Loading [MathJax]/extensions/tex2jax.js

2

20
0

文字

分享

2
20
0

「澳洲森林大火」你該知道的事:可能的起火原因?對生態有何影響?人類該有何作為?

林大利_96
・2020/11/16 ・4196字 ・閱讀時間約 8 分鐘 ・SR值 540 ・八年級

-----廣告,請繼續往下閱讀-----

熊熊燃燒的地球

2019 年,是野火嚴重衝擊全球森林的一年。

當年 8 月,南美洲亞馬遜雨林的大火特別嚴重,導致大面積的雨林燒毀,也引起全球關注。2019 年 8 月 23 日的中午(當地時間),亞馬遜大火的濃煙讓遠在 3 千公里外的巴西首都聖保羅壟罩在暗無天日的黑煙當中。

在好萊塢演員李奧納多 (Leonardo DiCaprio) 和知名脫口秀主持人艾倫 (Ellen DeGeneres) 於社群網站 Twitter 分享之下,Amazon Fires 和 Praying for the Amazon 成為 8 月下旬的熱門主題標籤 (hashtag) 。

2019 年 8 月,亞馬遜大火導致大面積雨林燒毀。圖/flickr

在來自全球的輿論及諸多科學家和保育團體等社群的呼籲之下,七個亞馬遜雨林國家,包括波利維亞、巴西、哥倫比亞、厄瓜多爾、法屬圭亞納、秘魯和蘇利南,於2019 年 9 月 6 日共同簽署「萊蒂西亞協議 (the Leticia Pact)」,期望能以更有效的合作方式來保護亞馬遜雨林 (Prist et al. 2019)。

-----廣告,請繼續往下閱讀-----

起火燃燒的澳洲,波及受脅物種

2019 年 9 月至 2020 年 1 月間,澳洲東南部也引起森林大火,範圍遍及昆士蘭省(Queensland) 東南部、新南威爾斯省 (New South Wales) 東南部、以及維多利亞省 (Victoria) 南部,主要都在大分水嶺的東側迎風面,菲利浦島 (Philip Island) 也有嚴重災情,總面積達 97,000 平方公里 (Lindenmayer et al. 2020; Ward et al., 2020),面積將近三個臺灣島。

澳大利亞東海岸大火的煙霧衛星圖,於2019年11月12日拍攝。/Wikimedia Common

這樣的規模是加州大火的 50 倍、亞馬遜大火的 5 倍。長達 2,000 小時的熊熊烈火,影響了超過十億隻野生動物。

計算下來,共波及 832 種物種,其中包含 21 種受脅物種,例如黃紋吸蜜鳥 (Regent Honeyeater, Anthocharea phrygia) 、華麗琴鳥 (Superb Lyrebird, Menura novaehollandiae) 、東方吸蜜鶇 (Eastern Bristlebird, Dasyornis brachypterus) 、輝黑鳳頭鸚鵡 (Glossy Black-Cockatoo, Calyptorhynchus lathami) 和南方斑紋鷯鶯 (Southern Emu Wren, Stipiturus malach) ,都是受到衝擊的受脅鳥種。

華麗琴鳥 Menura novaehollandiae 為受脅物種,也受到澳洲森林大火的波及。圖/EOL

森林大火對生態的衝擊,不只是野生動物被燒死

澳洲大火對野生動物的衝擊,通常可能會想像是野生動物被大火燒死,但其實不盡然如此。森林大火對野生動物最主要的衝擊是食物資源和繁殖場域的消失。由於大部分的植被被大火燒毀,導致大多數的植食性動物或初級消費者大量失去植物性食物資源,例如花蜜、果實、嫩葉和樹液。

