Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

抗病基因的秘密:侵入者與宿主

探索頻道雜誌_96
・2015/04/08 ・3934字 ・閱讀時間約 8 分鐘 ・SR值 597 ・九年級
相關標籤:

024-037 抗病基因的秘密7
巨噬細胞吞噬細菌,這是免疫系統對感染的反應之一。出自《探索頻道雜誌國際中文版》,點擊看看它在雜誌裡的樣子。

侵入者和宿主

儘管致命疾病看似想殲滅所有病人,但其實並非如此。事實上,每當免疫系統遭受攻擊時,侵入者和宿主之間就會展開軍備競賽。

穆勒解釋,以瘧疾為例,人類免疫反應和瘧原蟲(引發瘧疾的寄生蟲)的交互作用,維繫了人類和寄生蟲之間的平衡。「如果一種具備特定基因的寄生蟲變得普遍,就會有比較多人接觸到這種寄生蟲,從而演化出免疫力,」穆勒說明, 「如此這種寄生蟲就比較難在群體中傳播而存活,這會對該種寄生蟲施加選擇壓力,使其調整基因結構。」

穆勒說,這種過程稱為平衡性天擇,我們與古老的病原體之間常有這種關係。瘧疾其實可由多種不同的近親瘧原蟲傳播,穆勒指出,其中「間日瘧原蟲是比惡性瘧原蟲古老的人類寄生蟲,與我們一起演化的歷史較長」。他補充說明, 如此久遠的關係造成的結果就是,雖然間日瘧原蟲也可能導致病重和死亡,但機率比較晚出現的惡性瘧原蟲低得多。

至於相對年輕的伊波拉病毒不久前才從果蝠跳船到猿猴和人類身上。根據世界衛生組織(WHO),大猩猩和黑猩猩等靈長動物都是使人類罹病的可能傳染源。然而穆勒指出,新的研究資料顯示這些靈長目動物跟我們一樣,都是「偶然宿主」,他說,「換言之,這些靈長動物感染並傳播了伊波拉病毒,但並非製造病毒的『常備宿主』。」他說明,目前認為伊波拉病毒最初的傳染窩是果蝠──而食用果蝠很可能是疫情爆發的原因。

-----廣告,請繼續往下閱讀-----

伊波拉是相當晚近的病原體,這似乎能說明此種病毒為何如此致命。他指出:「伊波拉病毒和人類之間尚未彼此適應,因此病起來會非常嚴重,致死率很高,接著高致死率就會對人類的基因體施加選擇壓力──可能也就會對伊波拉的基因體施加選擇壓力,」他補充,「因為對病原體來說,通常殺死宿主並不是理想的演化結果。

800px-Ebola_virus_virion
在穿透式電子顯微鏡下的伊波拉病毒超微結構。出自http://commons.wikimedia.org

代代相傳

無論在哪個人類群體中,感染疾病的人口百分比很大一部分取決於病原體傳播的難易度。流行性感冒傳播迅速,且多數人都經常接觸這種病毒,因此通常只會產生溫和的感染症狀;某些突變的流感病毒對人則更有殺傷力,好比一戰後逾 5 億人罹患的「西班牙流感」就是一例,當時共造成 5000 萬到 1 億人死亡,另外新型流感(H1N1)更在 2009 年的大流行中奪走超過 20 萬 3000 人的性命。

「舉例來說,罹患瘧疾的機率取決於蚊子的數量和大家被叮咬的頻率,」穆勒解釋,「在傳染迅速的熱帶地區,多數人都會感染,而首次感染瘧疾的成年人若未經治療,死亡率約是 15%到 20%,兒童則稍低。」穆勒說,這個比例經過遺傳適應會大大降低。「族群很快能獲得對(致命) 瘧疾的免疫力,到第二次患病時的死亡機率就大幅下降,待罹病三到五次後,致死率已經近乎零。」

霍亂弧菌。出自《探索頻道雜誌國際中文版》,點擊看看它在雜誌裡的樣子。

當然也有人無論在多惡劣的條件下都不會感染。不久前,人類基因體的解碼揭示了抵抗疾病能力的驚人事實。聲譽卓著的《自然》期刊於 2014 年 10 月號發表一篇由瑞士科學家主導的跨國團隊研究,此研究說明了為何某些人能迅速中和流感病毒──這類病毒一直長伴人類左右,而我們對它們也瞭若指掌。

