0

0
0

文字

分享

0
0
0

中國人的三個「超級祖先」

火星軍情局
・2014/09/02 ・1317字 ・閱讀時間約 2 分鐘 ・SR值 528 ・七年級

中國人常自稱「炎黃子孫」,說自己是「炎帝」、「黃帝」的後代,但是近代歷史學者多半把這些遠古人物當作傳說,認為他們並非個人,而是代表單一或數個遠古部落; 不過最近一個研究似乎支持這些遠古傳奇人物(或氏族)的存在,而且這些人還非常「精明能幹」,留種的能力超強!復旦大學研究團隊在最近的PLoS One上說:40%的中國人的Y染色體來自三個新石器時代的「超級祖先」。

「超級祖先」可能擁有不少權勢才能夠獨佔很多女人(圖片來源:凰圖騰)
「超級祖先」可能擁有不少權勢才能夠獨佔很多女人(圖片來源:凰圖騰)

人類Y染色體的特點是只有父親傳給兒子,一般的情形下父親Y染色體上的序列可以完整地傳給兒子,所以兒孫的序列將和祖父一樣;但是DNA相隔數代之後難免會產生隨機的小突變(單核苷酸多態性,Single Nucleotide Polymorphism,簡稱SNP),之後的兒孫就會傳下有SNP的Y染色體。科學家只要讀取今天還活著的一大群分散四方的人Y染色體的DNA序列,比較之間的差異,就可以找出族群的單倍群(Haplogroup),畫出人種分支。如果能知道突變發生的頻率,還能算出家譜分支的時間。

復旦的學者採集了110位東亞男性Y染色體上的DNA序列,畫出了一個東亞人種「族譜」(下圖,紫色框上半段的O3系DNA序列在東亞人種常見)。從這族譜可看出東亞人種是非洲人五萬多年前離開非洲後演變而來,一路苟延殘喘並分出其他種族,其中的O3系大概在2萬5千年前抵達東亞,接著開始大量繁衍並散佈各地——不過這些都不是什麼新知識。 意外的是在5000到6000年前,新石器時代晚期,出現了三個「超級祖先」(圖中的Oγ, Oβ和Oα),讓這個族譜幾乎在同一個時間(或說在250年內)出現了五到七個分支,最有可能的情況是那時候分別有三個男人生很多孩子,才有可能在短時間增加SNP的機率。Oγ, Oβ和Oα的單倍群佔當今中國人口的40%,也就是說今天活著的5.5億人是從那三個人繁衍出來的。

依照Y染色體繪製的東亞族群演化樹,左上角的Oγ, Oβ和Oα是分別由三位超級祖先產生的分支,他們的後代佔目前中國人口的40%。

他們是誰!?炎帝、黃帝、還差一個…

-----廣告,請繼續往下閱讀-----

歷史傳說上有「三皇五帝」,難道是這「三皇」?史記說三皇是伏羲、神農、女媧,咦~不對,女媧應該沒有Y染色體,啊她還是人首蛇身,不知道會有什麼奇怪的DNA。

那麼炎帝、黃帝和蚩尤呢?好像有道理,三者是同一時期的人,只是一般推算黃帝(若真有其人)距今不到五千年,和這三位「超級祖先」的年代有一點差距。蚩尤是「外族」,相傳是苗族的祖先,雖然可能比華夏部落更早進入銅器時代,可惜在涿鹿一戰敗給炎帝、黃帝的聯軍,這一位奠定華夏文明的Loser難道竟然是位「超級祖先」嗎?為什麼這些到處播種的祖先們同時出現在文明奠基的時代,後來後宮佳麗三千的皇帝們為什麼沒有在演化樹裏面留下痕跡?不論如何,現代科學也許可以給古老傳說一個新的生命。

資料來源:

-----廣告,請繼續往下閱讀-----
文章難易度
火星軍情局
19 篇文章 ・ 9 位粉絲
本局以適合火星人智商的方式,將地球上的最新科學新聞向火星同胞播出,歡迎來我的Facebook做朋友:https://www.facebook.com/Dr.Martian.Vader

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

6
6

文字

分享

0
6
6
你該知道的事情:吸菸對身體有害,這句話是真的嗎?
科奇_96
・2023/03/07 ・2845字 ・閱讀時間約 5 分鐘

1 月 12 日立法院三讀通過修正「菸害防制法」部分條文,你有曾想過,小時候而熟能詳的吸菸對身體有害,這句話的出處是哪裡嗎?還有吸菸如何對身體有害呢?

