0

0
0

文字

分享

0
0
0

抗病基因的秘密:侵入者與宿主

探索頻道雜誌_96
・2015/04/08 ・3934字 ・閱讀時間約 8 分鐘
024-037 抗病基因的秘密7
巨噬細胞吞噬細菌,這是免疫系統對感染的反應之一。出自《探索頻道雜誌國際中文版》,點擊看看它在雜誌裡的樣子。

侵入者和宿主

儘管致命疾病看似想殲滅所有病人,但其實並非如此。事實上,每當免疫系統遭受攻擊時,侵入者和宿主之間就會展開軍備競賽。

穆勒解釋,以瘧疾為例,人類免疫反應和瘧原蟲(引發瘧疾的寄生蟲)的交互作用,維繫了人類和寄生蟲之間的平衡。「如果一種具備特定基因的寄生蟲變得普遍,就會有比較多人接觸到這種寄生蟲,從而演化出免疫力,」穆勒說明, 「如此這種寄生蟲就比較難在群體中傳播而存活,這會對該種寄生蟲施加選擇壓力,使其調整基因結構。」

穆勒說,這種過程稱為平衡性天擇,我們與古老的病原體之間常有這種關係。瘧疾其實可由多種不同的近親瘧原蟲傳播,穆勒指出,其中「間日瘧原蟲是比惡性瘧原蟲古老的人類寄生蟲,與我們一起演化的歷史較長」。他補充說明, 如此久遠的關係造成的結果就是,雖然間日瘧原蟲也可能導致病重和死亡,但機率比較晚出現的惡性瘧原蟲低得多。

至於相對年輕的伊波拉病毒不久前才從果蝠跳船到猿猴和人類身上。根據世界衛生組織(WHO),大猩猩和黑猩猩等靈長動物都是使人類罹病的可能傳染源。然而穆勒指出,新的研究資料顯示這些靈長目動物跟我們一樣,都是「偶然宿主」,他說,「換言之,這些靈長動物感染並傳播了伊波拉病毒,但並非製造病毒的『常備宿主』。」他說明,目前認為伊波拉病毒最初的傳染窩是果蝠──而食用果蝠很可能是疫情爆發的原因。

伊波拉是相當晚近的病原體,這似乎能說明此種病毒為何如此致命。他指出:「伊波拉病毒和人類之間尚未彼此適應,因此病起來會非常嚴重,致死率很高,接著高致死率就會對人類的基因體施加選擇壓力──可能也就會對伊波拉的基因體施加選擇壓力,」他補充,「因為對病原體來說,通常殺死宿主並不是理想的演化結果。

800px-Ebola_virus_virion
在穿透式電子顯微鏡下的伊波拉病毒超微結構。出自http://commons.wikimedia.org

代代相傳

無論在哪個人類群體中,感染疾病的人口百分比很大一部分取決於病原體傳播的難易度。流行性感冒傳播迅速,且多數人都經常接觸這種病毒,因此通常只會產生溫和的感染症狀;某些突變的流感病毒對人則更有殺傷力,好比一戰後逾 5 億人罹患的「西班牙流感」就是一例,當時共造成 5000 萬到 1 億人死亡,另外新型流感(H1N1)更在 2009 年的大流行中奪走超過 20 萬 3000 人的性命。

「舉例來說,罹患瘧疾的機率取決於蚊子的數量和大家被叮咬的頻率,」穆勒解釋,「在傳染迅速的熱帶地區,多數人都會感染,而首次感染瘧疾的成年人若未經治療,死亡率約是 15%到 20%,兒童則稍低。」穆勒說,這個比例經過遺傳適應會大大降低。「族群很快能獲得對(致命) 瘧疾的免疫力,到第二次患病時的死亡機率就大幅下降,待罹病三到五次後,致死率已經近乎零。」

霍亂弧菌。出自《探索頻道雜誌國際中文版》,點擊看看它在雜誌裡的樣子。

當然也有人無論在多惡劣的條件下都不會感染。不久前,人類基因體的解碼揭示了抵抗疾病能力的驚人事實。聲譽卓著的《自然》期刊於 2014 年 10 月號發表一篇由瑞士科學家主導的跨國團隊研究,此研究說明了為何某些人能迅速中和流感病毒──這類病毒一直長伴人類左右,而我們對它們也瞭若指掌。

