0

0
0

文字

分享

0
0
0

【活動紀實】M.I.C.XXIX:盡頭

雷雅淇 / y編_96
・2015/02/13 ・4265字 ・閱讀時間約 8 分鐘 ・SR值 514 ・六年級

1475910_822978384433174_3376282319866276399_n2014年到了盡頭,但好像也僅此而已,我們生活還是照常,生命仍然繼續在走;除了到不了2015的阿用和阿河以外。那麼在這之後又會走到哪裡呢?

地球的巨變我們感之深,受之切,好像再這樣下去就會有什麼事情要發生了,於是第六次大滅絕繪聲繪影的存在。但那會不會因為我們只是渺小的人類用渺小的尺度看到的世界?又或者環境真的有因為人類而有所變遷?到底有沒有第六次大滅絕?

2014年盡頭的M.I.C.-盡頭,從海洋酸暖化,野生動物與棲地關係來看第六次大滅絕。

15952160499_9ed45d9aeb_z

曾庸哲:未來的海洋與碳排放

你有注意到我們周遭的海洋發生了甚麼事呢?

或許沒有,但對氣候變遷或是溫室氣體,一定略懂略懂。溫室氣體當中,像是二氧化碳、甲烷、氧化亞氮等,其實本來就存在於大氣當中。現在大氣當中的二氧化碳濃度約是380ppm,如果我們憂鬱悲觀一點,2100年有可能會增加到現在濃度的2.5倍。大氣當中的二氧化碳含量增加除了讓我們氣溫上升以外,對於海洋的酸鹼度也有相當程度的影響。海水的平均pH值是8.1處在一個微鹼性的狀態,而容易與水結合的二氧化碳會讓海水的pH值下降(詳見圖1),使得海洋酸化情形變得更嚴重,特別是表層海域。

二氧化碳使海水酸化的化學反應。 圖片來源:Ocean acidification
圖1.二氧化碳使海水酸化並影響海洋生物的化學反應。圖片來源|Ocean acidification

海水變酸會發生什麼事?首當其衝的就是生活在海洋裡的生物。這些海洋生物幾萬年演化下來一直生存在pH值8.1的微鹼環境,這樣穩定的狀態在短時間內發生劇烈變動這影響當然不言而喻。尤其是對大陸棚沿岸的生物,許多大陸棚的生物,像是海星、海膽、貝類,組成他們外殼的碳酸鈣,會因為水中的氫離子增加而讓鈣離子被解離(詳見圖1),這讓牠們殼的結構受到影響。沒有人會願意住在牆壁一個洞一個洞,輕輕一碰還會碎掉的房子裡吧?

zFacts-CO2-Temp
圖2.1880年以後溫度和二氧化碳濃度形成的曲線圖。圖片來源|Evidence that CO2 is Cause

關於溫室效應和全球暖化到底存不存在,或許還是眾說紛紜,但根據圖2的溫度和二氧化碳濃度的曲線圖來看,嗯…,到底有沒有關係其實是非常清楚的。當然自然環境也有自己本身的變動,但人類無疑在這之中也扮演了那個狠狠踢了一腳的腳色。極端氣候的出現、海平面上升、生物受到衝擊,我們似乎難辭其咎。

剛剛提的都是全球,那台灣呢?

澎湖的頭足類非常的多,講者除了在澎湖取樣做研究以外也做了些水事紀錄。雖然是海邊但有需要管那麼寬嗎?因為其實我們找不到政府有關台灣海峽的水事資料。澎湖夏天的時候二氧化碳濃度跟全球差不多,但一到了冬天,水變冷容易讓氣體溶入其中,二氧化碳的濃度便會提高。除了pH值,溫度也是台灣周邊海域常遇到的問題。台灣周圍表層海域的溫度甚至會在一年之內相差到八度之多。台灣在過去的100年,溫度上升的幅度是全球平均的兩倍,而二氧化碳的排放更是全球平均的三倍,如果這樣的狀況無法改善,以後的海洋就會像又熱又酸的碳酸飲料。