菸草什麼時候開始被認為對身體有害?

最早可以追溯到 1602 年的匿名投稿論文《煙囪清潔工的工作》[ 2 ],其中指出,煙灰經常造成煙囪清潔工出現一些疾病,而菸草可能也有類似的影響,這是已知最早將吸菸與對身體有不良影響掛勾。

但直到 1964 年,美國公共衛生部長路德·泰瑞 (Luther Terry) 發佈了一篇名為《吸煙與健康》[ 3 ]的報告,文章中直接寫到「香菸與人類肺癌有關」、「罹患肺癌的風險隨吸菸期間和每日吸菸數量而提高,並隨戒菸時間而降低」,並做出了一個結論「吸煙會導致癌症」。

吸菸與肺癌常被連結在一起。圖/envatoelements

這時候你可能會想,那所以他們有直接證據來證實嗎?但事實是在這篇論文發布的當下,其他他們手中握有的證據並不是非常足夠,但為何當時候美國公共衛生部長就直接結論吸菸是肺癌的成因呢?

-----廣告,請繼續往下閱讀-----

為何研究證據不足,還說吸菸會造成癌症呢?

首先,我們先介紹一下時空背景:

  1. 約 1960 年,美國的吸菸人數推測有大約 40 %,而且其中半數以上的人每天至少吸一包煙,也就是 20 支以上[ 4 ]
  2. 在 1900 年初期,其實肺癌是十分罕見的疾病。1898 年有一名博士生寫了一篇文章,檢視當時全世界所有的肺癌病例,總共只有 140 例[ 5 ]。但二十世紀時,肺癌案例激增,同時香菸的銷售量也增加。
  3. 1950 年代,越來越多期刊將吸菸認為可能是造成癌症的成因[ 7-11 ]

這時候你可能發現了,吸菸和癌症似乎真的有點關聯,那我們該怎麼證明呢?這時候我們可以透過隨機對照實驗來比較吸菸者與非吸菸者,兩者在於肺癌發生率的差別。

你可能會問,那隨機對照實驗是什麼?簡單來說就是找兩組人,並將其分為變因控制幾乎相同的兩組,並讓一組保持不吸菸的狀態,讓另一組保持著持續吸菸的狀態,然後每年檢查他們的身體狀況,這樣我們就可以有個最直觀的證據來檢測吸菸到底有沒有害。

這時候你一定很好奇,那結果呢?這邊我簡單介紹兩個結論:吸菸者死於肺癌的機率平均是不吸菸者的 11 倍,而吸菸量較多的人死亡的風險比不吸菸者高出 120 %[ 3 ],這時候你一定會說,明明都有這些統計數字了阿,那為什麼還會說證據不足呢?

-----廣告,請繼續往下閱讀-----

因為當時並不知道吸菸是如何造成肺癌的,就像當時菸草業者說:「有任何人能夠證明香煙煙霧中發現的任何成分是造成肺癌的原因嗎?並沒有。[ 6 ]」,他們的說詞是:「很多都有關聯,但你們沒有明確證據的猜測,這件事就是『不一定』是對的。」

當時還沒有找出香菸煙霧中導致肺癌的明確證據。圖/envatoelements

那為什麼美國公共衛生部就直接說吸菸就會導致肺癌呢?其實他們並不知道,但他們藉由一下幾點原因才決定禁止:

  1. 肺癌人口比例激增發生在吸菸人口增加後。
  2. 絕大多數的肺癌患者有吸菸。
  3. 不同族群中都出現這關聯。
  4. 吸菸風險相當高,如果吸更多菸風險更高。
  5. 肺癌存活率低。