原來中和病毒的是一些會附著在血球凝集素(haemagglutinin)上的抗體。 血凝素是病毒表面呈釘狀突起的蛋白,能牢結細胞中特定的醣鏈,像把尋找鎖孔的鑰匙,一旦找到,血凝素便附著在細胞上,然後像木馬屠城般釋出其他蛋白, 操控細胞的運作。

然而血凝素卻也是病毒的罩門。這支跨國團隊的科學家發現,某種抗體經過一次突變後便能中和多種流感病毒,方法是牢結於血凝素蛋白的特定部位。製造這種抗體需要一種叫 VH1-69 的基因片段,這種基因片段以兩種形式出現在人體中,其中一種可以產生前述能中和多種病毒的抗體──而擁有這種基因的人頗多。有些人缺乏這種基因片段,無法產生此抗體,但仍能結合其他基因片段,製造出抵抗流感的抗體,但是過程較費時,效果也不一定那麼好。科學家現在希望運用這項發現來研發疫苗,誘發廣效性的流感抗體反應。

但同時我們仍得感謝祖先已經賜給我們能抵禦多種感染的抵抗力,我們之所以擁有與生俱來的遺傳抵抗力,是因為先人接觸過這些病原體或其近親。此外, 突變也可能自發產生──我們也可能在偶然之中獲得防護,只不過這類自發性的突變在特定疾病爆發、經過天擇之前通常十分罕見。

穆勒說,這類突變能幫助我們打各式各樣的仗,有些戰役我們甚至渾然不覺。他表示:「許多突變能夠保護我們不被疾病奪走性命,這類突變不只影響基因對特定病原體的表現,還能幫助我們抵禦多種病原體入侵──甚至是我們從未碰過的種類,這現象就稱為交叉抵抗性。

舉例來說,據估計有 1%的北歐人後代對愛滋病幾乎免疫──尤其是擁有瑞典血統的人,這些對人體免疫缺陷病毒(HIV)有高度免疫力的人身上都有一對突變基因,可防止免疫細胞產生一種名為 CCR5 的受體。這種受體就像一枚愛滋病毒專屬的鎖,一旦拿掉了這道鎖,愛滋病毒就無法闖入而佔領細胞。

耐人尋味的是,儘管 HIV 是相當年輕的病毒,但研究人員透過分子考古學, 估計此突變其實大約在中世紀時就已經出現。科學家認為此基因突變很可能是演化來幫助我們抵禦天花或痢疾的,這兩種都是千萬年來帶給人類無數苦難的恐怖疾病。

目前已知還有其他突變也提供了我們對疾病的抵抗力。舉例來說,身上帶有囊腫性纖維化突變基因(但非患者)的人更能抵抗霍亂等導致脫水的腸道疾病。 另外,遺傳了單個鐮狀細胞貧血症突變染色體的人(具有兩個突變染色體才會成為患者)也可能因此對瘧疾更有抵抗力。

但了解上述情況的成因是另一回事。穆勒說,儘管過去十年來,科學家在醫學基因體學的領域多有突破,也更了解疾病及疾病的成因,卻仍無法清楚了解為什麼一種主導血紅素(血液中輸送氧氣的分子)部分編碼、名為「α鏈」的基因一旦突變,便可能幫助我們抵禦多種傳染病。

Smallpox_virus
天花病毒目前無任何療法,只能接種預防。出自http://commons.wikimedia.org

種族抵抗力?

