讓大多數人誤以為是十二、十三世紀就存在的名字(Fibonacci 一字原文的意思是 son of Bonacci,Bonacci 是他父親的名字)。

費布納西的兔子謎題

此外,費布納西也設計出一套「兔子謎題」,問題是這麼說的:假定現在是第零個飼育季,我們剛好有一對未成熟的兔子,而兔子經過一季的時間就可以成熟。

再假定每對成熟的兔子,每一季可以生出恰好一對未成熟的兔子,也一樣要花一季的時間才能成熟。最後我們假設兔子不會死。

兔子謎題:在設定的條件下,每一季會有多少對兔子?圖/Pixabay

那麼每一季會有多少對兔子? 此問題的結果是,在接下來各季,兔群的數目將依循費布納西數列——而且有大量的重要數學,繼續從這個簡單的發現發展出來。然而,真正的兔群並不會按照費布納西的模型,如果實際去數兔子數目,你不會發現明顯的費布納西數。

-----廣告,請繼續往下閱讀-----

花草的世界中也藏著許多費布納西數

但是,如果去數花的花瓣、萼片、雄蕊及其他部分,你就能找到這些數。例如,百合有三個花瓣,毛莨有五瓣,飛燕草有八瓣,金盞花十三瓣,紫菀二十一瓣,而多數的雛菊有三十四瓣、五十五瓣或八十九瓣,除了這些數目之外,沒有其他任何數目會出現得那麼頻繁。

費布納西數也隱藏在向日葵所呈現的模式裡,如果仔細看圖十一,你會看到兩組螺線,一組呈順時鐘方向,另一組是逆時鐘。

現在如果請你數數看每一組各有多少螺線,你會發現兩組的答案都是費布納西數。圖/Pixabay

現在如果請你數數看每一組各有多少螺線,你會發現兩組的答案都是費布納西數。

——本文摘自《生物世界的數學遊戲》,2022 年 9 月,天下文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1
天下文化_96
139 篇文章 ・ 621 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

4
1

文字

分享

0
4
1
MIT 團隊的嶄新懸浮技術——打造幽浮式月球探險車
linjunJR_96
・2022/02/03 ・1962字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

在前往外星球的探險任務中,很重要的一個問題是如何在外星地表移動。從 1979 年的阿波羅登月計畫所使用的載人月球車,到 2012 年獨自前往火星的好奇號,太空探險車都是採用以輪子為主的設計。這種移動方式容易受限於地形,無法前往地勢陡峭的區域。

在 2021 年底,麻省理工學院的航太工程師開發出嶄新的懸浮技術,能夠讓飛行器在外星球表面懸浮並騰空移動,就像剛升空的幽浮一樣。這種技術已從原理上證明可行,並在實驗室內通過小規模測試,為外星探險技術帶來許多新的想像。

圖/MIT

就「地」取材,利用與地表相同的電荷

一般而言,想要讓探險車升空移動是不切實際的想法。如果想讓探險車像火箭一樣燃燒燃料並噴出氣體來推進,就需要搭載大量笨重的燃料,不只讓太空梭升空的負重增加,到達目的地後也很難維持足夠長的任務壽命。另一方面,小行星的個頭都很小,自身的重力無法抓住氣體形成大氣層,因此任何像飛機或直升機的空氣動力方法都不管用。

不過,正是因為缺乏大氣層與磁場的保護,這些小行星的地表會不斷受到來自太陽的高能輻射轟炸,地表的物質被輻射電離使得地表自帶一層電荷,其中向陽面會帶正電,背陽面帶負電。因此,包括月球在內的小行星表面其實都帶有不小的電壓。

在 MIT 的工程師們想到,只要想辦法讓探險車帶有跟地表一樣的電荷,同性相斥的靜電力就能讓其浮在空中。近期的研究表示月球表面的電場足以讓地表的沙塵揚起超過一公尺,有點類似身上充滿靜電時頭髮會豎起來。原則上,我們也可以借用這個自然產生的電場來抵抗重力,打造出「幽浮式」探險車。

-----廣告,請繼續往下閱讀-----
一隻貓由於其運動造成的摩擦而使毛髮帶電,導致包裝用泡棉受到吸引黏於貓身。圖/維基百科

要做到這點,可以先在車上裝上液態的離子源,也就是由正負離子組成的液體。加上適當的電壓後,便可以從噴嘴將離子以束狀射出。這類離子噴射所產生的反作用力常用於推進或操控小型人造衛星,不過在這裡也可用來進行靜電懸浮。假如月球地表帶的是正電,幽浮車可以將負離子射出,如此一來整個幽浮車便會帶正電,達到同性相斥的效果。同時,離子束的推力也可以用來操縱車體。

如何加強靜電斥力?讓車子幫地表「充電」

從這個想法出發,MIT 團隊設計出初代的幽浮車模型。但由於地表電荷密度就這麼一點,他們很快從計算發現這樣做的靜電斥力並不足以支撐裝置加上液態離子源的重量。尤其是在月球這類相對較大的星體上,重力加速度較大,幽浮車也需要更強的升力才能升空。

不過仔細想想,在排出負離子後,儘管幽浮車與地表的正電荷總數是固定的,但是兩者之間的靜電斥力大小取決於兩邊的電荷量相乘。因此如果用車上的正離子幫地表「充電」,或許可以加強懸浮用的靜電斥力。

就像是寄包裹時會限制長寬高三者的總和,此時體積最大的選項就是盡量接近正立方體的箱子;同樣的,如果可以適當地將車上的一些正電荷分給地表,原則上就能將兩者之間的斥力最大化。

-----廣告,請繼續往下閱讀-----
就像是寄包裹時會限制長寬高三者的總和,此時體積最大的選項就是盡量接近正立方體的箱子。圖/Pexels

外太空載具的工程學傑作

理論的計算證實了這個概念上的突破相當關鍵。於是,團隊在設計中加入了幾隻向下的噴嘴,將正離子射向下方的地表,大幅提高地表的局部電荷量。他們在實驗室中造出了第一代幽浮車原型:一個手掌大的六角形薄片,重約 60 公克,裝有四隻噴嘴朝下,一隻朝上。在實驗室的真空環境中,第一代幽浮車在帶電的平板上實際進行懸浮實驗。實驗結果證實了他們的理論模型無誤。

根據目前的理論模型,一個一公斤重的放大版幽浮車將可以懸浮在離地表一公分處。原則上,只要加大射出離子束的電壓就能提升懸浮高度,不過目前的理論只能描述離地高度較小的情況,因此相關的理論參數還需要進一步修正。

這種靜電懸浮所需的能源功率很小,可說是外太空載具的工程學傑作。如果更好的理論模型完成了,那麼未來十分有希望投入實際應用。太空梭可以在小行星周圍投下這些小型幽浮車,讓他們探索崎嶇不平的地表。可惜的是,利用離子噴射來懸浮只對帶電的地表有效,所以在地球上的我們還是得乖乖地用噴射背包來離開地表。

參考資料