4

0
0

文字

分享

4
0
0

器官移植感染HIV–國外案例整理

羅一鈞
・2011/08/31 ・1667字 ・閱讀時間約 3 分鐘 ・SR值 581 ・九年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

圖片取自TopNews

有讀者問「經器官移植手術感染HIV」的報告,國外案例不多,我整理如下:

1982~1987–在愛滋疫情之初、雞尾酒療法尚未問世的時期,總共有9起因器官移植傳染HIV的事件,造成20名受捐者感染。當時連藥物都沒有 (第一個愛滋藥物AZT是1987年3月FDA才核准的),有7名受捐者在案例報告裡記載已死亡,其他13名受捐者的案例報告,沒有提到後續健康狀況。

時隔20年後,早已進入雞尾酒療法時代,才再有器官移植傳染HIV的新案例:

2007–美國芝加哥,一位接受肝臟移植的患者,在移植後第10個月,器捐中心通知患者的醫院:因為從同樣捐贈者接受器官移植的患者,被發現感染HIV和HCV,回溯檢驗捐贈者的檢體,才發現捐贈者處於HIV和HCV的空窗期。這位接受肝臟移植的患者,此時檢驗HIV和HCV都是陽性,CD4只有34顆,開始接受雞尾酒療法,但是發生泌尿道感染、病毒性肺炎和急性腎衰竭,在移植後滿1年時不幸死亡。據美國媒體報導,這位捐贈者的器官總共移植到4位患者身上,4位都感染HIV。但是只有這位接受肝臟移植的個案有被發表在醫學文獻上,其餘3位受贈者的後來健康狀況,沒有發表於醫學文獻上。

2007–義大利托斯卡尼,一位腦死的器官捐贈者,被檢驗出HIV陽性,但是機器顯示的「陽性」結果被抄錄成HIV「陰性」,上傳到檢驗資訊系統,登錄在捐贈者檔案成為書面資料,而且沒有人重新確認正確性。捐贈者的肝臟和左右腎臟被移植給三位患者。直到術後第5天,檢驗室要提交移植檢驗資料給器捐中心時,重新確認機器結果,才發現錯誤。三位接受器官移植的患者都被確認感染HIV,接受雞尾酒療法治療,在報告完稿時(移植後3年左右),狀況良好。

2007–義大利佛羅倫斯,一位接受腎臟移植的患者,在器官移植後第5天,捐贈者死後的檢驗才發現有HIV,此時患者已經檢驗HIV PCR陽性,緊急開始使用雞尾酒療法治療。治療過程中第4週曾發生病毒性肺炎,後來還有類固醇的副作用(移植後避免排斥會使用類固醇),而且因為抗排斥藥和雞尾酒療法藥物交互作用,經常需要調整藥物劑量。不過總算狀況逐步穩定。在報告完稿時(移植後3年左右),臨床狀況良好,免疫力、病毒量都控制的不錯。

2009–美國紐約市,一位接受腎臟移植的患者,因為食道念珠菌感染,在器官移植後第79天,被檢驗確認感染HIV,回溯調查發現捐贈者處於HIV空窗期。該報告未提供器官受捐者後續的健康狀況。

從國外這些有限的案例歸納,器官移植者被早期 (例如一週內) 發現出HIV、使用雞尾酒療法,治療效果應該是滿不錯的,可能會經歷併發症,有的跟愛滋有關、有的跟移植用藥有關,但這兩名早期治療的個案都順利恢復,回到良好狀況。

預防性投藥,效果如何?

國外這些器官移植傳染HIV的案例,都超過黃金時間(72小時),來不及用預防性投藥挽救,所以器官移植感染HIV來使用預防性投藥來,可以說是毫無前例可循。

但是,醫學文獻上曾有過「受捐HIV血液而未被感染」的案例:

2000年丹麥的團隊報告,一名捐血者不知身處空窗期而去捐血,捐血後出現急性HIV感染症狀 (發燒+皮疹) 檢驗出HIV PCR陽性、病毒量高達20萬copies/mL,但是他先前捐的紅血球,已經輸進一名患者體內。這名受捐者在輸血後50小時開始服用預防性投藥,使用處方起初是卡貝滋 (AZT + 3TC) + 克濾滿 (Indinavir),經過1天後因為副作用難受,換成諾億亞 (Ritonavir),隔了1天又換成維拉賽特 (Nelfinavir) 才順利延續。經過9個月的持續預防性投藥,停藥後滿6個月仍然HIV抗體陰性、HIV PCR陰性,醫療團隊宣布該名患者順利畢業、未遭HIV感染。 這大概是唯一可以勉強參考的前例。