-----廣告,請繼續往下閱讀-----

原來中和病毒的是一些會附著在血球凝集素(haemagglutinin)上的抗體。 血凝素是病毒表面呈釘狀突起的蛋白,能牢結細胞中特定的醣鏈,像把尋找鎖孔的鑰匙,一旦找到,血凝素便附著在細胞上,然後像木馬屠城般釋出其他蛋白, 操控細胞的運作。

然而血凝素卻也是病毒的罩門。這支跨國團隊的科學家發現,某種抗體經過一次突變後便能中和多種流感病毒,方法是牢結於血凝素蛋白的特定部位。製造這種抗體需要一種叫 VH1-69 的基因片段,這種基因片段以兩種形式出現在人體中,其中一種可以產生前述能中和多種病毒的抗體──而擁有這種基因的人頗多。有些人缺乏這種基因片段,無法產生此抗體,但仍能結合其他基因片段,製造出抵抗流感的抗體,但是過程較費時,效果也不一定那麼好。科學家現在希望運用這項發現來研發疫苗,誘發廣效性的流感抗體反應。

但同時我們仍得感謝祖先已經賜給我們能抵禦多種感染的抵抗力,我們之所以擁有與生俱來的遺傳抵抗力,是因為先人接觸過這些病原體或其近親。此外, 突變也可能自發產生──我們也可能在偶然之中獲得防護,只不過這類自發性的突變在特定疾病爆發、經過天擇之前通常十分罕見。

穆勒說,這類突變能幫助我們打各式各樣的仗,有些戰役我們甚至渾然不覺。他表示:「許多突變能夠保護我們不被疾病奪走性命,這類突變不只影響基因對特定病原體的表現,還能幫助我們抵禦多種病原體入侵──甚至是我們從未碰過的種類,這現象就稱為交叉抵抗性。

-----廣告,請繼續往下閱讀-----

舉例來說,據估計有 1%的北歐人後代對愛滋病幾乎免疫──尤其是擁有瑞典血統的人,這些對人體免疫缺陷病毒(HIV)有高度免疫力的人身上都有一對突變基因,可防止免疫細胞產生一種名為 CCR5 的受體。這種受體就像一枚愛滋病毒專屬的鎖,一旦拿掉了這道鎖,愛滋病毒就無法闖入而佔領細胞。

耐人尋味的是,儘管 HIV 是相當年輕的病毒,但研究人員透過分子考古學, 估計此突變其實大約在中世紀時就已經出現。科學家認為此基因突變很可能是演化來幫助我們抵禦天花或痢疾的,這兩種都是千萬年來帶給人類無數苦難的恐怖疾病。

目前已知還有其他突變也提供了我們對疾病的抵抗力。舉例來說,身上帶有囊腫性纖維化突變基因(但非患者)的人更能抵抗霍亂等導致脫水的腸道疾病。 另外,遺傳了單個鐮狀細胞貧血症突變染色體的人(具有兩個突變染色體才會成為患者)也可能因此對瘧疾更有抵抗力。

但了解上述情況的成因是另一回事。穆勒說,儘管過去十年來,科學家在醫學基因體學的領域多有突破,也更了解疾病及疾病的成因,卻仍無法清楚了解為什麼一種主導血紅素(血液中輸送氧氣的分子)部分編碼、名為「α鏈」的基因一旦突變,便可能幫助我們抵禦多種傳染病。

-----廣告,請繼續往下閱讀-----
Smallpox_virus
天花病毒目前無任何療法,只能接種預防。出自http://commons.wikimedia.org

種族抵抗力?