-----廣告,請繼續往下閱讀-----

同時,依賴樹木作為各種繁殖場域的野生動物也容易受到衝擊,尤其是在樹上築巢或以樹洞為巢的動物,更是首當其衝。

此外,大火之後也較容易引發傳染病病蟲害外來入侵種擴張,可以說是改變整個生態系的運作結構。

森林大火使動物失去主要食物資源以及繁殖場域。圖/Wikimedia Commons

當時,我在布里斯本 (Brisbane) 的昆士蘭大學校園,都能明顯感受到空氣品質變差, PM2.5 的濃度為每立方公尺 150.8 微克,窗外的霧霾景像,不禁令人感覺到一股熟悉的家鄉味。然而,後續幾個月的全球焦點轉到新型冠狀病毒引起的嚴重特殊傳染性肺炎 (COVID-19) 的疫情上,但是又有數百萬公頃的澳洲森林持續被燒毀。

2019 年 12 月雪梨歌劇院,被森林大火的煙霧壟罩。圖/Wikimedia Commons

這場大火,對澳洲多樣性高又獨特的野生動物帶來空前的危害。而且澳洲的動物相(動物群)又非常特殊,有許多特有的生物種類和類群。因此,澳洲大夥同樣急於需要人類介入幫助。

-----廣告,請繼續往下閱讀-----

可能的起火原因?

為了避免相關的災情再次發生,澳洲各地的政府機關、地主、科學家和決策者熱烈的討論引發澳洲林火的可能原因。不可避免的,各種猜疑、臆測和恐慌,也跟著喧囂塵上。

大多數的討論多歸咎於人類所造成的氣候變遷,但是,過度砍伐森林的影響卻鮮少有所討論。

極端天氣造成的惡性循環

其中一個說法是 2019 年的夏天非常乾燥炎熱,幾乎沒有下雨。這裡是指南半球的夏天,大概是從 10 月到隔年 2 月。布里斯本是位於澳洲東部、大分水嶺東側迎風面的沿海城市,冬天是乾季,夏天是雨季。

我在 2018年10 月第一次到布里斯本的時候,三個星期內只有幾天的晴天,其他時間都在下雨,打亂了我的賞鳥行程,實在是有點困擾。但是, 2019 年的十月,卻幾乎繼續延續冬天陽光普照的天氣,只是冬季的暖陽變成夏季的烈日。

原本澳洲的十月份應為雨季,但 2019 年的十月卻烈陽高照。圖/Pexels

不僅如此,澳洲的夏天一年比一年炎熱,2019 年的夏天也不遑多讓。當時的高溫,讓許多集體日棲於市區綠地的蝙蝠因為高溫大量死亡,公園裡遍地死屍。

-----廣告,請繼續往下閱讀-----

不僅如此,森林大火現場的濃煙大量累積在空中,往往容易形成「火積雲 (pyrocumulonimbus cloud)」。這種雲層型態就像積雨雲一樣,看起來濃厚而紮實。不久之後,可能會在附近地區降下強度大的超大豪雨,也可能形成「火龍捲風(fire tornado)」。

這些極端天氣都會對當地居民和經濟產業帶來嚴重損失。最麻煩的是,火積雲也會帶著雷電,閃電很容易在乾燥的地面引發另一起森林大火,接著再形成新的火積雲。這樣的惡性循環,也是澳洲森林大火延續時間相當長的原因之一。

伐林使森林面積流失、物種名列受脅名單

澳洲的伐林史可追溯到歐洲人剛從澳洲登陸的時代,可說是非常漫長的歷史。依據2001 年的澳洲天然植群評估報告 (Australian Native Vegetation Assessment),在這段歷史中,至少有 30% 的桉樹(尤加利樹)森林和 30% 的雨林消失,大多集中在 19 世紀下半葉。

然而,2018年,澳洲森林國家報告 (Australia’s State of the Forests Report) 指出,1996 年到 2018 年間,整個澳洲失去了 1 億 6 千 1 百萬立方公尺的天然林木材。這樣的衝擊,讓 181 種仰賴森林的物種,名列於澳洲的受脅物種名錄之上 (Kearney et al. 2019) ,而且,這只是低估的狀況 (Walsh et al., 2012) 。

