Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

抗蟲作物的末日即將來臨?

葉綠舒
・2015/02/13 ・2698字 ・閱讀時間約 5 分鐘 ・SR值 555 ・八年級

若您聽過「基改作物」這個名詞,事實上不管它們被稱為轉基因作物(transgenic organisms),或是基改作物(genetically modified organisms,GMO),目前的基改作物,最大宗的大致上可以分為兩種:

1. 抗殺草劑:這部分目前在市面上主要是抗年年春(嘉磷塞,glyphosate)。
2. 抗蟲:這部分目前在市面上主要為帶有蘇力菌(Bacillus thuringiensis)的結晶蛋白(δ-endotoxin,俗稱Bt toxin)。

目前抗殺草劑的作物,由於雜草已經逐漸演化出對年年春的抗性,已漸漸失去神效;至於抗蟲作物呢?

source:wiki
source:wiki

首先我們來回顧一下抗蟲作物的歷史。蘇力菌最早用於有機農業,以噴灑孢子的方式來殺滅鱗翅目(Lepidoptera,如蝴蝶、蛾等)害蟲。抗蟲作物在1996年第一次上市,當時的作物僅含有單一結晶蛋白;但為了預防極可能發生(也真的發生了)的抗性,研究團隊開始發展含有多個結晶蛋白的抗蟲作物(pyramided Bt crops,以下略稱為多重抗蟲作物),並於2002年上市。

-----廣告,請繼續往下閱讀-----

在這六年間,難道沒有抗Bt害蟲出現嗎?答案是:有的。事實上,在1985年便已經發現對Bt產生抗性的印度谷螟(Plodia interpunctella)。因此,在抗蟲作物上市後,各國都要求種植抗蟲作物的農民必需設置隔離區(refuge)。隔離區是什麼呢?就是在種植抗蟲作物的田地旁邊,種植不帶有抗蟲基因的農作物。這些農作物提供害蟲生長繁殖的地區,當抗性害蟲出現時,由於基因突變通常頻率不高,因此在有隔離區的狀況下,抗性害蟲為少數,於是抗性害蟲有較高的機率與不具抗性的害蟲交配。在抗性基因為隱性突變的前提下,當抗性害蟲與不具抗性的害蟲交配後,所生出的子代便不具有抗性,當他們食用了抗蟲作物後,便會死亡。

印度谷螟。圖片來源:wiki
印度谷螟。圖片來源:wiki

但是,隔離區要奏效,必需要有許多因素配合。首先,隔離區要夠大(至少要佔農地的20%),如果不夠大、或是農民在隔離區噴灑農藥殺死害蟲,那麼隔離區就沒有用了。接著,基因突變的頻率要夠低,而且突變基因要是隱性。如果是顯性、或是突變的頻率偏高,那麼隔離區必需要擴大到至少為種植抗蟲作物的一半面積,才有可能延遲抗性害蟲的出現20年(這裡說的不是不會出現喔!)。再來是,不論在作物的哪一個階段,抗蟲作物裡面的結晶蛋白要能夠殺死幾乎全部的害蟲;也就是說,作物內的抗蟲蛋白不僅要有效,而且濃度要穩定。最後,如果抗性突變使害蟲在不含有抗蟲基因的作物上的競爭力減弱,這也可以使抗性害蟲晚些出現。

但是,目前已經知道,當作物開始開花結果的時期,抗蟲蛋白的濃度會降低。這時候就代表原先設計的隔離區要擴大了!可是隔離區越大,代表收益越差;因為隔離區就是要用來養蟲,所以在隔離區能收穫的農作物一定不多、賣相也差。

所以,農民們無不企盼著多重抗蟲作物的上市,能解決這些問題。不過,真的解決了嗎?

-----廣告,請繼續往下閱讀-----

答案是,在一些條件能配合的狀況下,多重抗蟲作物可以有較小(注意:不是沒有)的隔離區。

什麼條件呢?首先,隔離區當然還是不能噴農藥;接著,害蟲對於不同的結晶蛋白間,不存在著交叉作用(cross-reactivity)。最後,最好是所有的農田一次全部換成多重抗蟲作物。當然,基因突變率、突變基因為隱性或顯性、抗蟲蛋白的濃度的穩定性還是都要列入考慮的。

那麼,從2002年到現在,有新的抗性害蟲出現了嗎?

