有時候即溶咖啡滿足不了一些人的嘴巴,萃取咖啡Espresso需要高溫高壓像是旅行的時候可能就沒有辦法。這影片介紹了利用手壓的方式來達到高壓,最高可以到16大氣壓。打好氣之後只要加入熱水就可以享受香濃的咖啡,這種產品市面上已經在販賣了,因為不用接電,也是另一種省電的選擇。
轉載自 科學影像
本文與 威力暘電子 合作,泛科學企劃執行。
想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。
今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?
時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。
如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!
工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。
從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。
第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。
然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?
為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。
更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。
另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。
到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。
可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。
而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。
乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。
這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。
然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:
既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低
有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。
然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。
未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。
不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。
威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。
毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!
討論功能關閉中。
咖啡因是一種分子上的模仿大師。人類醒著的每一分鐘,腦中都會不斷增加腺苷(adenosine)這種化學物質,像是沙漏的沙子不斷累積,能夠告訴我們已經醒著多久,且會讓大腦運作逐漸放緩,創造出一種睡眠壓力,讓人體做好入眠的準備。所以醒著 12 個小時到 16 個小時,人就會感受到一種難以抗拒的誘惑,想回臥室躺著進入夢鄉。
然而,咖啡因的分子結構十分類似腺苷,能夠搶先一步與腺苷的受體結合,卻不會活化受體;這樣一來,反而是對這些腺苷受體形成一種化學封鎖。所以,只要你的腦中有大量咖啡因,腺苷就無法與受體結合,難以傳遞正常的訊號咖啡因就是靠著這種藥理作用來抑制睡意,使大腦保持警覺與專注。雖然腺苷依然不斷在大腦中堆積,只不過所發出的訊號就這樣被咖啡因給堵住了。但是,等到身體分解了咖啡因,腺苷就會宛如大壩潰堤,讓人感受到沛不可擋的睏意——這就是可怕的咖啡因崩潰(caffeine crash)。