所以雖然沒有像現在一樣多的證據來支持吸菸是如何造成肺癌,但美國公共衛生部還是決定宣布吸菸會導致癌症。

越來越多的證據證明,吸菸是如何傷害身體

前面我們說到,科學家從統計上面找到吸菸與肺癌之間的關聯,現在我要從生物與化學的角度來探討,煙霧與肺癌之間的直接關聯。

-----廣告,請繼續往下閱讀-----

這時候我們可以從香菸含有的成分下手,找出其中的致癌物,也就是引起癌症的分子,從實驗數據來看,香煙煙霧至少含有 3500 種化合物和 55 種致癌物質,其中以多環芳香烴(PAHs)和 4 -甲基亞硝胺基 – 1 – 3 – 吡啶基 – 1 -丁酮(NNK)作為致癌的主要分子[ 12 ]

這邊我以 NNK 為例,實驗人員利用給予老鼠不同劑量的 NNK ,來測試老鼠食用多少 NNK 才會罹癌,從數據上來看老鼠的半數致死量 (LD50) 為每公斤 1 克[ 13 ]。半數致死量換句話來說,也就是多少劑量可以造成一半的生物致死,拿上述的實驗為例,假設老鼠平均體重為 300 克,那我們投放含有 0.3 克 NNK 的物質就可以造成半數的老鼠死亡。

那究竟為什麼 NNK 會造成癌症呢?別急,我們先看看 NNK 進入身體內會發生什麼事?不難想像的是,大部分 NNK 就會順著身體的清理機制離開身體,但少部分的 NNK 會被 P450 細胞色素(身體裡的一種蛋白質,主要作用是催化氧化有機化合物)代謝成具活性的 NNK ,而這個活性物質就會與身體裡的 DNA 結合,結合後就會造成致癌基因和腫瘤抑制基因的有害突變,這可以被認為是腫瘤造成的起始[ 14 ]

最後你可能會問,到底是什麼基因突變才會造成肺癌?答案就是 KRAS 和 TP53 這兩個基因,同時它們也被認為是肺癌的預測指標[ 15 ]

-----廣告,請繼續往下閱讀-----
菸草中的 NNK 導致 KRAS 和 TP53 兩種基因突變,因此導致肺癌。圖/envatoelements

結論

我們可以簡單來說,吸菸為何會造成癌症,因為吸菸中的有害物質 NNK ,會進入人體中,然後被 P450 細胞色素激活並與 DNA 結合,然後碰巧與 KRAS 和 TP53 其中一個基因結合,就會讓人有很高機率會的癌症。

這個看起來很簡單的結論,其實也是每個科學家花很多時間,與實驗動物們的貢獻,才讓他們說明了燃燒後的菸草產生化學物質是如何對我們的健康產生威脅,使得我們制訂嚴苛的法案,去警告大家香菸的危害,讓我們可以活得更健康。

後記-有趣的小故事 

從歷史我們能夠了解,要釐清真相並非一件容易的事,其實在 1920 年代就有一名化學家 Angel Honorio Roffo 通過實驗證明,燃燒煙草產生的焦油會誘發癌症,可惜不幸的是因為二戰的緣故,德語的醫學期刊就被世人給遺忘,不然就不會有找不到菸草致癌的實驗證據[ 16 ]