答案是:有,而且很多。將2005年與2010年相比,有五個區域(包括了南美洲、美國與印度)都出現了超過一半的害蟲出現抗性,這使得抗蟲玉米的功效變差了(下圖紅色部分)。而在2005年時,只有棉鈴蟲(Helicoverpa zea)出現抗性,但是在2010年時,除了棉鈴蟲以外,玉米秸稈螟(Busseola fusca)、西方玉米根蟲(Diabrotica virgifera virgifera)、斜紋夜蛾(Spodoptera frugiperda)、棉紅鈴蟲(Pectinophora gossypiella)都出現了抗性;而結晶蛋白依然有效的區域(下圖綠色部分),已由2005年的絕大多數,退到不到三分之一了。

-----廣告,請繼續往下閱讀-----
2005與2010年抗性害蟲出現情形。圖片來源:Nature Biotechnology
2005與2010年抗性害蟲出現情形。圖片來源:Nature Biotechnology

為什麼會這樣呢?簡單來說,人性。在多重抗蟲作物上市前的田間研究顯示,如果多重抗蟲作物與只含單一抗蟲基因的作物一起種植,產生抗性害蟲的機率會提高;於是建議一次要把所有的基改作物都換成多重抗蟲作物。但是,美國就是做不到,硬就是拖了八年才換完。所以,超過一半的害蟲出現了抗性的五個地區,美國就佔了三個。相對的,澳洲當年就是一次到位,全部換完,所以目前這些害蟲在澳洲依然對抗蟲玉米無奈何。

當然,這個調查也發現,許多地區的害蟲突變率,比原先設想中的要高。這麼一來,當初建立的電腦模型就要重來,當然隔離區也要擴大。

不過,也不全部都是壞消息。在另一個大型研究發現,最常見的突變發生在結晶蛋白的第二個區位(domain II)。結晶蛋白共有三個區位,其中第二與第三區位對結晶蛋白是否能與昆蟲的中腸細胞結合很重要。在第二區位發生突變,會使結晶蛋白無法與中腸結合,於是便失去效用。過去只知道第二區位很重要,但是在這個大型研究中發現,第三區位也有其重要性。因此,未來在設計新的結晶蛋白時,多留意第二與第三區位的相似性;不要把這兩個區位相似的結晶蛋白基因同時轉入作物,可以設計出較有效果的多重抗蟲作物。

聽來似乎抗蟲作物尚大有可為?不過,永遠都不要高估了人性。雖然澳洲模式告訴我們,只要所有的農民們一起合作,要讓抗蟲作物的抗蟲效果存續較長的時間,並非不可能;但研究團隊也發現,即使是相似度很低的結晶蛋白,交叉作用依然無法完全避免。而人性永遠都是難以預估的;筆者深深覺得,基改作物要能夠永遠在地球上睥睨群「蟲」,是不可能的事,或許更應該思考的事是:如何建立對大自然友善的生存模式吧?

最近義美的高總經理出面反對政府提倡基改作物,或許筆者漏看新聞,沒有看到政府提倡基改作物的消息;如此消息為真,筆者也非常的憂慮。為什麼呢?因為政府光是協調農民不要過度栽種高麗菜、柳丁等農作物都辦不到,如何能夠讓農民乖乖的在基改作物的旁邊設置隔離區?唉!