-----廣告,請繼續往下閱讀-----

此外,開闢道路所導致的森林破碎化,雖然森林流失面積較小,但是森林破碎化所帶來的衝擊也相當嚴重。以維多利亞省的中央高地來說,伐林現場距離原始林的平均距離只有 71 公尺,而在保護區內,則是平均有 1,700 公尺的距離 (Taylor & Lindenmayer 2020)。

主要的原因在於,伐林過後的現場,會留下非常大量的殘材。這些殘材,包括各種無法進一步加工的小樹、細枝條、以及枯枝落葉。估計下來,平均大約是每公頃450 頓 (Raison & Forest 2008) 。

這些殘材,就會成為森林大火的燃料,會增加森林大火發生的機率,也會助長火勢和森林大火延燒的範圍。不僅如此,伐林作業過後的新生林地,通常也不耐火勢。這些新生的同齡林(even-aged stand,每棵樹年齡差不多的森林),也會成為助長火勢的燃料。

伐林後的森林會留下大量殘材,和新生的同齡林同樣會成為助長火勢的燃料。圖/flickr

因此,進而導致森林自然更新不易,在這樣的狀況下,森林大火很快就蔓延到附近的原始林。這裡的原始林不是開玩笑的,最老可追溯的岡瓦納大陸時代就存在的森林(約 2 億年前,Kooyman et al 2014)。對於原野地造成的衝擊,可不容小覷。

-----廣告,請繼續往下閱讀-----

大火之後,我們應該做什麼?

目前,大部分的政策決策者都能理解到氣候變遷和森林大火之間交互作用之下,導致林火影響整個澳洲大陸。

隨著火勢趨緩,目前澳洲政府和相關領域的科學家正在討論一些可行的補救和預防措施,包括移除殘材、減少破碎的森林區塊、建置野生動物的林火避庇護所、推動地主的林火預防教育、以及造林工作納入林業公司的作業規範。移除伐林現場的殘材,是首要進行的預防工作,可以避免火勢蔓延,也可以助長火勢。

同時,針對目前的森林現況,提高破碎森林區塊的連結度,復育成大而完整的連續森林。除了有助於減緩火勢,也能夠提供較多野生動物遇到森林大火時的庇護所,其他還有減緩氣候變遷、調節水文循環和加強其他森林生態系功能。

大火過後,提高目前破碎森林的連結度,復育完整的森林,能夠提供動物作為庇護所。圖/Pexels

此外,由於這次許多林火發生於私有的農場和牧場,政府也正在規劃適合地主的林火防治教育,以避免未來森林火災發生,以及發生當下的因應作為。同時,針對林業公司,不能就只是伐林從森林中獲益,也要將森林復育和造林工作綁在一起。

-----廣告,請繼續往下閱讀-----

砍了多少森林,就要種回多少新的苗木,作為林業公司伐採森林的條件。

就澳洲林火的經驗,雖然對台灣來說背後的氣候和環境條件差異甚大,也相對容易受到聖嬰現象和反聖嬰現象的衝擊。

但是,還是有些值得我們參考的林火預防措施。

  1. 執行伐木作業之後,適當移除容易引起林火的殘材,例如松樹類等。
  2. 規劃伐木作業時,盡可能保留原先森林區塊的完整性,避免形成零星的小碎塊。
  3. 注意伐木作業時間,避免於乾季、聖嬰年或降雨量較少的期間進行。