台大這次好歹在黃金時間內使用預防性投藥、又是學理上效果較強的新藥,是否能有效預防感染,值得關注。各位讀者,請跟我一起期盼,這次事件的器官受贈者們,都能像上述那位「受捐HIV血液而未被感染」的患者般,順利擺脫HIV的威脅。

參考文獻:

  1. Unintended transplantation of three organs from an HIV-positive donor: report of the analysis of an adverse event in a regional health care service in Italy. Transplant Proc. 2010;42:2187-9.
  2. Transmission of human immunodeficiency virus and hepatitis C virus from an organ donor to four transplant recipients. Am J Transplant. 2011 Jun;11(6):1218-25.
  3. Case report: HIV infection from a kidney transplant. Transplant Proc. 2010;42:2267-9.
  4. HIV transmitted from a living organ donor–New York City, 2009. MMWR 2011;60:297-301.
  5. Failure To Develop HIV Infection after Receipt of HIV-Contaminated Blood and Postexposure Prophylaxis. Ann Intern Med 2000;133:31-34.

本文原發表於作者部落格[2011-08-31]

文章難易度
所有討論 4
羅一鈞
28 篇文章 ・ 7 位粉絲
花蓮人, 台大醫學系畢業, 曾服馬拉威醫療團外交役, 台大醫院內科與感染科訓練, 曾在美國疾病管制局接受流病訓練, 為內科與感染科專科醫師, 現任疾病管制局防疫醫師、 台大醫院內科兼任主治醫師

1

133
3

文字

分享

1
133
3
AI 是理科「主場」? AI 也可以成為文科人的助力!
研之有物│中央研究院_96
・2022/08/13 ・5646字 ・閱讀時間約 11 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/田偲妤
  • 美術設計/蔡宛潔

AI 的誕生,文理缺一不可

人工智慧(Artificial Intelligence,簡稱 AI)在 21 世紀的今日已大量運用在生活當中,近期掀起熱議的聊天機器人 LaMDA、特斯拉自駕系統、AI 算圖生成藝術品等,都是 AI 技術的應用。多數 AI 的研發秉持改善人類生活的人文思維,除了仰賴工程師的先進技術,更需要人文社會領域人才的加入。

中央研究院「研之有物」專訪院內人文社會科學研究中心蔡宗翰研究員,帶大家釐清什麼是 AI?文科人與工程師合作時,需具備什麼基本 AI 知識?AI 如何應用在人文社會領域的工作當中?

中央研究院人文社會科學研究中心蔡宗翰研究員。圖/研之有物

詩詞大對決:人與 AI 誰獲勝?

一場緊張刺激的詩詞對決在線上展開!人類代表是有「AI 界李白」稱號的蔡宗翰研究員,AI 代表則是能秒速成詩的北京清華九歌寫詩機器人,兩位以「人工智慧」、「類神經」為命題創作七言絕句,猜猜看以下兩首詩各是誰的創作?你比較喜歡哪一首詩呢?

猜猜哪首詩是 AI 做的?哪首詩是人類做的?圖/研之有物

答案揭曉!A 詩是蔡宗翰研究員的創作,B 詩是寫詩機器人的創作。細細賞讀可發覺,A 詩的內容充滿巧思,為了符合格律,將「類神經」改成「類審經」;詩中的「福落天赦」是「天赦福落」的倒裝,多念幾次會發現,原來是 Google 開發的機器學習開源軟體庫「Tensor Flow」的音譯;而「拍拓曲」則是 Facebook 開發的機器學習庫「Pytorch」的音譯,整首詩創意十足,充滿令人會心一笑的魅力!

相較之下,B 詩雖然有將「人工」兩字穿插引用在詩中,但整體內容並沒有呼應命題,只是在詩的既有框架內排列字句。這場人機詩詞對決明顯由人類獲勝!

由此可見,當前的 AI 缺乏創作所需的感受力與想像力,無法做出超越預先設定的創意行為。然而,在不久的將來,AI 是否會逐漸產生情感,演變成電影《A.I. 人工智慧》中渴望人類關愛的機器人?

AI 其實沒有想像中聰明?

近期有一則新聞「AI 有情感像 8 歲孩童?Google 工程師爆驚人對話遭停職」,讓 AI 是否已發展出「自我意識」再度成為眾人議論的焦點。蔡宗翰研究員表示:「當前的 AI 還是要看過資料、或是看過怎麼判讀資料,經過對應問題與答案的訓練才能夠運作。換而言之,AI 無法超越程式,做它沒看過的事情,更無法替人類主宰一切!