要明白戰勝疾病之道的關鍵,就是找出哪些人對抗疾病的表現最好,然後再研究原因。舉例來說,伊波拉病毒橫掃西非,儼然所向披靡,各界也持續殷切研發疫苗和有效的治療方法,但有個族群卻似乎對伊波拉病毒有與生俱來的抵抗力。

法國科學家在一項研究中發現,非洲中西部國家加彭的鄉村聚落中約有 15% 的人具備伊波拉抗體──其中有一些地區從未爆發過伊波拉疫情。科學家認為, 這些人很可能接觸過伊波拉病毒,或許是接觸了帶原狐蝠的唾液。科學家發現, 比起生態較不多樣的湖濱地帶,森林地區居民的伊波拉抵抗力較優異(某些村落甚至高達 33.4%),因為這些地方有蝙蝠等伊波拉病媒動物棲息。

不同種族對疾病的抵抗力各有差異,這點並不陌生,但基因如何影響人類對疾病的易感性,我們現在才開始了解。英國研究發現,來自印度半島的男性罹患心血管疾病的比例較高,而出身愛爾蘭和蘇格蘭的人則有較高機率死於癌症。

出生於加勒比海的男性死於中風的機率比一般人口高 50%,但華裔的男女性罹患心絞痛和中風的比例較低。且在這些研究中,抽菸、血壓、肥胖和膽固醇等已知的風險因子都無法解釋上述族群差異。

-----廣告,請繼續往下閱讀-----

接著在 2013 年,北美科學家發現種族和抗體之間有個令人玩味的連結。他們發現人類許多抗體基因的表現及其能抵禦的對象都因人而異,亦即儘管我們接受針對大眾設計的藥物、治療和疫苗,但人人對病原體與疾病仍有獨一無二的反應。

抗體通常由一對免疫球蛋白、重鏈和一對輕鏈組成,而研究人員針對人類第 14 號染色體中由一百萬個核苷酸排列而成的免疫球蛋白重鏈基因區域進行定序,並有了迷人的發現。紐約西奈山醫學院的博士後研究員柯瑞.渥森(Corey Watson)表示:「我們以現有知識為基礎進行研究,發現人類基因體中免疫球蛋白重鏈基因座的 DNA 序列有些區段會缺失或新增插入──該區域正決定了抗體基因數量和多樣性。」他指出:「而這特徵很可能有種族差異。」

科學家很久之前便已經知道,免疫球蛋白重鏈基因座能有 50 多種抗體基 因,供 B 淋巴細胞抵禦各種感染和疾病;而渥森的研究團隊進一步篩選 425 位 亞裔、非裔和歐裔受試者的染色體,找到抗體基因有 11 個可能的 DNA 重要缺失和插入,且某些情況下影響了疾病易感性。

渥森強調:「目前一切才起步,但這些研究成果意味著,各種族過去在自然環境中接觸的特定病原體,增加了這類 DNA 的插入和缺損的頻率,進而影響了後代對疾病之罹患率。」

-----廣告,請繼續往下閱讀-----

「在抗體研究領域中,『發掘中和流感抗體』等研究非常重要,因為這類研究指出了免疫球蛋白重鏈遺傳變異的重要功能,並且用來對付一種非常重要的傳染病──流行性感冒,」他說,「這類成果也顯示,我們思考免疫反應時,可能需要將遺傳變異的資訊納入考量──特別是用來找出高風險群,或人口中哪些族群能受益於更精確的標靶治療。」

渥森說,目前他沒有發現整個族群對特定疾病有抵抗力的例子。「但大家確實推測,群體中就是有人對特定疾病的抵抗力高人一等。」他補充說明,在某些情況下,遺傳變異有時在各族群中發生的頻率也會有差異。「但抵抗力是來自遺傳或其他潛在因素則說不準,」他指出。

穆勒也同意。「一個族群接觸一種新的病原體後會發生什麼事,很大一部分取決於病原體的類型,以及我們(包括個人與族群)是否曾接觸過相近的病原體,」 他表示,「甚至面對一些我們已經逐漸了解的疾病,好比地中海貧血,我們知道越多,便發現有待探索推敲的也越多。」