有看過小說《群》嗎? 其中提到的生物無故的大量聚集,鯨魚違反習性的攻擊人類的觀光船,陸棚塌陷而造成海嘯,其實都已經不是想像。地球上所有的生物皆是來自海洋,但我們對於這個內太空的了解其實也沒有比外太空多太多。

回到我們這次的主題:滅絕。

真的有滅絕的概念嗎?其實就算某種物種真的絕種了,牠的基因還是保留著,或許等到之後演化優勢出現時這樣的基因還是有可能會再次派上用場。若是用這樣的觀點來看,其實沒有物種真的完全消失過。菊石是中世代的海洋霸主,到了寒武紀的時候消失;但我們常說鸚鵡螺是活化石,正是因為牠有許多地方仍跟菊石非常類似,而現今的頭足類動物也是系出同源。這類的動物剛開始是固著型,為了適應環境而演化成運動型。

當海水越變越酸的時候,一些固著型的動物,像是石藻、海膽、海洋天使、孔雀蛤,牠們因為無法調節海洋酸化所帶來的影響,殼會有不正常碳酸鈣的累積跟侵蝕。在酸化的海洋環境中,會造成牠們的生長遇到瓶頸點,而且耳朵當中的耳石也會受到影響。

那牠們能知道海洋當中的改變嗎?魚跟人類一樣都有腦,可以用來感知外界環境的變化;那頭足類有沒有腦呢?當然,不然怎麼預測冠軍呢(為何不問問神奇的章魚保羅?)。但他們腦袋不是像我們一般想像的腦,而是一個圍著食道像甜甜圈一樣的構造(圖3),還有另一部分是在牠們眼睛下,所以頭足類視覺會非常敏銳。酸化海水也會造成牠們的骨板會有增厚和不正常的碳酸鈣累積,影響牠們的游泳能力。

頭足類的腦。圖片來源|mandiegirl
圖3.頭足類的腦。圖片來源|mandie girl

另外溫度的變化除了直接影響養殖魚類外,也會造成活性氧化物容易累積造成細胞死亡,這對珊瑚的影響會非常大,還有海參也會把牠體內共生的魚給丟出來。總和來說海洋環境的劇烈變遷會讓海洋生物的代謝異常、體內失衡、細胞氧化壓力加劇,使這些海洋動物快速老化,甚至會在卵期就敷不出來。

這樣牠們滅絕了嗎?難說,搞不好只是跑到內太空的哪裡讓我們找不到他而已。生命,自會找到出口讓自己不至於滅絕,但或許就不會是我們想像的到的樣子了。

15515909054_80ebc73406_z

林大利:從野生動物與棲地看第六次大麵絕

滅絕有不同的層次,死亡是所有生命的終點。 生命會死亡,物種會滅絕,而死亡和滅絕代表的都是永遠的消失。其實99%曾出現在地球上的生物已經滅絕,現在還活著的遲早也會滅絕,那我們還需要去關心滅絕這件事嗎?

滅絕是正常的現象,相對的,有物種消失就會有新的物種出現。大滅絕有兩個定義:1.短時間內75%以上的物種滅絕。2.滅絕速率顯著高於背景速率。

那我們已經置身在第六次大滅絕裡了嗎?

當人類剛發展農業的時候,當時狒狒比人類還要多。工業革命後人口爆炸,現今已經超過了70億人,也因為人類確確實實的改變了這個世界,因此被稱為人類世。很多東西都跟人口數一起增長,電話、資源消耗、麥當當,還有物種滅絕數。

前五次大滅絕跟第六次大滅絕的比較。內圈是海洋,外圈是陸地,紅色代表滅絕數。 圖片來源|The Science News
圖4.前五次大滅絕跟第六次大滅絕的比較。內圈是海洋,外圈是陸地,紅色代表滅絕數。
圖片來源|The Science News

從圖4我們可以看的出來,相較背景滅絕速率來看,目前物種滅絕的程度還不及之前五次大滅絕。但是如果將近危(NT)、瀕危(VU)、瀕滅(EN)、嚴重瀕危(CR)的物種也算進去,第六次大滅絕離我們並不遠。我們站在第六次大滅絕的門口嗎?或是我們還來得及阻止這件事情發生?