植物合成咖啡因,原本是做為一種天然的殺蟲劑,避免葉子或種子遭到啃食,甚至還能殺死昆蟲。但奇怪的是,像是包括幾種咖啡類與柑橘類植物在內,有些植物的花蜜也含有咖啡因,花蜜原本該是用來吸引昆蟲授粉的。實驗結果顯示,咖啡因能夠增強蜜蜂的嗅覺學習能力,讓蜜蜂更能記得這些花的氣味,於是不斷回訪這些有著咖啡香氣的花朵。也就是說,這些植物等於是讓蜜蜂吸了興奮劑,引誘它們成為自己忠實的授粉者;可以說,正是咖啡因讓蜜蜂願意不斷嗡嗡嗡上工。
咖啡因的另一個作用是增加依核裡的多巴胺濃度,同時也會提高多巴胺受體的敏感性。這會刺激我們前面提過的中腦邊緣報償路徑,讓人在喝到一杯好茶或咖啡的時候,感受到愉悅的好心情;但也會讓人上癮。人類之所以愛喝咖啡或茶之類的飲料,是因為這能夠刺激大腦、抑制睡意;而且只要一開始喝了,就會因為咖啡因成癮而讓人維持這樣的習慣。於是回過頭來,我們就看到咖啡因對歷史產生了長久的影響。
在啟蒙時代,咖啡在歐洲咖啡館裡刺激了知識份子的思想與話語;到了不斷變化的工業時代,則是茶讓英國工人階級的身心得以調適。工業革命淘汰了像是編織、打鐵這些傳統工藝,以龐大的機器加以取代。從煤氣燈到電燈泡,各種人造光源讓工廠開始能夠一路運作到深夜。而咖啡因不但能讓工人在單調無趣的工廠環境裡,維持清醒專注,連那些營養不良造成的飢餓感也能一併排除。茶裡面加的糖也能提供熱量,讓人在長時間的輪班期間維持體力。咖啡因就這樣將工人變成了更好的零件,更能配合那些永遠不知疲倦為何物的鋼鐵機器。
〔附注:出於類似的原因,戰爭時期的軍隊也會運用各種精神藥物。像是希特勒速度驚人的閃電戰,先是在 1939 年 9 月橫掃波蘭,接著在 1940 年初攻下法國與比利時。這一方面靠的當然是德意志國防軍裝甲師的機動性,坦克既配備了無線電裝置用於協調,還能得到德意志空軍轟炸機的空中支援。但另一方面,這項成功的背後還有另一項技術的支援:靠著合成興奮劑「甲基安非他命」(methamphetamine,分子結構類似腎上腺素),德軍能夠戰得更猛更久,而不會感覺精神倦怠或身體疲勞。安非他命的化學作用讓人進入高度警覺狀態,也大大提升了自信與攻擊性。閃電戰的成功,靠的其實也是部隊嗑了藥。就連希特勒本人也同時混打多種藥物(古柯鹼、甲基安非他命、睪固酮),提供作戰指揮時的體力。〕
所以講到工業革命,工廠與磨坊的動力靠的是蒸汽機,但如果是操作機器的工人,靠的燃料就是東印度公司帶來的茶葉、加上來自西印度群島的糖。於是,茶的歷史深深植根於對勞工的剝削——從印度的茶園、加勒比海的甘蔗栽培園、再到英國的工廠,都壓榨著這些工人所有清醒的時分。
如今,若想要控制我們的睡眠清醒週期(sleep-wake cycle),咖啡因仍然是一項重要工具。這個科技社會的步調太過急促,不允許我們被動順應自己的生物時鐘,得主動加以調整,適應數位時鐘的要求。而很多人靠的就是自行攝取咖啡因,在每天上班途中把自己叫醒、讓自己能在辦公桌前熬夜趕工,或是在長途飛行後,把生理時鐘同步到新的時區。很多咖啡因成癮者都能自己調整這種藥物的劑量,一方面巧妙發揮咖啡因的正面作用,讓自己更能面對現代世界對專注力的需求,另一方面也能避免過度攝入造成的負面作用,像是焦躁不安、心跳加速、胃部不適。
然而,咖啡因雖然讓我們得以抑制大腦發出的睡意訊號,卻也成了現代人常常睡眠不足的一大主因。咖啡和茶就這樣和人類玩著兩面手法:我們喝咖啡和茶,是為了緩解長期的嗜睡;但造成這種情形的元凶也正是咖啡因。事實上,我們早上會想趕快來杯咖啡,讓腦子清醒一點、或是提振精神,很多時候其實是在緩解一夜難眠的戒斷症狀。
——本文摘自《人類文明:生物機制如何塑造世界史》,2024 年 05 月,天下文化出版,未經同意請勿轉載。
討論功能關閉中。
上集,我們利用輸送現象,並建立模型,解釋了市售冷萃咖啡為什麼可能不是冷萃的原因。理論與模型終究是紙上談兵,複雜的現實情況必然無法用我們的簡單理論完美描述。
「一個好的模型,是帶來出乎意料成功的非現實簡化。1」
本集,我們就要透過實驗,來檢視簡化模型預測的咖啡濃度差是否跟實驗結果相似。這個實驗不需要任何實驗室儀器,只需要手機鏡頭跟圖片編輯軟體就能辦到!
若要辨認咖啡的濃度,在使用同一種咖啡豆的情況下,我們一般會很直觀的認為顏色深的咖啡比較濃,顏色淺的咖啡比較淡吧2!如果我們知道什麼濃度的咖啡會有什麼樣的顏色,當我們沖出一杯咖啡時,就能以顏色判別濃度,這就是「比色法」的概念。咖啡濃度與顏色之間的關係,從「檢量線」可看出來 。可想而知,檢量線如果準確,實驗結果就會比較準。因此,如何建立檢量線就很重要了!