本文轉載自作者部落格

參考文獻:

  1. 2015/2/8。中央社。義美:政院領軍攻基改作物 禍害農地
  2. Bruce E. Tabashnik, Thierry Brevault & Yves Carriere. 2013. Insect resistance to Bt crops: lessons from the first billion acres. Nature Biotechnology. 31(6):510-521 doi:10.1038/nbt.2597
  3. Yves Carriere, Neil Crickmore & Bruce E. Tabashnik. 2015. Optimizing pyramided transgenic Bt crops for sustainable pest management. Nature Biotechnology.33, 161–168 doi:10.1038/nbt.3099
  4. McGaughey WH. 1985. Insect Resistance to the Biological Insecticide Bacillus thuringiensis. Science. 229(4709):193-5.
-----廣告,請繼續往下閱讀-----
文章難易度
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

2

28
4

文字

分享

2
28
4
餵飽全人類,需要她與她的科學——余淑美專訪
鳥苷三磷酸 (PanSci Promo)_96
・2022/03/29 ・5129字 ・閱讀時間約 10 分鐘

本文由 台灣萊雅 L’Oréal Taiwan 為慶祝「台灣傑出女科學家獎」15 周年而規劃,泛科學企劃執行。

  • 2014 年「台灣傑出女科學家獎」傑出獎第七屆傑出獎得主

余淑美帶我們走進她在中研院分子生物研究所的辦公室,小的讓我意外。一台小型的葉片式電暖器放在門邊,就佔掉了一大塊空間。「這是給植物保暖用的,因為最近比較冷。」我們這群採訪者擋在門口還來不及動作,貴為院士的她就俐落地收起電暖器的插頭,將其移到另一側。「這舊電暖器要移動有個角度,我比較知道怎麼推。」她隨即拉來兩張椅子招呼我們坐下,採訪這天下午一連多日的寒流稍退,冬陽在此時斜斜曬入,點綴著大小綠色植栽的辦公室,在我眼中突然像是森林一隅,變得好大。

氣候條件跟植物生長狀況息息相關,這點你知、我知,我們老祖宗也知,因此才有了一萬多年前,被某些學者指稱為「農業革命」的時代,越來越多人類族群放棄狩獵採集,發展農牧生活型態。只不過這革命因為各種因素,過程極為緩慢、停停走走有時甚至還逆轉,而且並不是只帶來益處……。一萬多年後的此刻,科學家對農業與農作物的理解比老祖宗高出何止百萬倍,但人口暴增、耕地破碎、過度施用肥料與農藥、土壤與水源污染、加上氣候變遷造成的高溫、乾旱、洪患、海平面上升等,就連像余淑美這樣最頂尖的科學家也擔憂。

但比起現在才在煩惱氣候變遷的你或我,她早就採取了行動。

-----廣告,請繼續往下閱讀-----
圖/余淑美提供

農業要發展,育種很重要

「農業其實跟我們生活息息相關,可是太廉價容易獲得,所以大家都不珍惜,辜負了辛苦的農夫。」余淑美院士小時候就跟許多同年代的孩子一樣,在農村成長,在水稻田邊玩邊學。雖然家庭經濟狀況不佳,但父親一直鼓勵她讀自己真正有興趣的,不要為了家境委屈求全,因此她從北一女畢業後,雖然同時考上國防醫學院護理系,可以畢業即就業,但從小就喜歡植物的她,最後選擇就讀中興大學植物病理學系,就此一直鑽研水稻,勤奮不懈,成為國際上舉足輕重的「水稻教母」。

就像 SARS-CoV-2 這新冠病毒不斷變異,余淑美說所有的生物基因都在不斷變化,就像人類的癌症來自基因突變,而現代社會能豐衣足食,也要感謝育種學家跟農夫持續透過作物雜交來改造基因。她說最早的玉米跟現在長得一點都不一樣,只有幾顆種子,而且又硬又難吃。不過透過化石證據,發現 7,000 年前到 500 年前這段時間的玉米不斷經過育種,外表已跟目前非常接近。另外,如今我們常吃的蔬菜,像是高麗菜、白菜、花椰菜、青花菜、羽衣甘藍……等,雖然名字跟外型差很多,但祖先其實都是十字花科的油菜,基因定序後會發現只有非常小部分不同,這都是育種多年的成果。

然而「育種多年」,也就等同速度太慢,而且也不一定想育什麼種,就出什麼種。過程艱辛也使得田間育種的人才越來越少。因此,新的生物技術接連誕生,有的使用化學藥劑,有的則透過放射線來誘發基因突變,速度雖然快了一些,但依舊是隨機突變,會出現難以預料的性狀,而且通常是我們不想要的。