本文出自《探索頻道雜誌國際中文版》2015 年 03 月號第 26 期

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
探索頻道雜誌_96
10 篇文章 ・ 12 位粉絲
《探索頻道雜誌》以說故事的方式,將複雜艱深的主題轉變成輕鬆有趣的文章,主題包羅萬象,涵括自然、探險、科技、藝術、歷史、環境、旅遊、文化和趣聞軼事等,以科學和人文角度滿足你的好奇心。雜誌滿載大篇幅的彩色實景照片,讓視覺娛樂更豐富。閱讀《探索頻道雜誌》,給你嶄新視野,探索無限可能。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
為什麼沒症狀也要做胃鏡?醫師揭胃癌早期的沉默風險
careonline_96
・2025/06/20 ・2154字 ・閱讀時間約 4 分鐘

圖 / 照護線上

「有位 60 多歲的男士,因為持續嘔吐、胃酸逆流來就醫。」義大癌治療醫院內科副院長饒坤銘醫師表示,「檢查發現胃部有個很大的腫瘤,而且已經造成阻塞,食物幾乎完全無法通過,附近的淋巴結也都有轉移,確定診斷為晚期胃癌。」

經過討論後,患者決定接受免疫合併化學治療。饒坤銘醫師說,完成一個療程後,胃部腫瘤明顯縮小,患者也可恢復進食。再繼續治療一段時間後,電腦斷層檢查顯示腫瘤近乎消失,原本因胃部腫瘤成膽道阻塞而導致的黃疸也消退了。從發現晚期胃癌至今大約兩年,患者持續在門診追蹤治療。

近年來臺灣的胃癌發生率逐漸下降,但是由於許多病人在確診時已是晚期,而且患者多為高齡族群,導致死亡率仍相對較高。

早期胃癌沒有明顯症狀,隨著病情進展,患者可能會出現上腹疼痛、腸阻塞、出血、黑便或貧血等症狀。由於早期症狀不明顯,讓許多病人延遲就醫,直到病情嚴重才尋求醫療協助,使得治療成效較差。

-----廣告,請繼續往下閱讀-----

胃癌患者多數為高齡族群,這些患者往往伴隨其他慢性病如高血壓、心臟病等,讓治療的複雜性大幅增加。

年紀越大,罹患胃癌的風險越高,其他的危險因子包括幽門螺旋桿菌、抽菸、醃漬類食物、家族病史等。

「定期接受胃鏡檢查,有助於提早發現胃癌,早期接受治療能夠達到較好的預後。」饒坤銘醫師說,「沒有症狀的民眾大概在 50 歲以後至少先做一次胃鏡,後續可以每兩、三年追蹤一次胃鏡,如果有潰瘍、息肉、或胃酸逆流等狀況,追蹤胃鏡的頻率就會增加。」

早期胃癌的治療以手術為主,有機會達到治癒。接受手術治療後,醫師會根據病理報告來決定是否追加輔助治療。饒坤銘醫師說,如果是難以切除或已經擴散的晚期胃癌,便需要仰賴化學治療、免疫治療、標靶治療等全身性治療。

-----廣告,請繼續往下閱讀-----

近年來,免疫治療的角色越來越受到重視,免疫治療可以搭配化學治療、搭配標靶治療以提升治療成效。饒坤銘醫師說,如果在接受免疫治療後腫瘤縮小,患者也有機會再次評估接受手術治療的可能性。

免疫治療的機轉是利用免疫檢查點抑制劑去阻止癌細胞與免疫細胞的免疫檢查點接合。在正常狀況下,我們體內的免疫細胞具有辨識並毒殺癌細胞的能力,但是癌細胞若與免疫細胞的免疫檢查點接合,就會抑制免疫細胞的功能,而躲過免疫細胞的攻擊。免疫治療的藥物能夠阻止癌細胞與免疫細胞的免疫檢查點接合,讓免疫細胞恢復正常功能,便能夠辨識並毒殺癌細胞。

圖 / 照護線上

臨床試驗結果顯示,晚期胃癌患者接受免疫合併化學治療的總存活率優於單化學治療。饒坤銘醫師說,病患一年存活率提升至約 50-60%,兩年存活率則提升至約 30%。

晚期胃癌使用免疫合併化學治療已納入健保給付,只要符合健保給付條件,便可以申請使用,幫助提升晚期胃癌治療成效並減輕患者的經濟負擔。

-----廣告,請繼續往下閱讀-----

接受免疫合併化學治療時,可能出現免疫治療與化學治療的副作用,包括噁心、嘔吐、倦怠、皮疹、腸胃不適等,患者需要有足夠的體力才有辦法接受治療。饒坤銘醫師說,請患者務必定期追蹤檢查,有任何不適都要向醫師反應。