要明白戰勝疾病之道的關鍵,就是找出哪些人對抗疾病的表現最好,然後再研究原因。舉例來說,伊波拉病毒橫掃西非,儼然所向披靡,各界也持續殷切研發疫苗和有效的治療方法,但有個族群卻似乎對伊波拉病毒有與生俱來的抵抗力。

法國科學家在一項研究中發現,非洲中西部國家加彭的鄉村聚落中約有 15% 的人具備伊波拉抗體──其中有一些地區從未爆發過伊波拉疫情。科學家認為, 這些人很可能接觸過伊波拉病毒,或許是接觸了帶原狐蝠的唾液。科學家發現, 比起生態較不多樣的湖濱地帶,森林地區居民的伊波拉抵抗力較優異(某些村落甚至高達 33.4%),因為這些地方有蝙蝠等伊波拉病媒動物棲息。

不同種族對疾病的抵抗力各有差異,這點並不陌生,但基因如何影響人類對疾病的易感性,我們現在才開始了解。英國研究發現,來自印度半島的男性罹患心血管疾病的比例較高,而出身愛爾蘭和蘇格蘭的人則有較高機率死於癌症。

出生於加勒比海的男性死於中風的機率比一般人口高 50%,但華裔的男女性罹患心絞痛和中風的比例較低。且在這些研究中,抽菸、血壓、肥胖和膽固醇等已知的風險因子都無法解釋上述族群差異。

接著在 2013 年,北美科學家發現種族和抗體之間有個令人玩味的連結。他們發現人類許多抗體基因的表現及其能抵禦的對象都因人而異,亦即儘管我們接受針對大眾設計的藥物、治療和疫苗,但人人對病原體與疾病仍有獨一無二的反應。

抗體通常由一對免疫球蛋白、重鏈和一對輕鏈組成,而研究人員針對人類第 14 號染色體中由一百萬個核苷酸排列而成的免疫球蛋白重鏈基因區域進行定序,並有了迷人的發現。紐約西奈山醫學院的博士後研究員柯瑞.渥森(Corey Watson)表示:「我們以現有知識為基礎進行研究,發現人類基因體中免疫球蛋白重鏈基因座的 DNA 序列有些區段會缺失或新增插入──該區域正決定了抗體基因數量和多樣性。」他指出:「而這特徵很可能有種族差異。」

科學家很久之前便已經知道,免疫球蛋白重鏈基因座能有 50 多種抗體基 因,供 B 淋巴細胞抵禦各種感染和疾病;而渥森的研究團隊進一步篩選 425 位 亞裔、非裔和歐裔受試者的染色體,找到抗體基因有 11 個可能的 DNA 重要缺失和插入,且某些情況下影響了疾病易感性。

渥森強調:「目前一切才起步,但這些研究成果意味著,各種族過去在自然環境中接觸的特定病原體,增加了這類 DNA 的插入和缺損的頻率,進而影響了後代對疾病之罹患率。」

「在抗體研究領域中,『發掘中和流感抗體』等研究非常重要,因為這類研究指出了免疫球蛋白重鏈遺傳變異的重要功能,並且用來對付一種非常重要的傳染病──流行性感冒,」他說,「這類成果也顯示,我們思考免疫反應時,可能需要將遺傳變異的資訊納入考量──特別是用來找出高風險群,或人口中哪些族群能受益於更精確的標靶治療。」

渥森說,目前他沒有發現整個族群對特定疾病有抵抗力的例子。「但大家確實推測,群體中就是有人對特定疾病的抵抗力高人一等。」他補充說明,在某些情況下,遺傳變異有時在各族群中發生的頻率也會有差異。「但抵抗力是來自遺傳或其他潛在因素則說不準,」他指出。

穆勒也同意。「一個族群接觸一種新的病原體後會發生什麼事,很大一部分取決於病原體的類型,以及我們(包括個人與族群)是否曾接觸過相近的病原體,」 他表示,「甚至面對一些我們已經逐漸了解的疾病,好比地中海貧血,我們知道越多,便發現有待探索推敲的也越多。」

本文出自《探索頻道雜誌國際中文版》2015 年 03 月號第 26 期

相關標籤:
文章難易度
探索頻道雜誌_96
10 篇文章 ・ 10 位粉絲
《探索頻道雜誌》以說故事的方式,將複雜艱深的主題轉變成輕鬆有趣的文章,主題包羅萬象,涵括自然、探險、科技、藝術、歷史、環境、旅遊、文化和趣聞軼事等,以科學和人文角度滿足你的好奇心。雜誌滿載大篇幅的彩色實景照片,讓視覺娛樂更豐富。閱讀《探索頻道雜誌》,給你嶄新視野,探索無限可能。

0

8
0

文字

分享

0
8
0

地震規模越大,晃得越厲害?

