Processing math: 1%

0

0
1

文字

分享

0
0
1

正妹的祕密-自拍角度剖析

活躍星系核_96
・2014/07/10 ・2259字 ・閱讀時間約 4 分鐘 ・SR值 516 ・六年級

文 / Jia-Bin Huang|伊利諾大學香檳分校電機工程學系博士候選人

大家都愛自拍,但為什麼有些人自拍出來的照片總是特別地好看?很明顯地自拍時相機與臉之間的相對角度佔了絕大部分的因素。打開網路搜尋,很快地就可以搜尋到非常多相關的擺姿勢技巧教學:

然而這些教學往往太過於抽象而不容易簡單地運用在日常生活中。我們心中不免疑惑,究竟要怎麼樣擺姿勢才是最好看的呢?不同於專家的意見,我們直接試著從資料中找出規律來。我們這裡選了三位網路正妹來做分析:

選擇這三位有兩個主要的原因:第一、她們在臉書上都擁有高人氣,表示大家都相當喜歡他們的狀態更新。第二、我們需要大量的資料進行分析以免得到不可靠的數據,三位正妹在臉書上千張公開自拍照片即成了有用的資料。

-----廣告,請繼續往下閱讀-----

資料處理

要分析正妹們自拍時如何擺POSE,我們得先從影像中估算臉與相機間的相對角度。大致上可以分為三個步驟:

  1. 首先用現成的軟體批次下載正妹們在facebook上公開的照片。
  2. 其次我們用Open CV中的人臉偵測軟體來自動地標示每張照片裡臉部的位置。
  3. 有了臉部的偵測,我們接著運用電腦視覺的技術來估算臉部3D的Pose。

在這裡我們使用空氣動力學中的俯仰(Pitch)、 扭轉(Yaw) 和橫擺(Roll)來表示物體(正妹)與觀測者(相機)間的相對角度。下圖我們借用飛機來解釋。

Credit: theboredengineers.com
Credit: theboredengineers.com

簡單來說,在人臉的情況下,Pitch指的是鼻尖指向相機下方或是上方。Yaw則是表示左臉或是右臉。Roll用來表示臉傾斜的角度。

Pitch、Yaw and Roll的一維邊際分布 (Marginal Distributions)

有了照片中估算的角度,我們可以用Kernel Density Estimation的方法來估計三位正妹各自的Pitch、Yaw and Roll一維的機率分布為何。結果請見下圖左側。 

-----廣告,請繼續往下閱讀-----
Julie
Julie Chang (張齊郡)
張香香
張香香
Mika (黃杏蕙)
Mika 黃杏蕙

從這些數據我們可以學到甚麼東西呢?

首先,我們可以看到三位正妹在俯仰Pitch (藍線)度的選擇上相當一致,絕大部分的自拍照都選擇將臉朝下約莫15 度左右的姿勢。這和一般人對於自拍的認知相符合,臉朝下自拍往往可以有瘦臉的效果。經由影像分析我們得到15度左右也許是最佳的結果。

第二,我們觀察到扭轉Yaw (綠線)角度上選擇有蠻大的差異。比如說,Julie Chang (張齊郡)習慣性地會將她的右臉面向相機,而張香香則是較喜歡露出她的左臉。然而,不論是傾向左臉或右臉,橫擺的角度大小通常為20度左右。也許在這樣的角度底下,可以讓自拍照片臉部特徵更加立體。至於個人左右臉哪個比較具吸引力,可能需要自己看鏡子練習一下才能得知了。

第三,三位正妹照相時橫擺Roll (紅線)的角度似乎沒有太大的變化,絕大部分的照片都在0度左右。不過還是可以從比較中還是可以觀察出些許不同。比如說Julie Chang (張齊郡)較偏愛在自拍中選擇較大的橫擺角度。

Pitch-Yaw 二維Distributions

雖然上面的一維機率分布較為簡單直覺,但是往往會過於簡化而忽略了資料中各維度相互的影響。我們在上圖右側畫出二維的分布。從中我們發現,Pitch-Yaw-Roll角度之間並不是相互獨立(Independent)或是無關(Uncorrelated)的。這驅使我們去更進一步了解正妹們究竟是如何擺姿勢。 我們用了Mean-Shift 演算法從一堆相片之中,找出機率分布中的mode。以下是Mean-Shift做分類的結果。