先來看看為什麼會有第六次大滅絕。歸納出了六大原因:氣候變遷、外來入侵、過度獵捕、棲地流失、棲地破碎、棲地劣化。其中三個都跟棲地有關。

我們的住所也是我們的棲地,想想你在買房子前會考慮些什麼?可能是有沒有捷運、房價、離學區近不近、小七在哪裡、是不是河岸第一排…….總之會想很多,畢竟住哪裡好重要。野生動物也是一樣,棲地必須要讓他的生理行為能正常運作,有生存的重要資源,能應對天敵和環境的變化,對野生動物來說也是好重要。

野生動物與棲地關係

如果可以問問野生動物「你要想住哪裡?」,他一定也會有不亞於人類的各式回答和各種考量,雖然他們沒有社會住宅(誤)。各種生物有其分布,就跟人類一樣,許多人聚集的地方形成了下圖的亮點(圖5)。

source:danmahony
圖5.地球各地夜晚合成圖。source:danmahony

人類的出現無疑大幅地改變了地球,影響了許多野生動物的生存。我們砍熱帶雨林,種植油棕等等的經濟植物,單調的植物林相,也嚴重的破壞了動植物的棲地。能不能有些方法可以改變這樣的窘境呢?

以往我們覺得「天然的尚好」,天然林應該是比人工林更好的棲地。但講者在梅峰所做的實驗,卻發現鳥的種數並沒有非常顯著的差異,為什麼會這樣呢?經過更詳細的分析,發現次冠層的植群結構,其實是提高鳥種豐富度的重要因子。大片的天然林當然依舊是生物多樣性高的環境,但如果面積不夠大,把心力用在照顧植群結構,還是很有機會成為野生動物的合宜住宅。

棲地破碎化,讓一些需要大面積的野生動物無法生存。但面積和距離的效應真的是壁壘分明嗎?如果是這樣的話,越小和越遠的島生物應該會越容易滅絕。但島嶼跟棲地破碎化的情況還是有差的。棲地總量假說指出,我們應該在意的不是距離或面積,而是棲地的總量。

 稻田的保育功能

稻田其實是一個很特別的場域,他在四季是四種不同的棲地類型,會有不同的生物來棲息。如果可以善用這樣的環境,改變其特性,或許可以增加稻田的生物多樣性。從中國引進到佐渡島的朱鷺,反而在佐渡的田間生存的更好。也透過產品的行銷包裝,讓消費者能知道這裏的故事,也讓農民有多的資源可以提供朱鷺們友善的生活環境。台灣也有萌萌的石虎米和董雞米啊。

在日本田間的朱鷺。source:toki-sado.jp
圖6.在日本佐渡島田間的朱鷺。source:toki-sado.jp

啊那麼多物種消失,是有差嗎?

除了在動物園看不到,對我的生活真的會有影響嗎?生物多樣性是一個互存的複雜整體,其中有許多的未知。如果人類破壞了原始的自然樣貌,最後受到影響的也必定是人類。營養瀑布,食物鏈中其中一個角色加入或消失,都會改變整個食物網。

沒有一種生物能夠完全獨立生存,包括人類。每一個物種就像飛機的螺絲釘,我們不知道少了哪一個、掉了多少,會讓整架飛機掉下來。

或許生物多樣性的一切還有很多都沒有定論,但能確定的是,目前生物多樣性流失的速度比起人類還沒出現的時代相比,速度快得嚇人。而由單一物種造成其他物種大量滅絕的這檔事,也從來沒發生過。

我們很特別,但我們仍是生物圈的一份子。會不會有第六次大滅絕?可能就要考驗以智慧為名的智人的智慧了。

【關於 M. I. C.】 M. I. C.(Micro Idea Collider,M. I. C.)微型點子對撞機是 PanSci 定期舉辦的小規模科學聚會,約一個月一場,為便於交流討論,人數設定於三十人上下,活動的主要形式是找兩位來自不同領域的講者,針對同一主題,各自在 30 分鐘內與大家分享相關科學知識或有趣的想法,並讓所有人都能參與討論,加速對撞激盪出好點子。請務必認知:參加者被(推入火坑)邀請成為之後場次講者的機率非常的高!