鳥苷三磷酸 (PanSci Promo)_96
・2021/09/16 ・3706字 ・閱讀時間約 7 分鐘

本文由 交通部氣象局 委託,泛科學企劃執行。

某天,阿雲跟阿寶分享了一個通訊軟體上看到的資訊:

阿雲:「欸,你知道最近有個傳言說,花蓮有 7.7 級地震,如果發生的話台北會有 5.0 級的震度耶!」

阿寶:「蛤?那個傳言也太怪了吧,應該是把規模和震度搞混了!」

震度:量度地表搖晃的單位

確實常常有人把地震的規模跟震度搞混,實際上,因為規模指的是地震釋放的能量大小,所以當一個地震發生時,它的規模值已經決定了,只是會因為測量或計算的方式不同,會有些許的數字差異,而一般規模計算會到小數點後第一位,故常會有小數點在裡面。然而震度指的意思是地表搖晃的程度,度量表示方式通常都是以「分級」為主,比如國外常見、分了 12 級震度的麥卡利震度階,就是用 12 種不同分級來描述,而中央氣象局目前所使用的震度則共分十級,原先是從 0 級到 7 級,而自 2020 年起,在 5 級與 6 級又增了強、弱之分,也就是震度由小而大為 0-1-2-3-4-5弱-5強-6弱-6強-7 等分級,所以在表示上我們以整數 + 級或是強、弱等寫法,就可以區分規模和震度,不被混淆了!

而為什麼專家常需要強調震度和規模不一樣?那是因為震度的大小,是受到許多因素的影響。地震發生後,造成地表搖晃的主要原因是「地震波」傳來了大量能量,規模越大的地震,代表的就是地震釋放的能量越大,就像是你把擴音的音量不斷提高時,會有更大的聲音傳出一般。所以當其他的因素固定時,確實會因為規模越大、震度越大。

可是,地震波的能量在傳播過程中也會慢慢衰減,就像在演唱會的搖滾區時,在擴音器旁往往感覺聲音震耳欲聾,但隔了二、三十公尺之外,音量就會變得比較適中,但到了會場外,又會變得不是那麼清楚一樣。所以無論是地震的震源太深、或是震央離我們太遙遠,地震波的能量都會隨著距離衰減,一般來說震度都會變得比較小。

「所以,只要把那個謠言的台北規模 5.0 改為震度 5 弱,說法就比較合理了嗎?」阿雲說。

「可是,影響震度的因素還有很多,像是我們腳下的岩石性質,也是影響震度的重要因素。」阿寶說。

場址效應:像布丁一樣的軟弱岩層放大震波

原本我們都會覺得,如果地震釋放能量的方式就像是聲音或是爆炸一般,照理說等震度圖(地表的震度大小分布圖)上會呈現同心圓分布,但因為地質條件的差異,分布上會稍微不規則一些,只能大致看出震度會隨著離震央越遠而越小。地震學上有一個專有名詞叫做「埸址效應」,指的就是因為某些特殊的地質條件下,反而讓距離震央較遠的地方但震度被放大的地質條件。其中最常見的就是「軟弱岩層」和「盆地」兩種條件,而且這兩種還常常伴隨在一起出現,像是 1985 年的墨西哥城大地震,便是一個著名的例子。

影片:「場址效應」是什麼? 布丁演給你看

墨西哥城在人們開始在這邊發展之前,是個湖泊,湖泊中常有鬆軟的沉積物,而當湖泊乾掉之後,便成了易於居住與發展的盆地。雖然 1985 年發生的地震規模達 8.0,但震央距離墨西哥城中心有 400 公里,照理說這樣的距離足以讓地震波大幅衰減,而地震波傳到盆地外圍時,造成的加速度(PGA)大約只有 35gal,在臺灣大約是 4 級的震度,然而在盆地內的測站,卻觀測到 170gal 的 PGA 值,加速度放大了將近五倍,換算成震度,也可能多了一至二級的程度,也造成了相當程度的災情。盆地裡的沉積物,就像是裝在容器裡的布丁一樣,受到搖晃時,會有更加「Q 彈」的晃動!