-----廣告,請繼續往下閱讀-----
Julie_Cluster
Julie Chang (張齊郡)
張香香
張香香
Mika 黃杏蕙
Mika 黃杏蕙

從資料中找出代表性的姿勢

有了從Mean-shift得到的Clustering,我們可以利用影像「平均」來視覺化我們找到具有代表性的自拍姿勢。下面我們對這三位正妹各選了12張代表性的自拍姿勢。

張齊郡(Julie Chang)
Julie Chang(張齊郡)
張香香
張香香
Mika 黃杏蕙
Mika 黃杏蕙

人臉姿勢的資料還可以做些甚麼呢?這裡有個簡單的應用。我們使用估計出來的角度做排序,就可以產生下面沿著不同POSE而改變的影像,也許可以方便大家觀賞正妹的照片,點選照片可連結到GIF檔圖集。

Julie Chang (張齊郡)
Julie Chang (張齊郡)
張香香
張香香
Mika 黃杏蕙
Mika 黃杏蕙

當然,從三位正妹的自拍照片我們很難去做明確的結論,希望同樣的技術可以運用在大量自拍高手的照片上,相信屆時我們將能從中發掘每種臉型最適合的自拍姿勢為何。

原文:What is the best pose for a selfie? [June 23, 2014]

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

0
1

文字

分享

1
0
1
「黃金」角度——長腿背後的秘密,原來網美和服飾店的是這樣辦到的?!|2021 數感盃|高中專題|金獎
數感實驗室_96
・2021/12/25 ・5320字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者:王浤齡、陳玟蓉、高珮珊/台北市立大同高級中學

數感盃青少年寫作競賽」提供國中、高中職學生在培養數學素養後,一個絕佳的發揮舞台。本競賽鼓勵學生跨領域學習,運用數學知識,培養及展現邏輯思考與文字撰寫的能力,盼提升臺灣青少年科普寫作的風氣以及對數學的興趣。
本文為 2021 數感盃青少年寫作競賽/高中組專題報導類佳作之作品,為盡量完整呈現學生之作品樣貌,本文除首圖及標點符號、錯字之外並未進行其他大幅度編修。

在拍照時,我們總是希望能夠自然地呈現出最漂亮的自己,但這是一件何其困難的事情。法國傳奇攝影師——羅伯特・杜瓦諾曾說:「如果我知道如何拍出好照片,那我每次都會拍出好照片了。」然而有沒有什麼拍攝方法,可以讓照片中的身材比例變得更完美呢? 

有一天,我和一群朋友到某間知名服飾店逛街,試穿今年流行的秋冬款,並拍照片比較看看,選出較適合自己的衣服。在過程中,我發現一個問題:「為什麼在店家試穿時,全身鏡映照出的自己總是比照片中好看?」

嘗試幾次後,我們發現這是因為自己的身材比例,在鏡子與照片中的呈現是不一樣的,服飾店內的全身鏡,總是使腿的比例看起來比較長。

圖/envato elements

於是我們開始好奇,拍照時要如何拍攝出如同店裡的全身鏡具有長腿效果的方法,以及,是什麼原因讓這間服飾店內的全身鏡會有這樣長腿的效果呢? 

-----廣告,請繼續往下閱讀-----

上網搜尋之後,發現在這個社群軟體發達的時代,網路上有許多人分享不用俢圖軟體,就能「拍」出完美比例的文章或是教學影片,其結論是:「把手機或相機傾斜一個角度,就可以讓人的腿在照片中的比例變長。」然而,所謂的「傾斜一個角度」到底是幾度,卻沒有網站提供。

事實上,每個人身高比例皆不相同,取景的遠近都不一樣,甚至使用的拍攝器材也不 盡相同,使這個「角度」也會因情況而有所不同。因此,我們試著用所學的數學工具,去推論出不同人在拍照時,手機應該要傾斜幾度才能達到想要的長腿效果? 