參考資料

  1. 菸害防制法三讀祭重罰 禁電子煙 (https://reurl.cc/rZWmYb) (1.14.23)
  2. A brief history of smoking (https://reurl.cc/jR0L71) (1.14.23)
  3. Terry, Luther, and S. Woodruff. “Smoking and health: report of the Advisory Committee to the Surgeon General of the United States.” U-23 Department of Health, Education and Welfare. Washington DC: Public Health Service Publication 1103 (1964).
  4. Fewer Heavy Users Among Shrinking US Smoking Population (https://reurl.cc/GX3LEv) (1.17.23)
  5. Zaidan, George. Ingredients: The Strange Chemistry of What We Put in Us and on Us. 1st ed., Dutton, 2020.
  6. K. Michael Cummings, Anthony Brown, Richard O’Connor; The Cigarette Controversy. Cancer Epidemiol Biomarkers Prev 1 June 2007; 16 (6): 1070–1076. https://doi.org/10.1158/1055-9965.EPI-06-0912.
  7. Schrek R, Baker LA, Ballard GP, Dolgoff S. Tobacco smoking as an etiologic factor in disease. I. Cancer. Cancer Res 1950;10:49–58.
  8. Wynder EL, Graham EA. Tobacco smoking as a possible etiologic factor in bronchogenic carcinoma. JAMA 1950;143:329–336.
  9. Levin ML, Goldstein H, Gerhardt PR. Cancer and tobacco smoking. JAMA 1950;143:336–8.
  10. Wynder EL, Grahmam EA, Croninger AB. Experimental product of carcinoma with cigarette tar. Cancer Res 1953;13:855–4.
  11. Hammond EC, Horn D. The relationship between human smoking habits and death rates: a follow-up study of 187,766 men. JAMA 1954;155:1316–28.
  12. Stephen S. Hecht, Tobacco Smoke Carcinogens and Lung Cancer, JNCI: Journal of the National Cancer Institute, Volume 91, Issue 14, 21 July 1999, Pages 1194–1210, https://doi.org/10.1093/jnci/91.14.1194.
  13. Lewis, R.J. Sr. (ed) Sax’s Dangerous Properties of Industrial Materials. 11th Edition. Wiley-Interscience, Wiley & Sons, Inc. Hoboken, NJ. 2004., p. 2486.
  14. Xue J, Yang S, Seng S. Mechanisms of Cancer Induction by Tobacco-Specific NNK and NNN. Cancers (Basel). 2014 May 14;6(2):1138-56. doi: 10.3390/cancers6021138. PMID: 24830349; PMCID: PMC4074821.
  15. Gao W, Jin J, Yin J, Land S, Gaither-Davis A, Christie N, Luketich JD, Siegfried JM, Keohavong P. KRAS and TP53 mutations in bronchoscopy samples from former lung cancer patients. Mol Carcinog. 2017 Feb;56(2):381-388. doi: 10.1002/mc.22501. Epub 2016 Jun 6. PMID: 27182622.
  16. Proctor RN. Angel H Roffo: the forgotten father of experimental tobacco carcinogenesis. Bull World Health Organ. 2006 Jun;84(6):494-6. doi: 10.2471/blt.06.031682. Epub 2006 Jun 21. PMID: 16799735; PMCID: PMC2627373.
-----廣告,請繼續往下閱讀-----
科奇_96
1 篇文章 ・ 1 位粉絲
一名營養系大學狼~ 本狼的興趣是閱讀與寫作,喜歡科學、文哲等書籍,歡迎大家來認識我,嗷嗚~

2

6
1

文字

分享

2
6
1
認識「低溫熱裂解技術」——為何它是戴奧辛污染的救星?
科技大觀園_96
・2021/12/27 ・2894字 ・閱讀時間約 6 分鐘

環保署在 2011 年《中華民國重大環境事件彙編》發表《戴奧辛污染事件─揮之不去的世紀之毒》口述歷史,用新詩「燒阿!燒阿!」破題,形容戴奧辛如鬼魅般糾纏著台灣的環境生態,更時時刻刻威脅國人健康。

回顧國內戴奧辛污染事件,最早可追溯到 1979 年的台中與彰化米糠油事件,和 1982 年 12 月臺南市灣裡地區廢五金業者露天燃燒廢電纜產生煙塵,被檢測含有高濃度戴奧辛。但 30 年韶光荏苒,當時負責調查防治戴奧辛污染的環保署毒物管理處前處長陳永仁,在 2011 年口述歷史中感慨的說「我認為目前還沒有妥善處理」,突顯對抗戴奧辛污染依舊長路漫漫。 

也因為缺乏妥善處理,繼灣裡之後,1999 年接連爆發台北木柵焚化爐檢出戴奧辛超標與震驚國際的中石化台南安順廠戴奧辛污染案,2005 年在彰化縣線西鄉發現戴奧辛鴨蛋,2006 年林口傳出山羊遭到戴奧辛污染,2009 年高雄大寮爆發戴奧辛鴨事件,2017 年戴奧辛毒雞蛋流竄桃竹苗地區和新北市…,戴奧辛污染就像潛伏各地的不定時炸彈蠢蠢欲動!