1985 年墨西哥城大地震的等震度圖。圖/wikipedia

因此,在臺灣,雖然臺北都會區並沒有比其他區有更多更活躍的斷層,但地震風險仍不容小覷,因為臺北也正是一個過去曾為湖泊的盆地都市,仍有一定程度的地震風險,也需要小心來自稍遠的地震,除了建築需要有更強靭的抗震能力,強震警報能提供數秒至數十秒的預警,也多少讓人們能即時避災。

斷層的方向與震源破裂的瞬間,也決定了等震度圖的模樣

阿雲似懂非懂的接著問:「可是啊,為什麼有的時候大地震的等震度圖長得很奇怪,而且有些時候震度最大的地方都離震央好遠呢!也太巧合了吧?」

「這並不是巧合,因為震央下方的震源,指的其實是地震發生的起始點,並不是地震能量釋放最大的地方啊!」阿寶繼續解釋著。

「蛤!為什麼啊?」阿雲抓抓頭,一邊思考著。

地震是因為地下岩層破裂產生斷層滑動而造成的,雖然不是每個地震都會造成地表破裂,但目前科學家大多認為,地震的破裂只是藏在地底下,沒有延伸到地表而已,而且從地震的震度,也可以看出地底下斷層滑移的特性。

斷層在滑動時,主要的滑動和地震波傳出的地方,會集中在斷層面上某些特定的「地栓」(Asperity)之上,這些地栓又被認為「錯動集中區」,而通常透過傳統的地震定位求出來的震源,其實只是這些地栓中,最早開始錯動的地方。但實際上,整個斷層錯動最大的地方,往往都不會在那一開始錯動的地方,就像是我們跑步時,跑得最快的瞬間,不會發生在起跑的瞬間,而是在起跑後一小段的過程中,而錯動量最大的區域,才會是能量釋放最大的地方。而或許是小地震的地栓範圍小,震央幾乎就在最大滑移區的附近,因此也看不太出來,通常規模越大,震源的破裂行為會隨著時間傳遞,此效應才會越明顯。

震源與震央位置示意圖。圖/中央氣象局

那麼斷層上的地栓位置能否確認?這仍是科學上的難題,但近年來科學進展已經能讓我們透過地震波逆推斷層上的錯動集中區,至少可以透過地震波逆推斷層破裂滑移的型式,得以用來比對斷層破裂方向對震度分布的影響。以 2016 年臺南—美濃地震為例,最大錯動量的地區並不在震央所在的美濃附近,而是稍微偏西北方的臺南地區,也就是因為從地震資料逆推後,發現斷層在破裂時是向西北方向破裂。而更近一點的 2018 年花蓮地震,錯動量大、災害多的地方,也是與斷層破裂方向一致的西南方。

一張含有 地圖 的圖片  自動產生的描述
2016 年臺南美濃地震的等震度圖。圖/中央氣象局

透過更多的分析,現在也逐漸發現破裂方向性對於大地震震度分布的影響確實是重要議題。而雖然我們無法在地震發生之前就預知地栓的位置,但仍可從各種觀測資料作為基礎,針對目前已知的活動斷層進行模擬,就能做出「地震情境模擬」,並且由模擬結果找出可能有高危害度的地區,就能考慮對這些地區早先一步加強耐震或防災的準備工作。

多知道一點風險和危害度,多一份準備以減低災害

但是,直到目前為止,我們仍無法確知斷層何時會錯動、錯動是大是小。科學能給我們的解答,只能先評估出斷層未來的活動性中,哪個稍微大一些(機會小的不代表不會發生),或者像是斷層帶附近、特殊地質特性的場址附近,或許更要小心被意外「放大」的震度。而更重要的是,當地震來臨前,先確保自己的住家、公司或任何你所在的地方是安全還是危險,在室內要小心高處掉落物、在路上要小心掉落的招牌花盆壁磚、在鐵路捷運上要注意緊急煞車對你產生的慣性效應…多一些及早思考與演練,目的就是為了防範不知何時突然出現的大地震,在不恐慌的情況下保持適當警戒,會是對你我都很重要的防震守則!

【參考文獻】

鳥苷三磷酸 (PanSci Promo)_96
4 篇文章 ・ 7 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策