基因轉殖,或你可能更常聽見的「基改」,則是速度更快更精準的育種方式,也是余淑美實驗室的專業。「我們知道很多水稻基因的功能,非常容易複製及插進好的作物品種基因體裡面。目前有技術可以精確地控制要插在哪裡,不會影響基因體其他基因的功能。」相較於其他育種方式起碼要六年到八年,余淑美表示基因轉殖兩到三年就可以完成,創造了已廣泛種植的基改玉米跟黃豆。因此,現代育種需要結合分子生物學、生物化學、物理化學、生物資訊學、組織培養技術、農園藝、病蟲害防治等技術,才能在短時間培育出好品種。余淑美說目前更已進入電腦育種時代,透過運算讓已經縮短的育種時間更短、產出更佳。

-----廣告,請繼續往下閱讀-----

30 年來投入水稻研究,從 1993 年完成全世界第一個利用農桿菌轉殖水稻基因,到建立臺灣水稻突變種原庫、參與國際 C4 水稻計畫,余淑美持續突破,於前年(2019)10 月發表在《美國國家科學院期刊》加長版(PNAS, Plus)的研究,更發現了水稻抵抗逆境的關鍵機制。雖然這份研究在實驗時還是用基因轉殖技術,但隨著基因編輯技術發展盛行,她也向我們透露實驗室已經用基因編輯成功實現。

「我們平常追求 100 分的產量,可是如果雖只有 90 分的產量,水卻只用三分之一,經濟成本是很划算的,我們希望將來可以推這些技術。」對基因編輯稻米新品種,她樂觀期待。

基改的難題:要克服的不只有技術,還有人心

余淑美相信基因轉殖改良的作物能夠為世界創造更高的價值。以玉米這種易受玉米螟、玉米穗蟲加害的主要作物為例,農民可以噴灑蘇力菌(Bacillus thuringiensis Berliner, Bt)來防治。這種細菌的孢子會產生結晶蛋白,當幼蟲吃進腸道裡,會導致腸道穿孔,而且不同菌種有特定的殺蟲對象,能避免誤殺益蟲,也是對人類很安全的一種農藥。孟山都公司以此原理,透過基因轉殖技術,讓植物自行產生這種抗蟲蛋白,就可以連蘇力菌都不用噴了,而且一樣安全。
除了玉米之外,大豆、棉花、油菜、馬鈴薯也都陸續由生物科技公司開發出基改抗蟲品種,因此大幅降低了農藥的噴灑量達 3/4,間接保護了農人與消費者的安全,降低了環境保護跟生產的成本。另外像是香蕉萎縮病、木瓜輪點病等極難防治的疾病,影響貧窮地區的人民甚鉅,透過基因轉殖創造新品種也是最有效的作法。余淑美認為有些生技公司儘管名聲不好,但其對全球大量減少使用殺蟲劑的貢獻足以獲得諾貝爾和平獎。

科技上不斷突破、讓育種比過往更快更精準,降低農藥與肥料施用,從而減少環境影響;增加產量跟營養,讓食物更便宜可親。但在許多國家地區的政策跟民眾觀感中,基因轉殖作物始終過不了關,包括臺灣。

-----廣告,請繼續往下閱讀-----
攝影/呂元弘

余淑美認為,相較於其他更不精準的育種技術,基因轉殖作物受到的要求太高了。生物安全評估的成本一層層疊加,「所以你可能十塊錢的成本,一塊錢是研發,九塊錢是花在生物安全評估上。」她說,這也使得這遊戲只有大公司玩得起,有志創新的小公司反而被排擠。

雖然臺灣面對少子化、人口下降,但就全球來說,總人口依舊還在快速增加,往 95 億前進,即使是此刻,全球也有 10 億人處於飢餓狀態。而一份統整了 500 篇研究的報告,顯示糧食生產的速率完全趕不上人口成長,屢創紀錄的自然災害,如旱災、洪荒、野火、高低溫、病蟲害等,更讓余淑美估計糧食危機將提早到來。