這樣的追根究柢,是要知道我們有那些作為可以預防和解決這樣大規模的生態衝擊,而不是輕易的歸咎到氣候變遷,然後說你我都推了一把,就無所作為了。

引用文獻

  1. Kearney SG et al. 2018. The threats to Australia’s imperilled species and implications for a national conservation response. Pacific Conservation Biology 25(3) 231-244.  https://doi.org/10.1071/PC18024 
  2. Kooyman RM. 2020. Paleo‐Antarctic rainforest into the modern Old World tropics: The rich past and threatened future of the “southern wet forest survivors. Boteny 101: 2121-2135. 
  3. Lindenmayer D. et al. 2020. Recent Australian wildfires made worse by logging and associated forest management. Nature Ecology & Evolution. https://doi.org/10.1038/s41559-020-1195-5
  4. Prist P. et al. 2019. Cross-boundary collaboration is crucial for mitigating the impacts of deforestation and fires in the Amazon. Science 366(6466):699-700. link
  5. Raison, J. & Squire, R. O. Forest Management in Australia: Implications for Carbon Budgets (Australian Greenhouse Office, 2008).
  6. Taylor C, Lindemayer DB. 2020. Temporal fragmentation of a critically endangered forest ecosystem. Austral Ecology 45(3): 340-354.  
  7. Ward M. et al. 2020. Impact of 2019-2020 mega-fires on Australian fauna habitat. Nature Ecology & Evolution. https://doi.org/10.1038/s41559-020-1251-1 
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
林大利_96
19 篇文章 ・ 8 位粉絲
來自森林系,目前於特有生物研究保育中心服務。興趣廣泛,主要研究小鳥、森林和野生動物的棲地。出門一定要帶書、對著地圖發呆很久、算清楚自己看過幾種鳥。是個龜毛的讀者,認為龜毛是一種科學寫作的美德。

0

1
0

文字

分享

0
1
0
任意添加光學元件 為研究打開大門的無限遠光學系統
顯微觀點_96
・2025/01/30 ・1763字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖 / 顯微觀點

顯微鏡在科學發展中扮演關鍵的角色,讓人們得以突破肉眼的限制,深入微觀的世界探索。而隨著時間推進,顯微技術也日新月異,其中現代顯微鏡設計了所謂的「無限遠光學系統」(Infinity Optical Systems),更是提升了顯微鏡性能和突破過去的觀察瓶頸。因此主要的顯微鏡製造商現在都改為無限遠校正物鏡,成為顯微鏡的技術「標配」。

1930 年代,相位差顯微技術出現,利用光線在穿過透明的樣品時產生的微小的相位差造成對比,使透明樣本需染色就能更容易被觀察。1950 年左右,則出現使用兩個 Nomarski 稜鏡,將光路分割再合併產生 干涉效應的 DIC 顯微技術,讓透明樣本立體呈現、便於觀察。

在傳統「有限遠系統」中,單純的物鏡凸透鏡構造,會直接將光線聚焦到一個固定距離處,再經過目鏡放大成像。也因此過去顯微鏡的物鏡上通常會標示適用的鏡筒長度,通常以毫米數(160、170、210 等)表示。

-----廣告,請繼續往下閱讀-----

而在過渡到無限遠校正光學元件之前,選用的物鏡和鏡筒長度必須匹配才能獲得最佳影像,且大多數物鏡專門設計為與一組稱為補償目鏡的目鏡一起使用,來幫助消除橫向色差。

但是問題來了!當這些光學配件要添加到固定鏡筒長度的顯微鏡光路中,原本已完美校正的光學系統的有效鏡筒長度大於原先設定,顯微鏡製造商必須增加管長,但可能導致放大倍率增加和光線減少。因此廠商以「無限遠」光學系統來解決這樣的困境。

德國顯微鏡製造商 Reichert 在 1930 年代開始嘗試所謂的無限遠校正光學系統,這項技術隨後被徠卡、蔡司等其他顯微鏡公司採用,但直到 1980 年代才變得普遍。

無限遠系統的核心在於其物鏡光路設計。穿透樣本或是樣本反射的光線透過無限遠校正物鏡,從每個方位角以平行射線的方式射出,將影像投射到無限遠。

-----廣告,請繼續往下閱讀-----
有限遠(上)和無限遠(下)光學系統的光路差別
有限遠(上)和無限遠(下)光學系統的光路差別。圖 / 擷自 Optical microscopy