筆記重點整理

  • 早期胃癌沒有明顯症狀,隨著病情進展,患者可能會出現上腹疼痛、腸阻塞、出血、黑便或貧血等症狀。定期接受胃鏡檢查,有助於提早發現胃癌,早期接受治療能夠達到較好的預後。
  • 早期胃癌的治療以手術為主,有機會達到治癒。接受手術治療後,醫師會根據病理報告來決定是否追加輔助治療。如果是難以切除或已經擴散的晚期胃癌,便需要仰賴化學治療、免疫治療、標靶治療等全身性治療。
  • 免疫治療的角色越來越受到重視,免疫治療可以搭配化學治療、搭配標靶治療以提升治療成效。
  • 臨床試驗結果顯示,晚期胃癌患者接受免疫合併化學治療的總存活率優於單化學治療。病患一年存活率提升至約 55%,兩年存活率則提升至 28%。
  • 如果在接受免疫治療後腫瘤縮小,患者也有機會再次評估接受手術治療的可能性。
  • 晚期胃癌使用免疫合併化學治療已納入健保給付,只要符合健保給付條件,便可以申請使用,幫助提升晚期胃癌治療成效並減輕患者的經濟負擔。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
0

文字

分享

0
0
0
小變化大「紋」章 千變萬化的摩爾紋
顯微觀點_96
・2025/06/19 ・2639字 ・閱讀時間約 5 分鐘

本文轉載自顯微觀點

圖 / 顯微觀點

你是否也有這樣的經驗?當紗窗與紗窗相疊,會看到兩個窗紗上的線條浮現出波浪般的有趣圖案;抑或是當你拿著相機對著電腦或電視螢幕拍照時,老是出現惱人的鋸齒或水波狀條紋。這些都是摩爾紋(Moiré Pattern),是當兩個週期性結構重疊時產生的現象。

Moiré在法文中是「雲紋」的意思,用來指稱一種紋路類似於水波的紡織品,最早這種紡織品是由絲作成,後來也用棉線或人造纖維來呈現相同的效果。一開始呈現波光的摩爾條紋圖案是將一塊織物壓在另一塊織物上產生,現在多透過稱為軋光(calendering)的加工技術或改變編織物經線和緯線張力而產生。

大多數摩爾紋是由線條組成的圖形產生的,但線條並非絕對必要;只要是兩層具有相似但不完全相同的週期性圖案,可以是直線、曲線、波浪形或任何其他幾何形狀,重疊時所產生視覺干涉都可能形成這樣的視覺效果。而這樣的視覺效果不僅可用於藝術呈現,若仔細探究其原理,還可廣泛應用於精密量測領域,甚至在顯微術的改良上也佔有一席之地。

-----廣告,請繼續往下閱讀-----
摩爾紋最簡單形式是兩組等距平行線的疊加。圖片來源:MOIRÉ PATTERNS. Scientific American, 208(5)。
摩爾紋最簡單形式是兩組等距平行線的疊加。圖 / MOIRÉ PATTERNS. Scientific American208(5)。

摩爾紋最簡單形式是兩組等距平行線的疊加。當一組直線的間距與同一組直線不同時,就會產生由不相交平行線組成的「節拍」變化,間距有所改變。這樣的例子可以在搭車經過垂直平行欄杆時發現:每當較近的欄桿「追上」另一個欄桿的空隙時,會看到線條明顯變寬,產生不同的「節拍」。

當兩組線條間距不同但仍保持平行,摩爾紋的週期可由以下公式計算,

D=d1⋅d2/∣d1−d2∣

其中:

  • D:摩爾紋的間距(放大的效果)
  • d1​ 和 d2:兩組線條的原始間距

而根據計算公式,兩組線條的間距(週期)越接近,放大倍率就越大。

-----廣告,請繼續往下閱讀-----

除了平行線的間距放大效果之外,當一組等距直線與不相交的平行線以小角度相交時,就會出現簡單的摩爾條紋。而當使用光柵並隨著角度轉動,便可以看到不同的條紋,再配合數位影像處理系統,就能用來研究材料的微觀形變。