以稻米來說,「日本原來的品種都比較適合低溫,現在溫度越來越高,他們到臺灣來要品種去做雜交,因為他們的稻米現在已經開始不耐高溫了。」她接著指出前年(2020)花蓮有機米也因為高溫產量減少四成,桃竹苗第二期稻作也因為乾旱而休耕,去年(2021)中部許多地方第一期也休耕。她表示其實只要政策願意開放,她有把握可以育出不需要用那麼多灌溉水的品種。

除了耐旱,耐鹽也是余淑美認為值得開發的特性。像是歐洲唯一的稻米區——法國與西班牙南部就遇到地中海海平面上升、鹽水侵襲的問題;同樣的問題在臺灣,余淑美指出也有 30,000 公頃的耕地地層下陷受鹽害,影響範圍從彰化到臺南,在這些地方耐鹽的品種就能派上用場。

-----廣告,請繼續往下閱讀-----

那現在最熱門的「基因編輯」呢?余淑美表示基因編輯的厲害之處,就是可以有效精準改變與改進基因,而且沒有外來基因,能夠提升消費者的接受度,她的實驗室也已經在做,但基因轉殖依舊是最能解決糧食問題的育種方式。余淑美認為,有機與基改其實訴求一致,都是要避免化肥跟農藥過量傷害環境與人體,尤其在臺灣每公頃農藥用量為亞洲第一的情況下,其實更該反思現行農法的問題。或許隨著教育、科普、跟糧食危機逼近,社會對基改作物的接受度也會逐漸提升吧!「我們家的豆腐都是挑基改的買喔!」她笑著說。

不斷前行的步伐與堅定的意志

除了力挺基改食材,身為研究糧食作物的生物學者,余淑美還有別的堅持,例如自己做飯。

「孩子小時候我都給他們每天帶便當。我雖然很忙,沒辦法幫他們做很多事,可是有些事情我很堅持。」余淑美回顧自己剛回國時的生活:兒子才滿月,女兒也只有兩歲,與先生趙裕展(同為中研院分生所研究員)互相配合,例如自己下午五點下班回家做飯,晚上八點回辦公室,換先生回家陪小孩,然後到十點換她回家顧小孩,輪到先生回辦公室繼續工作到十二點。

不過難以想像的是:回國 33 年,這般勤奮竟然一直延續至今!兩人如今還是每天早上九點半到辦公室,晚上抽空回家做飯、然後又回到辦公室,近半夜十一點半才回家。真的是連學生都不得不努力了。

-----廣告,請繼續往下閱讀-----

「我小時候媽媽身體非常不好,我從小學一年級開始就要做很多家事,洗衣燒飯。冬天很冷,屋瓦上都會結霜,還是要到溪邊去洗衣服。」也因此,即使研究工作再忙再累,余淑美或許早已習慣,做事極有效率。身為家中老大,下有三個妹妹、一個弟弟的長女,成長的年代也曾感受過被視為「賠錢貨」的社會氛圍。負面的刻板印象反而刺激了她,讓她更努力,要讓所有人看見女生可以做得跟男生一樣好。

攝影/呂元弘

2014 年,得到第七屆「傑出女科學家」的肯定,余淑美因此多了許多到高中女校演講的邀約。她總是以自身為例,鼓勵學生要衝破家庭與學校教育給他們的窠臼,就像她父親告訴她的:想要唸、可以唸就往上唸,沒有一定要幫家裡賺錢或是早點出來工作。而當了母親的余淑美也總是鼓勵一對兒女盡量接觸各種興趣,自行探索方向。

就算在原本的路上撞了牆,或是想換條路走,余淑美也覺得沒什麼關係,但她建議學生要把握原有的基礎,在那之上學習新東西,才能為自己加分。「因為這種跨領域的人才其實更少,在這麼競爭的環境下,更可以凸顯你的能力。」她表示。

相較於其他科學領域,生命科學領域堪稱性別平衡,以余淑美所在的中研院分子生物研究所來說,男女比就幾乎各半,工作領域也無同工不同酬的問題。另外她認為,相較於美國女性婚後大多冠夫姓,臺灣沒有這情形,算是很不錯。