透過這種方法,當使用者將 DIC 稜鏡等光學配件添加到物鏡、目鏡間鏡筒的「無限空間」中,影像的位置和焦點便不會被改變,也就不會改變成像比例和產生像差,而影響影像品質。

但也因為無限遠系統物鏡將光線平行化,因此這些光線必須再經過套筒透鏡在目鏡前聚焦。有些顯微鏡的鏡筒透鏡是固定的,有些則設計為可更換的光學元件,以根據不同實驗需求更換不同焦距或特性的透鏡。

除了可以安插不同的光學元件到光路中而不影響成像品質外,大多數顯微鏡都有物鏡鼻輪,使用者可以根據所需的放大倍率安裝和旋轉更換不同的物鏡。

傳統上一旦更換物鏡,樣本可能就偏離焦點,而須重新對焦。但在無限遠光學系統的設計中,物鏡到套筒透鏡的光路長度固定,也就意味著無論更換哪個物鏡,只要物鏡設計遵循無限遠系統的標準,光路長度和光學路徑的一致性得以保持。

-----廣告,請繼續往下閱讀-----

因此無限遠光學系統也有助於保持齊焦性,減少焦距偏移。這對需要頻繁切換倍率的實驗操作來說,變得更為便利和具有效率。

不過使用上需要注意的是,每個顯微鏡製造商的無限遠概念都有其專利,混合使用不同製造商的無限遠物鏡可能導致不正確的放大倍率和色差。

改良顯微技術,使研究人員能夠看到更精確的目標;以及如何讓更多光學配件進入無限遠光學系統中的可能性仍然在不斷發展中。但無限遠光學系統的出現已為研究人員打開了大門,可以在不犧牲影像品質的情況下輕鬆連接其他光學設備,獲得更精密的顯微影像。

  1. M. W. Davidson and M. Abramowitz, “Optical microscopy”, Encyclopedia Imag. Sci. Technol., vol. 2, no. 1106, pp. 120, 2002.
  2. C. Greb, “Infinity Optical Systems: From infinity optics to the infinity port,” Opt. Photonik 11(1), 34–37 (2016).
  3. Infinity Optical Systems: From infinity optics to the infinity port
  4. Basic Principle of Infinity Optical Systems
  5. Infinity Optical Systems

延伸閱讀選擇適合物鏡 解析鏡頭上的密碼

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
0

文字

分享

0
0
0
螃蟹有痛感嗎?我們是怎麼知道的?
F 編_96
・2025/01/16 ・1669字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live science

螃蟹一直是海鮮美食中的明星,從油炸軟殼蟹到清蒸螃蟹,餐桌上經常見到牠們的身影。有地方也習慣直接將活螃蟹丟沸水煮熟,認為這能保留最多的鮮味。過去人們認為甲殼類缺乏複雜神經結構,不會感受到痛苦,因此不必過度憂心道德問題。但近年來,越來越多研究開始挑戰此一想法,指出螃蟹與龍蝦等甲殼動物可能具備類似疼痛的神經機制。

以前大家相信甲殼類缺乏複雜神經結構,但近期這一認知逐漸受到質疑。 圖 / unsplash

甲殼類是否能感覺到痛?

人類長期習慣以哺乳類的神經構造作為痛覺判斷依據,由於螃蟹沒有哺乳動物那樣的大腦腦區,便被認為只憑簡單反射行動,談不上真正「痛」。然而,新興科學證據顯示包括螃蟹、龍蝦在內的甲殼類,除了可能存在被稱為「nociceptors」的神經末梢,更在行為上展現自我防禦模式。這些研究結果顯示,螃蟹對強烈刺激不僅是本能抽搐,還有可能進行風險評估或逃避策略,暗示牠們的認知或感受方式比我們想像更精緻。