關於服飾店內全身鏡有長腿效果的原因,我在觀察這些鏡子後,發現它們都有傾斜(如圖一),而且與地面都是夾 80 度。這個傾斜角度到底有什麼樣的用意呢?我們試圖去解開這個業界沒有說出來的秘密。 

首先,我們先解釋物理上的「成像原理」。人的眼睛之所以能看到物體、相機可以拍到畫面,都是因為物體反射的光線,進入到眼睛內的視網膜、或是相機裡的底片後所成的「像」。

-----廣告,請繼續往下閱讀-----

成像的原理與國中理化所教的凸透鏡成像原理相同,是由三條光線所交會而成的像(圖二),其中平行光通過透鏡後會穿過焦點,而穿過焦點的光通過透鏡後會成為平行光,交會處就是成像地點;並且第三條穿過透鏡的直線光也會與前兩條相交,因此可以由物距與像距算出成像縮放的倍率。 

如果我們在成像位置放一個平面,當成像的平面與物體是平行時,像會與實物相似,但是上下顛倒;但是如果把成像平面傾斜一個角度的話,成像的比例就會因為傾斜的角度,而 與實物的原比例不同。 

我們想要研究相機傾斜角度對照片中人物的身材比例的影響。 

考慮拍攝時,相機高度與被拍攝者的肚臍位置相同,如上面圖三所示,點 D 為相機的焦點,物體反射的光線直線穿過 D點,在另一側的平面上呈現一個倒立的像。

-----廣告,請繼續往下閱讀-----

\overline{AC}  當成為一位站立著的被拍攝者, \overline{AB}  =b 為被拍攝者的頭頂到肚臍的長度,即為身長;而 \overline{BC}  =l 為被拍攝者的肚臍到腳底的長度,即為腿長; \overline{BD}  =d 為被拍攝者與相機的距離。

當成像平面垂直地面時,若把像距等比例放大到等於物距時(即是 \overline{DI}  =d ),則 \overline{HJ}  會是一個全等的倒立像,即 \overline{HI}  =l 為像的腿長、 \overline{IJ}  =b 為像的身長。

若把成像平面傾斜一個角度,轉成 \overline{EJ}  , 則像的身長會被拉成 \overline{IJ} \overline{FJ}   ,像的腿長會被拉成 \overline{IH}  → \overline{FE}  。

接下來,我們將推導出一條公式,可以算出相機該傾斜幾度,才能讓被拍攝者的身長及腿長呈現我們所想要的比例。 

-----廣告,請繼續往下閱讀-----
圖四

假設在照片中,身長比腿長的比例為 \overline{FJ}  : \overline{EF}  =1 : r,先求出 \overline{HD}  : \overline{HE}  。

如圖四,我們利用「孟氏定理」, ΔJEH 被直線 \overline{FD}  所截的線段比為

  \frac{\overline{JI}}{\overline{IH}}   \frac{\overline{HD}}{\overline{DE}}   \frac{\overline{EF}}{\overline{FJ}} =1   \Rightarrow   \frac{b}{l}   \frac{\overline{HD}}{\overline{DE}}   \frac{r}{1} =1,則  \frac{\overline{HD}}{\overline{DE}} = \frac{l}{br}

又因為圖三中, \overline{IH}  // \overline{EG}  ,所以 \frac{l}{br} =  \frac{\overline{HD}}{\overline{DE}} =   \frac{\overline{DI}}{\overline{DG}} =  \frac{d}{\overline{DG}}   \Rightarrow   \overline{DG}  =  \frac{bdr}{l}

-----廣告,請繼續往下閱讀-----

\overline{IG}  = \overline{DG}  – \overline{DI}  =  \frac{bdr}{l} -d

因為 ΔEFG ≈ ΔJFI,所以   \frac{\overline{IF}}{\overline{FG}} =   \frac{\overline{FJ}}{\overline{EF}} =   \frac{1}{r} ;可推得:

\overline{IF}  =  \frac{1}{(1+r)} \overline{IG}  = \frac{1}{(1+r)} ✕   \left ( \frac{bdr}{l}-d \right )

因此,若相機傾斜的斜率為 m,則

-----廣告,請繼續往下閱讀-----

  m=\frac{\overline{IJ}}{\overline{IF}}=\frac{b}{\frac{1}{(1+r)}\left ( \frac{bdr}{l}-d \right )}=\frac{(1+r)lb}{rbd-ld}

從這個公式可知,我們只要知道以下數據,代入公式之中即可算出相機的斜率:

若圖中 \overline{AJ}  的斜率與 \overline{CH}  (原文使用的是雙箭頭線段符號,但公式表中找不到,所以就先以線段符號代替)的斜率分別令成 mb ml ,則相機傾斜的斜率公式可用斜率簡化表示為

  m=\frac{(1+r)m_{b}m_{l}}{rm_{b}+m_{l}}

我們根據此公式進行以下實作。 

拍攝工具為 iPhone 手機,被拍攝同學的身體數據如下表一: 

-----廣告,請繼續往下閱讀-----

我們設定畫面高度與人物身高的比例黃金比例(約為 1:0.618),而由〈物距計算器〉網站,可算出此畫面下的拍攝距離為 144.7 公分。並且,我們希望拍攝出的身長與腿長也是黃金比 例,即   r=\frac{1}{0.618}=1.618

由表一,因為 mb = -身高 / 物距 =   \frac{-67.5}{144.7} ml = 腿長 / 物距 =   \frac{95.5}{144.7} ,所以帶入公式可得:

m=\frac{(1+1.618)\times \left ( \frac{-67.5}{144.7} \right )\times \left ( \frac{95.5}{144.7} \right )}{1.618\times \left ( \frac{-67.5}{144.7} \right )+\left ( \frac{95.5}{144.7} \right )}\approx 8.538

因此,拍攝時手機傾斜的斜率約為 8.538,換算成角度: 

8.538=tan\theta \Rightarrow tan^{-1}(8.538)\approx 83.3^{\circ}

所以手機在拍攝這位同學時應該要傾斜 83.3°。

下圖是手機傾斜前後拍照出來的照片效果對比: 

從右圖看得出來,照片中的腿部確實有拉長的效果,其比例為 1 : 1.84,但並非是當初我們給 定的黃金比例。這個原因是來自於 iPhone 手機鏡頭視角的限制,當手機傾斜時,放在腰部的高度,被拍者會無法全身入鏡。所以,我們將手機高度降低至能夠完全拍攝到整個人,因而導致加大拉長效果。

因此,我們建議在拍攝時,若需要降低手機高度,則手機與地面夾角,要比原計算出來的角度更接近 90° 一點。 

接下來,我們利用研究的結果去計算,各個年齡層與性別的人在拍照時,身長與腿長在照片中要呈現黃金比例,手機適當的傾斜角度分別為幾度。

下圖五,是內政部〈建築使用行為與本土人因工程關連性研究〉指出的 19 項人體計測尺寸中的部份數據;而下圖六,則是將圖表的數據進行以下的計算,去推論一般人平均的身長與腿長。

  • 膝蓋高度 − 膝膕高度 = 大腿厚度 
  • 坐高 − 大腿厚度 = 身長(頭頂到肚臍) 
  • 身高 − 身長 = 腿長 

把各個年齡層與性別的平均身長與腿長整理成下表二。最後,我們各別將數據代入公式計算得出,不同人在拍照時,手機的傾斜角度,如下表三所示。 

表格三中,65 歲以上的民眾要拍出黃金比例的手機角度比較垂直,是因為數據的統計有將駝背也考慮進去,導致統計出的結果,相對其它年齡層來說腿的比例較長。但普遍來說, 在未滿 65 歲的各個年齡層拍照時,手機傾斜角度分布在 65 ~ 70° 之間。

然而,考慮到手機傾斜時又要全身入鏡,需要降低手機拍攝的高度,會更加拉大腿長的比例,因此,一般人在拍照時,若想讓身長比腿長接近黃金比例的話,我們建議:

手機與地面的夾角以「70°」為最佳。

服飾業內不能說的秘密,全身鏡傾斜 80° 的原因!

在前文中,我們想探討第二個問題,是服飾店的全身鏡為什麼都與地面夾 80°。其斜置的原因,明顯是要讓腿看起比較長,但為何不用其它的角度而恰好是 80° 呢? 