-----廣告,請繼續往下閱讀-----

不少女性研究者在家庭裡負擔較多的工作,例如照顧長輩跟小孩,她認為的確比較辛苦,也因此另一半非常重要。她就有一些學術領域的朋友,因為先生跟家庭不太能諒解她們長時間待在實驗室而起衝突。她自己分析,即使生命科學領域女性跟男性比例平衡,但有許多女性未婚或沒有生育;若是成家有小孩的,另一半也幾乎都是學者,比較能體諒研究者的需求。由於分子生物領域非常重人力,進行各項精細實驗皆仰賴研究者的細心與耐心,加上也不太耗體力,她認為很適合女性。然而在她的學生當中,也會有女學生遇到職涯與家庭的兩難考驗。余淑美當然會予以鼓勵,但若她們仍舊放棄,在尊重其決定之餘,有時也不免覺得可惜。她認為每一個人都應該有權利追求自己的興趣,人生才有意義,但仍需要一定的幸運。

如今帶領多國學生的余淑美,笑著說實驗室像是聯合國一樣,巴基斯坦、印度、越南等許多南亞與東南亞國家的學生紛紛慕名而來,一方面是因為在這些國家,稻米是很重要的作物,他們也覺得很有發展前景,另一方面,她說,因為臺灣的學生想研究農業科學的越來越少了,因此國際學生佔比就不斷提高。

「我很喜歡手機定時欸,可以訂好多不同的時間提醒我。」在跟我們分享她怎麼安排每天的工作時間與指導學生的節奏時,余淑美眼睛一亮地冒出這麼一句話,讓人覺得十分可愛。這句單獨聽起來一點也沒什麼的話,放在脈絡裡,其實是這位頂尖科學家 30 多年來日復一日、研究、教學、與服務不歇的證據。不論是在對基因轉殖的認識、採納上,還是對農業與糧食安全的體悟上,或許臺灣還需要一些時間趕上她的腳步,只不過,到時候余淑美肯定又已經走得更前了吧!

台灣傑出女科學家獎邁入第 15 年,台灣萊雅鼓勵女性追求科學夢想,讓科學領域能兩性均衡參與和貢獻。想成為科學家嗎?妳絕對可以!傑出學姊們在這裡跟妳說:YES!:https://towis.loreal.com.tw/Video.php

水稻基因改造的專家!中研院余淑美院士-第七屆台灣傑出女科學家獎得主/YouTube

本文由 台灣萊雅 L’Oréal Taiwan 為慶祝「台灣傑出女科學家獎」15 周年而規劃,泛科學企劃執行。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
所有討論 2
鳥苷三磷酸 (PanSci Promo)_96
227 篇文章 ・ 315 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
想瞭解基改作物嗎?先從農桿菌談起
衛生福利部食品藥物管理署_96
・2016/08/30 ・2832字 ・閱讀時間約 5 分鐘 ・SR值 560 ・八年級

本文由衛生福利部食品藥物管理署委託,泛科學企劃執行

文/葉綠舒

基改作物是什麼?它的全名是 Genetically Modified Organisms,簡稱為 GMO。基因改造生物中的植物,如作為食物,即是基因改造作物。

從 1994 年美國食品藥物管理局核准供人食用的基改作物——蕃茄一號(Flavr SavrTM)開始,到 1996 年第一個上市的耐除草劑作物,基改作物已經逐漸進入我們的生活中,由少到多,甚至可說是無所不在!根據 Clive James 2015 年的年度報告摘要,基改作物的種植面積由 1996 年的 170 萬公頃增加到 2015 年的一億七千萬九百七十萬公頃,足足增加了一百倍之多!這意味著全球二十八個不同國家,超過一千八百萬名農夫,不約而同地決定種植基改作物。

-----廣告,請繼續往下閱讀-----

AAEAAQAAAAAAAALSAAAAJDMzMGJjOTFkLTNhZTAtNGRkMC1iZWE3LWE2ZTlhNTM2NGNjZg
1994 年開發出來的莎弗番茄(Flavr Savr tomato)能較一般番茄慢腐壞。

不過,雖然全球有那麼多農民選擇基改,四大植物生技公司也努力地推展基改,但是基改作物似乎沒有那麼受歡迎?在林富士老師的《食品科技與現代文明》裡面的〈基因改造食品風險與管理〉中提到,歐洲一直不願意全面開放含有基改作物成分的食品進入;而在台灣的許多團體,無不反對基改作物引進台灣。多年來,基改這個議題不論是贊成或反對,兩方陣營在科學上的唇槍舌戰可說是絕無冷場。

在這一片喧囂之中,是否曾有在一旁觀戰的民眾思考過:究竟什麼是基改作物呢?基改作物是如何產生的?