要建立檢量線,我們可以透過「連續稀釋法」,先取得數個已知濃度的咖啡樣品。首先,我們以正常方式用 80℃ 熱水沖一杯咖啡,設定這個濃度為 1.0,也就是標準濃度。接著,取出一部分的咖啡與等量的水混合,稀釋後的咖啡濃度就是原本的一半,也就是 0.5。再將稀釋後的咖啡取出一部分與等量水混合,得到 0.25 濃度的咖啡,依此類推。
有了咖啡樣品,接著需要找到量化咖啡顏色的方式。相信大家都有使用小畫家的經驗吧!若用小畫家開啟一張照片,使用「顏色滴管(color picker)」就可以知道某個特定顏色的 RGB 值,也就將顏色量化了。
所以,我們可以將咖啡樣品用相同規格的透明容器裝起來,在相同的光源、背景、角度下用手機拍照,傳到電腦再用小畫家開啟,就能知道這些咖啡顏色的 RGB 值了。
不過,再仔細想想,你會發現幾個問題:
為了解決第一個問題,我們可以使用灰階照片。假設顏色深淺是濃度對應的指標,那麼將彩色照片轉為灰階就可以讓 RGB 三個數字一致,又不失顏色深淺的特徵。
至於第二個問題,我們可以使用數學界四大軟體之一的「Matlab」。軟體中的 Image Viewer 可以一次獲得指定範圍內每一像素的 RGB 值,對這些數字取眾數,就可以獲得比較具代表性的 RGB 數值了。
將樣本濃度與灰階後的 RGB 值3 繪於一張圖上,就得到了檢量線。
既然我們已經有了估測咖啡濃度的方法,現在就可以用不同溫度的水沖泡咖啡,來驗證實驗結果是否與模型相同。
首先,用 87.5℃4、80℃、25℃ 的水沖泡咖啡,並分別將咖啡拍照,轉灰階。接著用 Matlab 取得 RGB 值後,利用檢量線對應出相對濃度。最後,跟模型計算的數值比對。
T(℃) | 模型預測 | 實驗值 |
---|---|---|
87.5 | 1.676 | 1.780 |
80 | 1.000 | 1.000 |
25 | 0.119 | 0.196 |
表一、模型能合理預測不同水溫下的咖啡濃度。製表/作者
由表一可見,模型可以合理估算出實際沖泡的咖啡濃度,也再次強調,一個好的模型:是帶來出乎意料成功的非現實簡化!
看到這裡,或許你會覺得比色法實在太好用啦!是不是以後都不需要高階實驗儀器與方法,只要用比色法就能替所有化學物質定量了呢?當然不!
其實在這個簡易咖啡實驗中,我們能發現幾個顯而易見的問題:
1. 若要講究比色法的嚴謹定量,就只能使用在內插的範圍,絕不可用來解釋外插才能得到的數據5。舉例來說,圖五中 25℃ 水沖泡的咖啡落在檢量線的兩個數值之間,能夠對應出相對的濃度,這樣稱為內插。但是,87.5℃ 熱水沖泡的咖啡濃度定量,是由最後一段檢量線向外延伸到 87.5℃ 咖啡對應的 RGB 值,再向左對應出相對濃度。這樣的對應稱為外插。
這是相當不嚴謹的估算,因為我們無法確保 RGB 值與相對濃度的關係在這段範圍裡依舊會跟相對濃度 1.0 與 0.5 的直線相同。
2. 雖說上集介紹的模型可以套用在每一種化學物質,但我們的計算都是以咖啡因為基準(詳見上集的註解1)。但是,咖啡因溶於水是無色透明的,所以用比色法討論咖啡因或其他沒有顏色的物質並不合適。
不過,儘管有這些問題,若僅是要簡易估算各物質平均在咖啡中擴散的模型與實驗,從表一的結果來看依舊是可行的。
合理簡化一個複雜問題,不一定會失去正確性。
在這次的實驗中, 質量傳遞模型有許多簡化跟假設,實驗用到的比色法也有許多假設,甚至還有小範圍的外插。我們當然可針對這些簡化,用更高深困難的理論與數學,例如考慮熱水在沖泡過程中冷卻、濾袋的幾何結構、捨棄等效水道長的概念而用顆粒床6 的公式計算等,結合程式編碼,模擬出更符合真實情況的計算。
可是,模型的建立會因此更困難,計算難度也高出許多,結果卻可能沒有顯著差異。相對的,簡化模型與比色法實驗的相符,替「出乎意料成功的非現實簡化」提供了最好的例子。總而言之,一個模型怎樣才算過度簡化,往往還是需要與實驗、經驗比對,才會知道。
雖然如此,這也不代表工程師不注重基礎理論。近年的化工研究發展大多高度要求物理、化學、生物理論的應用,諸如材料開發(分子設計)、藥物研究(像是標靶治療、奈米反應器、輸送治療蛋白質等)、能源工程(例如天然氣水合物性質研究、生質能轉換效率如何提高)、奈米製程(觸媒開發、晶圓製造等)。
對我來說,討論化工與化學、物理的差異,也不應停留在理論的複雜程度,而是著眼的系統跟尺度不同。舉例來說,化工藉物理、化學觀念來描述工廠的管線輸送、反應爐、蒸餾塔等設計,並用相同方法描述人體內的血液輸送以研究標靶治療與中風解方等;相對的,有些物理與化學領域專門研究分子、原子或更小層級7,意在關注物質與能量如何組成。
因此,區分化工與物理、化學領域的並不是使用理論的難易度,而是關注的應用不同,可別搞錯了喔!