臺灣戴奧辛事件表。(圖/沈佩泠製圖)
臺灣戴奧辛事件表。(圖/沈佩泠製圖)

 「低溫熱裂解技術」成為戴奧辛污染救星 

9 年前同時接受口述歷史訪談的中央大學環境工程研究所特聘教授張木彬則在 2014 年帶領研究團隊成功開發「低溫熱裂解技術」,有效裂解戴奧辛、多氯聯苯與五氯酚等含氯污染物,並可讓汞從土壤中脫離,終於使因利用水銀電解法電解海水以製造氫氧化鈉和氯氣而造成汞污染、又因製造五氯酚鈉導致廠區土壤受到戴奧辛及五酚氯污染而荒廢多年的中石化台南安順廠整治露出曙光,也被喻為戴奧辛與重金屬污染整治技術最完整的解決方案。 

-----廣告,請繼續往下閱讀-----

「戴奧辛有兩個主要生成途徑。」張木彬指出,第一個是化學製程,例如中石化安順廠在製造五氯酚鈉過程,產生戴奧辛「躲在」五氯酚裡面;第二是高溫燃燒,煉鋼、煉銅、焚化爐甚至燒木屑,也會產生戴奧辛,「都不是我們刻意製造,也無法完全避免,含氯的東西經過高溫催化,就會產生戴奧辛。」  

中央大學環境工程研究所特聘教授張木彬帶領研究團隊研發觸媒配方,開發更省能、更低。(圖/李宗祐 攝)
中央大學環境工程研究所特聘教授張木彬帶領研究團隊研發觸媒配方,開發更省能、更低。(圖/李宗祐 攝)

 既然要從「產生」完全杜絕很難,除了在製程盡量降低戴奧辛生成,如何發展有效技術讓它在生成之後,不要從煙囪、飛灰或廢水中排放出來,是防杜戴奧辛污染重要關鍵。張木彬表示,攝氏 250 到 400 度是戴奧辛生成速率最旺盛的「溫度窗」,當化學製程或高溫燃燒產生的廢氣通過煙道的時候,含氯、碳、氧、氫的化合物,經過銅跟鐵催化就會合成戴奧辛。超過 400 度以後,生成速率變慢;更高溫就會被破壞;低於 250 度,活化不夠,生成速率也會變慢。 

「萃冷技術」也因「溫度窗」原理應運而生,讓廢氣通過煙道過程在 1 秒之內從 400 度以上降到 250 度以下,把戴奧辛合成機率極小化,但還是無法達到「零產出」。以焚化爐而言,目前還是普遍採用成本相對便宜的活性碳噴霧法,利用活性碳吸附以氣體分子存在的戴奧辛,再用袋式集塵器把它抓下來,國內現有 24 座焚化爐就有 23 座利用活性碳防止戴奧辛排放至廠外。 

文山焚化爐廠齡超過24年,為提升焚化廠空汙防制效能,台中市政府汰舊換新文山焚化爐。
文山焚化爐廠齡超過24年,為提升焚化廠空汙防制效能,台中市政府汰舊換新文山焚化爐。

然而張木彬認為,活性碳噴霧法雖可有效降低從煙囪排放,卻治標不治本,只把戴奧辛從氣體轉移成固體,抓進集塵器飛灰裡面,問題並沒有完全解決。國內焚化爐每年燃燒處理超過 600 萬噸垃圾,產生 20 萬噸飛灰,都用螯合劑加水泥固化以後,拿到掩埋場處理。年年國泰民安、風調雨順就沒事;但萬一發生強烈地震或類似莫拉克颱風等天災,掩埋場可能被沖垮,裡面的東西就會跑出來,潛在的污染風險很大。 