一切開始於對抗農桿菌的奇幻旅程

這就要從農桿菌(Agrobacterium tumefaciens)開始說起了。從前從前,植物跟我們一樣,身邊圍繞著好菌與壞菌,而農桿菌就是壞菌之一。打從聖經時代開始,由農桿菌導致植物生成的冠瘤(crown gall tumor)便已經受到注意;最早對於冠瘤的文字記載,則要從 1853 年開始算起。科學家們看到同樣長在森林裡的樹木,為什麼有些長瘤、而有些則沒有呢?他們也注意到,雖然植物長瘤不致命,但是長了冠瘤的果樹產量會降低,於是便開始動手要找出造成冠瘤的禍首。

-----廣告,請繼續往下閱讀-----

640px-Agrobacterium_tumefaciens_Forsythie
農桿菌造成的冠瘤。圖/By C-M – Own work, CC BY-SA 3.0, wikimedia commons.

Fridiano Cavara 在 1897 年從葡萄的冠瘤中分離出了農桿菌,後來的許多研究也發現,農桿菌喜歡從植物的傷口進入,所以只要在寒流來襲前妥善地將果樹接近地面的樹幹包覆起來,減少樹木表皮因凍傷造成破裂,便可以有效防止農桿菌的感染。

雖說預防勝於治療,不過每次寒流來襲之前就要幫果樹穿棉襖,也實在太累了;於是有些科學家便開始尋找可以消滅農桿菌的方法。

孫子說:「知己知彼,百戰不殆。」想要消滅敵人,當然要瞭解敵人囉!於是歐洲、美國的科學家們,便開始了一場調查農桿菌的奇幻旅程~

-----廣告,請繼續往下閱讀-----

第一個突破來自美國。1958 年,洛克斐勒大學的 Armin Braun 博士發現,冠瘤細胞可以在沒有提供植物激素的培養基裡不斷分裂生長。由於這是一般的植物組織無法獲取的技能,因此 Braun 博士便假設,農桿菌一定有給冠瘤細胞一些特殊的武器,否則這些冠瘤細胞如何能生生不息呢?

到了 1970 年,法國的 George Morel 發現冠瘤細胞會製造農桿菌愛吃的食物 octopine 和 nopaline。由於被不同農桿菌感染的植物的冠瘤,所產生的食物也不同,更鞏固了科學家們的想法:農桿菌提供了植物細胞生生不息的技能。

植物基改元年

真正的突破來自 1977 年。華盛頓大學的「農桿菌女王」Mary-Dell Chilton 博士與她的團隊在不眠不休的努力下,證明了農桿菌在感染植物時,會將自己 Ti(Tumor-inducing,Ti)質體上的一段基因植入植物的基因體。同時她的團隊(以及另一個團隊)也建立了將 Ti 質體分裂為二,讓科學家們可以更方便的將要植入的基因放進去的方法。

如果有「植物基改元年」的話,那一定就是 1983 年了。那年的一月十八日,Chilton 博士與美國孟山都(Monsanto)公司的幾位研究員在邁阿密冬季學術研討會上,分別發表了對農桿菌的研究。

-----廣告,請繼續往下閱讀-----

560px-Transfection_by_Agrobacterium.svg
圖/By Chandres – Own work, CC BY-SA 3.0, wikimedia commons.