斜鏡面會產生仰視效果,讓人感覺鏡中的人像向後仰,使腿的視覺效果變長。事實上, 長腿效果與我們研究的主題一致,同樣是實物(鏡中後仰的人像)與成像平面(視網膜)不平行,因此後仰角度與視覺比例的關係,符合前文推論的公式。

如下圖七所示,全身鏡傾斜 80° 後,由於鏡子和直立的人夾角 為 10°,因為鏡射原理,鏡子和像的夾角也為為10°, 所以像會傾斜 70°,且 ∠ACD = ∠AOB = 10° 。

實際到店家測量全身鏡前的走道寬度,約為 78 公分。也就是一般民眾會站在距離約 78 公分的位置使用全身鏡,即  \overline{DE} = 78,則 

78+  \overline{EC} =  \overline{DC} =  \overline{AC} cos(10º)

  \Rightarrow  78+  \overline{EC} = 2  \overline{BC} cos(10º)

  \Rightarrow  78+  \overline{EC} = 2  \overline{EC} cos(10º)

因此,可以算出  \overline{EC}=\frac{78}{2cos^{2}(10^{\circ})-1}\approx 83

所以當我們照鏡子時,眼睛與成像的距離為 78+83=161 公分。若成年女性(平均身長 75.6 公分、 腿長 81.8 公分)使用服飾店的全身鏡時,看到鏡中自己的比例(腿長 / 身長)為 r,則

  \frac{(1+r)\times \left ( -\frac{75.6}{161} \right )\times \left ( \frac{81.8}{161} \right )}{r\times \left ( -\frac{75.6}{161} \right )+\left ( \frac{81.8}{161} \right )}=tan(70^{\circ})\approx 2.747

  \Rightarrow r ✕ [(-0.4696) ✕ 0.5081+2.747 ✕ 0.4696] = 0.4696 ✕ 0.5081 + 2.747 ✕ 0.5081

  \Rightarrow r=\frac{0.4696\times 0.5081 + 2.747\times 0.5081}{ [(-0.4696)\times 0.5081+2.747\times 0.4696] }=\frac{1.63435446}{1.0.5138744}\approx 1.565

這個結果非常接近黃金比例。

用其它年齡層與性別的數據去計算,也可得到 r ≈ 1.618 ± 0.05

因此,我們發現服飾店會在店內全身鏡會斜置 80° 的原因,很可能是因為要讓顧客認為穿上自家的衣服後,會讓比例接近於黃金比例,以提升購買慾望。

結合我們計算的數據和實作的結果,可以得出一些結論:大多數的人拍攝時,如果想要拍出身體的比例接近黃金比例,手機需要傾斜的角度大約為 65° ~ 70°。若將傾斜時,可能會把手機高度降低的因素考慮進去,則是以 70° 為最佳角度。

下次拍照時,不妨也將手機傾斜成 70°,或許會有意想不到的效果!

參考資料

-----廣告,請繼續往下閱讀-----
所有討論 1
數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

2

12
1

文字

分享

2
12
1
「腦海中的自我」與真實的你差很大?——心像準確度與「自尊狀態」高度相關
Bonnie_96
・2021/12/09 ・2008字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

「回想一下你昨天晚餐吃了些什麼?」此時,你的腦海是不是開始浮現各種餐點的圖像,像是大阪燒、泡麵等等。而這就是心理學當中的「心像」(Mental Image)概念。但是如果問大家說,「回想你長什麼樣」,你出現的畫面會是什麼呢?這也成為研究者超好奇的事。

以前我們都曾在課堂中畫自畫像,看看旁邊繪畫技巧超厲害的同學,畫得有夠像。但再看看自己手中那張,內心只會驚恐地想說:這到底是誰?!

事實上,畫在紙上的自畫像,完全取決於個人的繪畫技巧。但是出現在我們腦海中的,基本上就可以忽略有沒有高超繪畫技巧的因素,而是與我們對自我的「心像」構成有關。

圖/Pexels

其實你的「心像自拍」,跟你只有 87 分像……

於是實驗開始!修但幾勒,你一定會問說,我腦中浮現的畫面,是要怎麼「實體」呈現出來?

-----廣告,請繼續往下閱讀-----

英國班戈大學(Bangor University)和倫敦大學( University of London)的心理學家就開發了一種方法,能夠簡單地讓你把腦海中的「自畫像」(或是自拍)形象化。

他們隨機給參與者兩張不同人臉,讓你選出「最接近自己長相」的那張。就在這不斷重複「人臉二選一」數百次後。實驗者就會將參與者選出所有「最接近自己長相」的照片全部綜合、平均起來,就變成每個人腦海中獨特的「自拍」。

照理來說,如果參與者都選出「最接近自己長相」的照片,那麼最終出現的那張會趨近「我們真實的長相」,對吧?!