關鍵證據:nociceptors 與自我保護行為

近期實驗在歐洲岸蟹(Carcinus maenas)中觀察到,當研究人員以刺針或醋等刺激手段測量神經反應,牠們顯示與痛覺反應類似的神經興奮;若只是海水或無害操作,則無此現象。此外,透過行為實驗也可看出,寄居蟹在受到電擊時,會毅然捨棄原本的殼子逃離電源,但若同時存在掠食者味道,牠們會猶豫要不要冒著風險離開殼子。這些結果使科學家認為,螃蟹並非單純反射,而可能有對於痛感的判斷。若只是「低等反射」,牠們不會考慮掠食風險等外在因素。

痛覺與保護:實驗結果引發的道德思考

以上發現已在科學界引發廣泛關注,因為餐飲業與漁業中常見「活煮」或「刺穿」處理螃蟹方式,如今看來很可能讓牠們承受相當程度的不適或疼痛。瑞士、挪威與紐西蘭等國已開始禁止活煮龍蝦或螃蟹,要求先以電擊或機械方法使其失去意識,試圖減少痛苦。英國也曾討論是否將甲殼類納入動物福利法保護範圍,最後暫時擱置,但此爭議仍在延燒。

-----廣告,請繼續往下閱讀-----
英國對於是否將甲殼類列入動物福利法的保護範圍,有所爭議。 圖 / unsplash

部分學者保持保留態度,認為雖然甲殼類展現疑似痛覺的行為與神經反應,但與哺乳類相同的「主觀痛感」仍需更多研究證明。大腦與神經系統結構畢竟存在很大差異,有些反射也可能是進化而來的自衛機制,而非真正意義上的感受。然而,科學家普遍同意,既然相關證據已經累積到一定程度,毋寧先採取更謹慎與人道的處理模式,而非輕易推卸為「牠們不會痛」。

海洋生物福利:未來的規範與影響

如果螃蟹被證實擁有痛覺,將牽動更廣泛的海洋生物福利議題,包括鎖管、章魚或多種貝類也可能具有類似神經機制。人類一直以來習慣將無脊椎動物視為「低等生物」,未必給予與哺乳類相同的法律或倫理關注。但若更多實驗持續指出,牠們同樣對嚴重刺激展開避痛行為,社會或終將呼籲修訂漁業與餐飲相關法規。未來可能要求業者在捕撈與宰殺前使用電擊或麻醉,並限制活煮等方式。這勢必對漁業流程與餐廳文化造成衝擊,也引發經濟與文化折衷的爭議。

龐大的實驗數據雖已暗示螃蟹「會痛」,但確鑿的最終定論仍需更多嚴謹研究支持,包括更深入的大腦活動成像與突觸路徑分析。同時,落實到實際操作也需追問:是否存在更快、更人道的宰殺或料理方式?能否維持食材鮮度同時保障動物福利?這種思維轉變既考驗科學進程,也考驗人類對自然資源的態度。也許未來,既然我們仍會食用海產,就該以最小痛苦的方式對待那些可能感受痛苦的生物,為牠們提供基本尊重。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

2
0

文字

分享

0
2
0
一年有幾週?背後竟隱藏著宗教、政治與天文觀測的紛爭?為何決定一年有幾週如此大費周章?
F 編_96
・2025/01/06 ・3256字 ・閱讀時間約 6 分鐘

F 編按:本文編譯自 Live Science

每到歲末或年初時,大家常會打開新的行事曆,做新一年的計畫。從直覺來看,我們常以「一年有 365 天」或「閏年 366 天」的概念衡量時間。如果將 365 天除以 7(每週 7 天),得到的答案約是 52 週又 1 天;若遇到閏年(366 天),則是 52 週又 2 天。換句話說,無論是一般年還是閏年,一年都不可能整除,剛好 52 週,總要多出 1 或 2 天。