原來,農桿菌在感染植物時,會將一段位於自己的 Ti 質體(上圖中的 C)上的片段(上圖中 C 之 a)插入植物的基因體內(上圖中的 7)。這段片段含有合成植物激素所需的酵素,以及合成農桿菌愛吃的食物的酵素。被感染的植物細胞,因為合成了更多的生長激素,於是細胞分裂便開始加快了。

因為植物有細胞壁,產生的腫瘤並不會轉移,所以植物的冠瘤不致命,冠瘤以外的組織也作息如常;但是插入冠瘤細胞的基因,卻會跟著這些冠瘤細胞代代相傳,永遠都不會離開了。

點擊看大圖。

-----廣告,請繼續往下閱讀-----

出乎意料的「天然基改」

由於通常在自然界被感染的植物細胞都是體細胞,而非生殖細胞,所以農桿菌的感染不會遺傳;但也有例外!

在 2015 年華盛頓大學的科學家們,在分析不同栽培種的蕃薯(Ipomoea batatas)的基因體時,卻意外地發現我們吃的蕃薯竟然是「被天然基改」的!這些蕃薯的基因體內,含有農桿菌用來合成植物生長素(auxin)的基因!

台農10 31 57 66 73號

蝦米!剛剛我們說的基因片段不會遺傳被打臉了嗎?究竟這些基因是怎麼跑到我們的蕃薯裡面去的呢?目前科學家推測最有可能的是,在「從前從前」農桿菌感染了蕃薯的塊根(農桿菌是土壤中的微生物,所以要感染植物塊根其實挺容易),後來農桿菌不見了,但是農桿菌的基因不會離開;接著因為農夫在選種時都會選擇長得快又大的,而帶有農桿菌基因片段的塊根,因為製造了額外的生長素,當然長得快又大,於是在選種時,就這麼被人擇特別保留下來了。

讀者看到這裡可能會問:這件「天然基改」的事發生多久呢?答案是:不知道,因為華盛頓大學研究團隊發現他們手上的 291 個蕃薯的栽培種,全都可以找到農桿菌的序列喔!

-----廣告,請繼續往下閱讀-----

當然,現在所謂的基改作物裡面所帶的基因,與這些蕃薯裡面帶有的農桿菌基因是不同的;基改作物裡面所含有的基因,目前大概可以分為兩大類:抗蟲(帶有蘇力菌的結晶蛋白基因)與耐嘉磷塞除草劑(glyphosate,台灣商品名稱為年年春)。

蘇力菌(Bacillus thuringiensis)的結晶蛋白簡稱為 Cry,常以 Bt(蘇力菌的簡稱)作為暱稱,會使吃下它的昆蟲腸穿孔而死,但是我們的胃因為會分泌胃酸,反而會把結晶蛋白給消化掉,使得結晶蛋白對我們無害;而嘉磷塞除草劑會抑制植物的 EPSPS 酵素,使植物無法合成必需胺基酸;但農桿菌的 epsps 基因所產生的 EPSPS 酵素不怕嘉磷塞除草劑,因此只要將農桿菌的 epsps 基因植入植物,植物便立刻獲取不怕嘉磷塞除草劑的技能了!

讀者看到這裡,應該可以從農桿菌歷史淵源的開端,瞭解基因改造的基本原理以及基因改造的歷史緣由。

註:EPSPS 酵素為縮寫,中文學名為: 5-烯醇丙酮莽草酸-3-磷酸 (EPSP)合成酶

-----廣告,請繼續往下閱讀-----

參考文獻:

  1. Clive James. 2016. ISAAA Brief 51-2016: 20th anniversary (1996-2015) of the global commercialization of biotech crops and biotech crio highlights in 2015.
  2. 林富士。2010。 食品科技與現代文明。稻鄉出版社。
  3. Tina Kyndt, Dora Quispe, Hong Zhai, Robert Jarret, Marc Ghislain, Qingchang Liu, Godelieve Gheysen, and Jan F. Kreuze. 2015. The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop. PNAS. published ahead of print, doi:10.1073/pnas.1419685112
-----廣告,請繼續往下閱讀-----
衛生福利部食品藥物管理署_96
65 篇文章 ・ 24 位粉絲
衛生福利部食品藥物管理署依衛生福利部組織法第五條第二款規定成立,職司範疇包含食品、西藥、管制藥品、醫療器材、化粧品管理、政策及法規研擬等。 網站:http://www.fda.gov.tw/TC/index.aspx