文章難易度
雷雅淇 / y編_96
36 篇文章 ・ 512 位粉絲
PanSci 總編輯|之前是主編,代號是(y.),是會在每年4、7、10、1月密切追新番的那種宅。中興生技學程畢業,台師大科教所沒畢業,對科學花心的這個也喜歡那個也愛,彷徨地不知道該追誰,索性決定要不見笑的通吃,因此正在科學傳播裡打怪練功衝裝備。


2

6
0

文字

分享

2
6
0

地球在20年間「亮度」變低了!——地球暖化讓陽光反照率直直落

Mia_96
・2021/10/23 ・2757字 ・閱讀時間約 5 分鐘

地球暖化會造成溫度升高?不稀奇!地球暖化會造成人類生活環境越來越嚴峻?也不稀奇!但你有聽過,因為地球暖化,讓我們的亮度竟然逐年遞減,地球變得越來越暗嗎?

地球亮度的改變並不是近期才出現的新興議題,關於地球亮度的變化,科學家早在 1990 年代前後便提出一種現象「全球黯化」(global dimming)去解釋為何地表獲得的太陽光能量越來越低。

當時透過資料指出,進到地球的太陽能量大幅降低,從 1950 到 1990 年入射至地表的太陽光能量,竟然平均減少 4%! 也就是身處在地球上的人類會覺得地表的亮度似乎逐漸地降低。

但入射地表能量降低的原因並非是太陽發出能量的變化,而是因為近幾年我們最常耳聞的,空污現象! (圖/pixabay

當人類使用石油、煤炭等非再生能源發電時,會在環境中產生許多氣膠微粒,而這些氣膠微粒進入大氣,微粒可以吸收、反射入射到地球的太陽光,使太陽之能量無法進到地球表面,進而造成地球亮度降低。

而全球黯化同時也影響著人們過去對於全球暖化的理解,當全球黯化造成入射到地表的太陽光減少時,代表著地球所獲得的能量並不如過往我們所想像的這麼多。換句話說,全球黯化所造成的冷卻效應竟比不上人們所造成的暖化速度!

知曉地球改變亮度的方法——地照!

近期最新研究更是顯示,1998 年到 2017 年近十年內,地球的反照率逐年下降!除全球黯化造成地表獲得太陽能量減少外,當從外太空看著地球時,地球竟然也越來越暗了!

反照率是一種常用於亮度表示的方式之一,其指的是太陽電磁波段入射至地表的總量質,除以被地表反射的量值所得出的數字。不同的地表特性即有不一樣的反射量質。因此,透過反照率的升降,科學家也可以推估氣候變遷對環境所產生的變化與影響。

計算反照率的方式十分特別,在科學中我們將其稱為「地照」!

地照現象指的為當太陽光照射到地表,地表會反射部分太陽光,而當地表反射太陽光至月球未被太陽照到的地方時,月球又會將地表所反射至月面的光線反射回地球。

看似應該沒有被太陽光照射到的月球表面,其實也會因為地球反射之陽光而產生微弱的光。而最適合觀測地照的時間通常為弦月時分。 (圖/Wikipedia

地照的變化與地表的改變息息相關。例如冰雪的反射率較高,當地表溫度較低,累積較多冰雪時,地照數據便可能會上升;而洋面的反照率較低,當地表溫度較高,造成冰雪融化成海洋,則地照數據便可能會下降。