對多數人而言,這種「約 52 週加 1 天」似乎是再自然不過的事。然而,實際上人類在訂定「一年幾天」與「多久閏一次」的規則上,一路走來經歷了漫長探索與爭議。自古以來,不同文明先後採用依太陽或月亮運行週期為基準的曆法;儘管最終各國大多轉而採行以太陽週期為主的格里高利曆(Gregorian calendar),但並非一蹴可幾,而是一段包含宗教、政治、天文觀測的故事。

一年感覺很長,其實也就 52 週(+1 或 +2 天)。 圖/unsplash

從洪荒到曆法:人類如何決定時間單位

追溯人類對時間的測量,可遠至一萬多年前:考古發現顯示,澳洲原住民或新石器時代的部落,便會根據太陽、星象的移動,來推算季節變遷與祭典進行。後來,隨著農業興起,區分一年四季並掌握耕作節氣成了首要需求,日曆的概念亦逐漸成型。

  • 宗教推力:古埃及與蘇美等文明常需要在特定時刻進行祭祀或儀式,故對晝夜長短、月相週期乃至每年太陽位置頗為講究。
  • 日月曆法之爭:有些文明依月亮週期(約 29.5 天)為月數基礎,稱「陰曆」;也有採納太陽年度(約 365 日)稱「陽曆」,或折衷稱「陰陽合曆」。

就週數而言,古人或許更關注「每個月有幾天」與「一年有幾個月」,而非「一年到底可以分成幾週」。然而,週的概念在很多宗教與文化裡同樣重要,如猶太教及後來的基督宗教都強調「七天」一週之體系,用於安息日或祈禱輪替。因此,當今的一年分成「52 週多幾天」,也綜合了宗教傳統與太陽年的計算。

-----廣告,請繼續往下閱讀-----

朱利安曆失準?教宗格里高利的關鍵校正

現行國際普及的格里高利曆,最早源自於古羅馬朱利安曆(Julian calendar)。公元前 46 年,凱撒大帝(Julius Caesar)在天文學家蘇西根尼斯(Sosigenes)建議下,設定一年 365.25 天,並每四年加一天作閏年。看似精妙,但實際上太陽年長度約是 365.2422 天,每年多出的 0.0078 天、也就是大約 11 分鐘,雖然聽來微乎其微,卻在一段世紀之後累積成巨大的誤差。

對天主教而言,耶穌受難與復活日期影響了整年眾多教會節日。若曆法逐漸偏移,像復活節等慶典便逐年脫節了季節原意。至 16 世紀末時,朱利安曆已誤差累積多達 10 天。教宗格里高利十三世遂在 1582 年宣佈大刀闊斧改革:10 月 4 日的次日直接跳到 10 月 15 日,並規定「百年年份如若非 400 整除,則不列為閏年」。如此,將一年的平均時長微調至更貼近 365.2422 天。

一些國家如法國、西班牙和義大利等迅速採納「新曆」,但英國則因宗教立場等因素拖延至 1752 年才肯切換。中國雖在 1912 年起算是「正式認可」,但廣泛實施延至 1929 年。這樣因曆制修整所產生的「失落日子」,在各國各時期都曾引發不小民眾抗議與混亂,但如今我們所熟知的「一年 365(或 366)天、每週 7 天」全球大體一致,正是拜此改革所賜。

教宗格里高利十三世的改革,成了日後我們熟知的「一年 365(或 366)天、每週 7 天」。圖/unsplash

一年是 52 週又幾天?

回到主題:基於現在格里高利曆的「年」長度,一般年 365 天,閏年 366 天。因此只要把 365 ÷ 7 = 52 餘 1,或 366 ÷ 7 = 52 餘 2。這樣看來,52 週是某種近似值,再加上 1 或 2 天則填補了週數的縫隙。有趣的是,人們日常生活中往往不深究這些「多一天」會落在哪裡,反而透過各國法定假期、節日分布或企業排班,來靈活因應。