-----廣告,請繼續往下閱讀-----

「最好的方法是發展破壞技術,把戴奧辛分子破壞、分解掉,而不只是把氣體變成固體!這也是我們實驗室一直努力的目標。」張木彬強調,「低溫熱裂解技術」是針對存在土壤或底泥裡面的戴奧辛,抓出來破壞掉並去除毒性,「我們利用氮氣把氧的含量控制到非常低,讓戴奧辛在幾乎無氧的狀態下裂解。」但最重要的核心技術是如何在相對低溫的條件下把戴奧辛完全摧毀。 

在完全燃燒的情形下,要完全破壞摧毀戴奧辛,溫度必須超過 900 度,但溫度越高,消耗能量越大,成本越高,不符經濟效益。「我們發展的技術是在比較低的溫度之下,不超過 350 度,就可以把土壤裡面的戴奧辛破壞掉。」張木彬透露,真正的「溫度窗」很重要,要完全摧毀戴奧辛,除了把它從固體變成氣體,再抓出來裂解處理乾淨;抓準各種氣體分子停留時間,避免讓其再度合成戴奧辛,以及如何給予適當觸媒,必須準確掌握不同的操作參數,才可以真正解決問題。 

政府應重視本土技術落實,解除污染風險 

可惜的是,張木彬研究團隊開發的「低溫熱裂解技術」,雖然被認為是目前已公開發表的研究成果中,最有可能解決戴奧辛與重金屬造成環境多重污染的完整解決方案,但中石化基於成本考量,並未採用他的技術。「就我個人看法,中石化的技術有點東拼西湊,處理流程太長,設備太老舊,事倍功半,沒有達到真正預期的效果。」不過研究團隊並未因此放棄,仍持續鑽研精進「低溫熱裂解技術」。 

「以前的低溫熱裂解沒有加觸媒,近 2、3 年開始研發觸媒配方,希望把溫度從 350 度降到 200 度,甚至於更低到 150 度,讓裂解程序更環保、更省能,成本更低。」張木彬直言,這個當然挑戰很大,但目前已有初步結果,已經降到 200 度,研究團隊正在校驗相關實驗數據,在確認重複性和穩定性以後,才會正式對外公開發表。

-----廣告,請繼續往下閱讀-----

 研究團隊語重心長呼籲政府應重視本土化技術研發並落實推廣。台灣工業製程早期產生的集塵灰和焚化廠飛灰,戴奧辛濃度很高,都是隨意棄置,很多土壤可能都受到污染,政府應該確實追蹤調查過去幾年陸續發生的戴奧辛污染事件是否與此有關。怎麼把過去遺留下來的東西與現在還在持續產生的東西,有效防止污染擴散並徹底解決潛在污染風險,要有破釜沈舟的決心! 

枋寮區域性垃圾衛生掩埋場除掩埋焚化爐產生飛灰,也逐漸轉為多元化廢棄物處理。
枋寮區域性垃圾衛生掩埋場除掩埋焚化爐產生飛灰,也逐漸轉為多元化廢棄物處理。

枋寮區域性垃圾衛生掩埋場除掩埋焚化爐產生飛灰,也逐漸轉為多元化廢棄物處理。張木彬舉例,全台焚化爐每年產生 20 萬噸飛灰,過去長期都是掩埋處理,現在每年新產生的也是直接掩埋,都沒有把飛灰裡面的戴奧辛抓出摧毀處理,讓飛灰從有害物質變成無害。政府若再不善用先進技術,等到各地掩埋場最後貯滿爆掉,就會像核廢料要留給下一代處理,「我們這一代要找出好的處理方法,有效解決問題。」 

-----廣告,請繼續往下閱讀-----
所有討論 2
科技大觀園_96
82 篇文章 ・ 1126 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。