會產生 AI 可能發展出情感、甚至主宰人類命運的傳言,多半是因為我們對 AI 的訓練流程認識不足,也缺乏實際使用 AI 工具的經驗,因而對其懷抱戒慎恐懼的心態。這種狀況特別容易發生在文科人身上,更延伸到文科人與理科人的合作溝通上,因不了解彼此領域而產生誤會與衝突。如果文科人可以對 AI 的研發與應用有基本認識,不僅能讓跨領域的合作更加順利,還能在工作中應用 AI 解決許多棘手問題。

「職場上常遇到的狀況是,由於文科人不了解 AI 的訓練流程,因此對 AI 產生錯誤的期待,認為辛苦標注的上千筆資料,應該下個月就能看到成果,結果還是錯誤百出,準確率卡在 60、70% 而已。如果工程師又不肯解釋清楚,兩方就會陷入僵局,導致合作無疾而終。」蔡宗翰研究員分享多年的觀察與建議:

如果文科人了解基本的 AI 訓練流程,並在每個訓練階段協助分析:錯誤偏向哪些面向?AI 是否看過這方面資料?文科人就可以補充缺少的資料,讓 AI 再進行更完善的訓練。

史上最認真的學生:AI

認識 AI 的第一步,我們先從分辨什麼是 AI 做起。現在的數位工具五花八門,究竟什麼才是 AI 的應用?真正的 AI 有什麼樣的特徵?

基本上,有「預測」功能的才是 AI,你無法得知每次 AI 會做出什麼判斷。如果只是整合資料後視覺化呈現,而且人類手工操作就辦得到,那就不是 AI。

數位化到 AI 自動化作業的進程與舉例。圖/研之有物

蔡宗翰研究員以今日常見的語音辨識系統為例,大家可以試著對 Siri、Line 或 Google 上的語音辨識系統講一句話,你會發現自己無法事先知曉將產生什麼文字或回應,結果可能正是你想要的、也可能牛頭不對馬嘴。此現象點出 AI 與一般數位工具最明顯的不同:AI 無法百分之百正確!

因此,AI 的運作需建立在不斷訓練、測試與調整的基礎上,盡量維持 80、90% 的準確率。在整個製程中最重要的就是訓練階段,工程師彷彿化身老師,必須設計一套學習方法,提供有助學習的豐富教材。而 AI 則是史上最認真的學生,可以穩定、一字不漏、日以繼夜地學習所有課程。

AI 的學習方法主要分為「非監督式學習」、「監督式學習」。非監督式學習是將大批資料提供給 AI,讓其根據工程師所定義的資料相似度算法,逐漸學會將相似資料分在同一堆,再由人類檢視並標注每堆資料對應的類別,進而產生監督式學習所需的訓練資料。而監督式學習則是將大批「資料」和「答案」提供給 AI,讓其逐漸學會將任意資料對應到正確答案。

圖/研之有物

學習到一定階段後,工程師會出試題,測試 AI 的學習狀況,如果成績只有 60、70 分,AI 會針對答錯的地方調整自己的觀念,而工程師也應該與專門領域專家一起討論,想想是否需補充什麼教材,讓 AI 的準確率可以再往上提升。

就算 AI 最後通過測試、可以正式上場工作,也可能因為時事與技術的推陳出新,導致準確率下降。這時,AI 就要定時進修,針對使用者回報的錯誤進行修正,不斷補充新的學習內容,讓自己可以跟得上最新趨勢。

在了解 AI 的基本特徵與訓練流程後,蔡宗翰研究員建議:文科人可以看一些視覺化的操作影片,加深對訓練過程的認識,並實際參與檢視與標注資料的過程。現在網路上也有很多 playground,可以讓初學者練習怎麼訓練 AI,有了上述基本概念與實務經驗,就可以跟工程師溝通無礙了。

AI 能騙過人類,全靠「自然語言處理」

AI 的應用領域相當廣泛,而蔡宗翰研究員專精的是「自然語言處理」。問起當初想投入該領域的原因,他充滿自信地回答:因為自然語言處理是「AI 皇冠上的明珠」!這顆明珠開創 AI 發展的諸多可能性,可以快速讀過並分類所有資料,整理出能快速檢索的結構化內容,也可以如同真人般與人類溝通。