平行線條隨角度轉動,可以看到不同的圖案。圖片來源:MOIRÉ PATTERNS. Scientific American, 208(5),
平行線條隨角度轉動,可以看到不同的圖案。圖 / MOIRÉ PATTERNS. Scientific American208(5)。

摩爾紋的神奇放大術 解密細微結構

由於摩爾紋可以藉由線條的間距、角度差異改變放大倍率,因此 1874 年英國物理學家瑞利勳爵(Lord Rayleigh)提出可以利用這樣的疊紋現象量測物體的形變量。

摩爾紋的放大效應不僅能讓我們看到更大的圖案,還能讓我們見微觀世界的秘密,也因此摩爾紋也可用來觀察晶體的晶格圖案。

晶格圖案由晶體的旋轉結構產生,任何擾亂這種規律性的錯位都會在圖案中表現出來。其隱含的放大倍率使得人們能夠看到小於單一原子直徑或小於 1 埃單位(Å,10–10 m)的錯位,比電子顯微鏡的解析能力還要高。

-----廣告,請繼續往下閱讀-----

除此之外,摩爾紋對晶體學的研究也可透過分析複雜的方程式來推測晶體結構。晶體結構的不同相位關係相當於改變兩個周期圖形形成摩爾紋,分析重疊晶格所產生的摩爾條紋,就可以推斷晶體的排列方式、缺陷以及其他結構特徵。例如當兩層石墨烯以微小角度扭轉堆疊時,會形成長周期的摩爾超晶格結構;而透過觀察摩爾條紋的周期性和對稱性,就能研究雙層石墨烯的扭角和相應的電子結構特性與超導現象。

摩爾紋的效應也用來改良顯微術。相較於其他超解析顯微術仰賴利用空間或時間調節螢光團的分子狀態,結構化照明顯微鏡(SIM)則是利用具有結構的光柵圖案作為照明源來激發螢光樣品,這些結構圖案與樣本中的細微結構相互作用時會產生摩爾紋。透過改變光柵圖案的相位方向,擷取一系列的影像資訊再加以運算、重建還原出樣本結構,以突破傳統光學極限。

加上摩爾紋的效應僅發生在焦平面上,因此可以達到和共軛焦顯微鏡一樣的光學切片效果,可用於研究有厚度的樣本。雖然這種技術需要收集多張影像,相比於傳統共軛焦顯微鏡需要較長的曝光時間,卻能快速計算完成,因此也適用於研究活細胞的動態行為。

不過,摩爾紋也可能成為困擾,前面提到,當我們對著電腦或電視螢幕拍照時,也常會出現水波狀的線條。這種現象在過去使用底片相機時基本上不會出現,但使用數位相機卻常發生。

-----廣告,請繼續往下閱讀-----

因為底片相機是利用布滿均勻感光粒子的底片一次接收所有光來呈現影像;數位相機的感光元件則是一塊一塊、像網格一樣的接受光線。而除了一般視線所見的線條等幾何圖形疊加會造成摩爾紋外,感光元件像素的空間頻率與影像中條紋的空間頻率接近時也會產生意外的摩爾紋。

攝影時若要避免摩爾紋產生,可以透過調整拍照手法,例如調整拍攝距離、角度,或是製造淺景深的方式讓條紋密集度下降。另外也可使用低通濾鏡(Optical Low Pass Filter, OLPF)屏蔽高頻率光波,達到削弱摩爾紋干擾的效果。

摩爾紋這種看似簡單的視覺現象,但無論是在科學、技術還是藝術領域的應用卻千變萬化,連藝術家也常利用摩爾紋設計視覺藝術作品,讓靜態的圖案隨著觀者的移動而變化,增添互動性。下次在日常生活中觀察到這些奇妙的條紋時,不妨停下腳步感受一下其中奧秘,或是也可拿起麥克筆和塑膠片,從簡單的線條開始,利用摩爾紋創造出更多不可思議的圖案吧!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。