透過地照反射的光線強弱,可以推測地球反照率的變化,進而推測地表本身變化。 (圖/Wikipedia

除了利用地照觀測地球反照率外,為使觀測更加精確,科學家利用於 2000 年發射的 CERES 儀器(Clouds and the Earth’s Radiant Energy System)觀測大氣至地表的太陽光輻射與地表放出之輻射,並進一步分析對影響地球溫度的重要因子──雲,和太陽輻射的交互關係。

CERES 主要希望可以解答雲在氣候變遷中所扮演的角色與造成的影響,是美國國家航空暨太空總署地球觀測系統(EOS)計畫中的一部分。 圖/Wikipedia

研究結果分析發現,從 2000 年到 2015 年,地球反照率曲線一直維持接近平坦的狀態,但近年,地球反照率的衰退卻日益明顯,如下圖表示:

(圖/參考資料 1

橫軸座標為年度,縱軸座標為地照反照率之異常改變(單位為每瓦/平方公尺),黑色為地照異常之數據,藍色為 CERES 觀測到異常之數據,而灰色陰影區域則為誤差範圍。從圖中可以看出,地照反照率在這幾年下降約 0.5 W/m2,而 CERES 之數據則是下降約 1.5 W/m2

十年一變──太平洋年季震盪

科學家推測,改變反照率的原因,是週期性發生在太平洋的氣候變化──太平洋年季震盪。

太平洋年季震盪指的為太平洋的海水溫度會以十年為週期尺度產生變化:當北太平洋和熱帶太平洋間的海水溫度較高時,稱作暖相位;而當北太平洋和熱帶太平洋間海水溫度較低時,稱作冷相位。

而地球亮度改變的原因,正是因為太平洋年季震盪到了暖相位,造成海面低雲減少,反照率降低!

低雲較為溫暖,其主要成分是由水滴組成,當太陽輻射照射水滴時,較多太陽反射至太空,地球的反照率較高,也造成地表溫度降低;而高雲主要成分由冰晶組成,透光性較佳,再加上高雲通常體積較低雲薄,故太陽輻射可以順利進入地表,地球反照率相對降低。

當北太平洋與熱帶太平洋間海水溫度升高時,洋面上空氣需達到飽和的水氣量相對增加,氣塊達到飽和條件較高,低層雲較難生成。(其實背後原因極其複雜,作者僅是以最簡單的方式嘗試解釋。)當低層雲減少時,反射率降低,造成較少太陽輻射至太空,地球亮度因此變得越來越暗。

雲在地球輻射能量中一直扮演著重要的角色,低雲反射太陽輻射的能力較強,高雲吸收地球輻射的能力較強,因此較多的低雲往往造成地表降溫,而較多的高雲則會造成地表增溫。 (圖/pixabay

交織纏繞的反饋機制

看完整篇文章也別急著下結論!其實地球上的現象不僅環環相扣,影響因素更是族繁不及備載,從海溫改變的原因、高低雲量多寡的變化、反照率升降的主因……,我們都很難用單純或是絕對的一段話去完整解釋自然界的現象。

科學家所能做到的,是透過原因推導、盡力的去解釋現象,所以關於地球反照率下降的趨勢原因,除了太平洋年季震盪、海溫升高、低雲變化等,或許也還有科學家尚未清楚的其他可能性。

但同時,令科學家擔心的事情是,因全球暖化造成地表的反照率降低,代表地表接收到的能量、進到地表之能量相對增加,而吸收的能量又加速全球暖化的速度,地球或許會因為這樣的回饋機制持續升溫,造成更加嚴重的溫室效應。如何去因應溫度上升造成的種種問題,也將會是我們需要不斷去思考問題。

參考資料

  1. AGU AdvancesEarth’s Albedo 1998–2017 as Measured From Earthshine
  2. science alert,《Two Decades of Data Show That Earth Is ‘Dimming’ as The Planet Warms Up
  3. Wikipedia,《Clouds and the Earth’s Radiant Energy System
  4. Wikipedia,《行星照

所有討論 2
Mia_96
156 篇文章 ・ 375 位粉絲
喜歡教育又喜歡地科,最後變成文理科混雜出生的地科老師
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策