-----廣告,請繼續往下閱讀-----

不管日曆如何安排,七天一週與太陽一年的 365.2422 天本質上不會整除。因而實際執行層面,才衍生「一月有 4 週多幾天」或「一年 52 週多幾天」。而根據格里高利曆規範,每 4 年遇到 2、6 結尾者時通常加閏日;再以百年刪除閏日,唯獨 400 年倍數的百年不刪。如此 400 年中有 97 個閏年,非 100 次,年均值約 365.2425 天,與真實太陽年極為貼近。

再度修正:米蘭科維奇曆與東正教的調整

與此同時,一些東正教教會或科學家,仍曾嘗試做更精準的校調。例如 1923 年出現的「米蘭科維奇曆」,由塞爾維亞天文學家米蘭科維奇(Milutin Milanković)提出:

  • 改進閏年規則:如果該年不是 100 的倍數,則正常計算;若是 100 的倍數,就得看除以 900 所餘下的數是否為 200 或 600,若是,則跳過閏年。
  • 應用範圍:此一方案被視為更貼近天文年,但只有部分東正教教會接納實施,對全球世俗時間並未產生重大影響。

有趣的是,若米蘭科維奇曆被大規模推廣,平均一年長度會更符合真實太陽年,但世界各國基礎已扎根於格里高利曆,也不太可能再冒然重新改革。畢竟,每次曆改都會使官方紀錄、民間活動和宗教節慶產生協調難題,且大眾的社會慣性早已落實在現行制度裡。

時間計算背後宗教、政治與科學的糾纏

我們眼中的「一年 52 週又 1~2 天」其實是長期政治、宗教、科學交互影響的產物。數世紀以來,不同文明為祭祀、政令或貿易往來而反覆調整曆制;伴隨天文觀測與數學演算的精進,人們才一步步從古老的朱利安曆轉到格里高利曆,避免每年多出一些看似微不足道的分鐘數量,卻逐漸累積成整天的時差。在這些爭論、改革中,週數雖非爭議焦點,但它一同被帶入今日世界,最終定型為「一年 = 52 週 +1(或 2)天」。

-----廣告,請繼續往下閱讀-----
儘管目前的曆法存在些許時差,但已是目前全球通用的計日方式。圖/unsplash

另一方面,有些文化或地區在現代仍維持傳統的陰曆、陰陽曆搭配格里高利曆,如中國農曆可見節氣和月相紀錄;穆斯林世界則使用純陰曆,並以其方法計算齋戒月、開齋節等。全球一體化雖使格里高利曆成為主流,但不代表其他紀年方式就此消失。在各種曆法交錯下,「一週幾天,一年多少週」或許並非普世絕對,卻是人類根植於宗教、科學與經濟行為下逐漸形成的共識。

踏入 21 世紀,隨著全球高度互聯與商業活動頻繁,幾乎所有國際公約、金融市場、交通規劃都以格里高利曆為基準。此種高度一致有利經貿往來與跨國協作,但究其根源,私底下仍有一種「不完美但通用」的妥協性質。時至今日,要再度大規模推行新的曆制(比如米蘭科維奇曆)的機率微乎其微。

也許未來某天?

不管你是否每天翻開行事曆查看日期,或是習慣智慧型手機提醒,在全球主流價值裡,「一年 52 週又 1 或 2 天」已成幾乎不容置疑的常識。

也許未來仍有理論家建議以更精準的曆法取代格里高利曆,讓一年日數更貼合天文常數。然而,歷史經驗告訴我們,此種改革勢必付出巨大社會成本,還要面對全球龐雜的政治協調。最終,我們大概仍會安於現在這個略有瑕疵卻普及度最高的制度,繼續說著「一年有 52 週」,並在每年最後那 1 或 2 天裡,慶祝跨年、增添慶典。

-----廣告,請繼續往下閱讀-----

不論如何,時間的運行永不止息;地球仍舊繞著太陽旋轉,帶給我們四季遞嬗與新的挑戰。或許最重要的並非究竟一年「整除」了多少週,而是我們如何在這既定框架下規劃生活,在有限的時間裡,拓展出新的生活軌跡。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。