但是,結果告訴我們只有87分像啊……因為最後呈現的照片,是會選出一張和自己長得不太一樣的人臉。

-----廣告,請繼續往下閱讀-----

對自我的看法,會強烈影響心中的自我形象

所以,為什麼我們腦海中的自畫像,會和真實的自己長得不一樣呢?其實,這和我們內心如何看待自己、覺得自己是什麼樣的人,有很大的關係。

在讓參與者不斷經歷「人臉二選一」的實驗後,實驗者讓他們都填寫人格特質和自尊相關的問卷,來了解在他們心中自己是什麼樣子的人。結果,非常有趣地是,「你覺得自己是什麼樣的人,會影響你如何想像自己的外表!」

在數據收集的初級階段,每個參與者的臉都被拍成了護照式的照片。(a)在髮際線周圍裁剪,去除無關的特徵。 (b)參與者在隨機產生的面孔之間進行選擇,以創建他們覺得看起來像自己的「自畫像」面孔。 隨後填寫問卷。(c)測量他們的人格特質(BFI-10)和自尊狀態(SSES)。在數據收集的第二階段,向 112 位評估者展示參與者的真實面孔和 「自畫像」面孔 。(d)評估者使用 BFI-10 來評估他們對兩張臉的每個個性特徵的感知程度。 參考資料

研究發現,參與者對自己的看法和信念,會強烈地影響他們如何對自己的外表想像。也就是說,如果參與者認為自己是一個外向的人,那麼他們在腦中浮現自己的臉,會比在其他人面前看起來更自信和善於社交。

你一定也聽過,不管是面試或是約會等,千萬記得一定要留下好的「第一印象」。而這和心理學中的初始效應(primacy effect)有關。因為在一開始所得到的資訊,往往會比後來得到的有更大的影響。

-----廣告,請繼續往下閱讀-----

身為論文作者之一馬諾斯‧察基里斯(Manos Tsakiris)就解釋,「當我們看到一張新的臉時,其實在不到幾秒的時間,我們就已經根據我們所接收到的資訊,形成對某個人的印象。」

重點來了,不論對方所形成的第一印象是否正確,它都會影響我們對別人的看法。而同樣地,這件事情也反映在這項實驗中,因為我們對自己的印象,會影響我們在腦海中是如何看待自己的。

臉只有 87 分像……那身材呢?

如果說想像和真實的自己,長得不一樣。那我們對自己想像中的身材,也會有落差嗎?

在另個實驗中,繼續利用「身材二選一」的方式,最後會形成一張你所有「最接近自己身材」的照片全部綜合、平均起來。結果,這張在參與者腦海中「想像的身材」還是明顯長得不一樣啊……。

-----廣告,請繼續往下閱讀-----

同樣,參與者對自己身材的態度和信念,會強烈地影響我們對於身材的想像。值得注意的是,對自己的外表或身材,有負面情緒或態度的人,傾向會覺得自己的身材比真實的自己要胖很多。

我們對於自己的外貌和身材的想像,大多時候和「真實的自己」其實會有落差。而會造成差距的因素,就是和我們的內心怎麼看待自己有很大的關係。

而實驗者也提到,希望這項研究未來能夠幫助到身體畸形恐懼症(body dysmorphic disorder, 主要指患者會過度關注自己的身材和外表等缺陷,並過度誇張的臆想、甚至出現強迫行為等)等臨床中的評估。

圖/GIPHY
  • Maister, L., De Beukelaer, S., Longo, M. R., & Tsakiris, M. (2021). The Self in the Mind’s Eye: Revealing How We Truly See Ourselves Through Reverse Correlation. Psychological Science. https://doi.org/10.1177/09567976211018618
-----廣告,請繼續往下閱讀-----
所有討論 2
Bonnie_96
21 篇文章 ・ 33 位粉絲
喜歡以科普的方式,帶大家認識心理學,原來醬子可愛。歡迎來信✉️ lin.bonny@gmail.com