著名的「圖靈測試」(Turing Test)便證明了自然語言處理如何在 AI 智力提升上扮演關鍵角色。1950 年代,傳奇電腦科學家艾倫・圖靈(Alan Turing)設計了一個實驗,用來測試 AI 能否表現出與人類相當的智力水準。首先實驗者將 AI 架設好,並派一個人操作終端機,再找一個第三者來進行對話,判斷從終端機傳入的訊息是來自 AI 或真人,如果第三者無法判斷,代表 AI 通過測試。

圖靈測試:AI(A)與真人(B)同時傳訊息給第三者(C),如果 C 分不出訊息來自 A 或 B,代表 AI 通過實驗。圖/研之有物

換而言之,AI 必須擁有一定的智力,才可能成功騙過人類,讓人類不覺得自己在跟機器對話,而這有賴自然語言處理技術的精進。目前蔡宗翰的研究團隊有將自然語言處理應用在:人文研究文本分析、新聞真偽查核,更嘗試以合成語料訓練臺灣人專用的 AI 語言模型。

讓 AI 替你查資料,追溯文本的起源

目前幾乎所有正史、許多地方志都已經數位化,而大量數位化的經典更被主動分享到「Chinese Text Project」平台,讓 AI 自然語言處理有豐富的文本資料可以分析,包含一字不漏地快速閱讀大量文本,進一步畫出重點、分門別類、比較相似之處等功能,既節省整理文本的時間,更能橫跨大範圍的文本、時間、空間,擴展研究的多元可能性。

例如我們想了解經典傳說《白蛇傳》是怎麼形成的?就可以應用 AI 進行文本溯源。白蛇傳的故事起源於北宋,由鎮江、杭州一帶的說書人所創作,著有話本《西湖三塔記》流傳後世。直至明代馮夢龍的《警世通言》二十八卷〈白娘子永鎮雷峰塔〉,才讓流傳 600 年的故事大體成型。

我們可以透過「命名實體辨識技術」標記文本中的人名、地名、時間、職業、動植物等關鍵故事元素,接著用這批標記好的語料來訓練 BERT 等序列標注模型,以便將「文本向量化」,進而找出給定段落與其他文本的相似之處。

經過多種文本的比較之後發現,白蛇傳的原型可追溯自印度教的那伽蛇族故事,傳說那伽龍王的三女兒轉化成佛、輔佐觀世音,或許與白蛇誤食舍利成精的概念有所關連,推測印度神話應該是跟著海上絲路傳進鎮江與杭州等通商口岸。此外,故事的雛型可能早從唐代便開始醞釀,晚唐傳奇《博異志》便記載了白蛇化身美女誘惑男子的故事,而法海和尚、金山寺等關鍵人物與景點皆真實存在,金山寺最初就是由唐宣宗時期的高僧法海所建。

白蛇傳中鎮壓白娘子的雷峰塔。最早為五代吳越王錢俶於 972 年建造,北宋宣和二年(1120 年)曾因戰亂倒塌,大致為故事雛形到元素齊全的時期。照片中雷峰塔為 21 世紀重建。圖/Wikimedia

在 AI 的協助之下,我們得以跨時空比較不同文本,了解說書人如何結合印度神話、唐代傳奇、在地的真人真事,創作出流傳千年的白蛇傳經典。

最困難的挑戰:AI 如何判斷假新聞

除了應用在人文研究文本分析,AI 也可以查核新聞真偽,這對假新聞氾濫的當代社會是一大福音,但對 AI 來說可能是最困難的挑戰!蔡宗翰研究員指出 AI 的弱點:

如果是答案和數據很清楚的問題,就比較好訓練 AI。如果問題很複雜、變數很多,對 AI 來說就會很困難!

困難點在於新聞資訊的對錯會變動,可能這個時空是對的,另一個時空卻是錯的。雖然坊間有一些以「監督式學習」、「文本分類法」訓練出的假新聞分類器,可輸入當前的新聞讓機器去判讀真假,但過一段時間可能會失準,因為新的資訊源源不絕出現。而且道高一尺、魔高一丈,當 AI 好不容易能分辨出假新聞,製造假新聞的人就會破解偵測,創造出 AI 沒看過的新模式,讓先前的努力功虧一簣。

因此,現在多應用「事實查核法」,原理是讓 AI 模仿人類查核事實的過程,尋找權威資料庫中有無類似的陳述,可用來支持新聞上描述的事件、主張與說法。目前英國劍橋大學為主的學者群、Facebook 與 Amazon 等業界研究人員已組成 FEVEROUS 團隊,致力於建立英文事實查核法模型所能運用的資源,並透過舉辦國際競賽,廣邀全球學者專家投入研究。

蔡宗翰教授團隊 2021 年參加 FEVEROUS 競賽勇奪全球第三、學術團隊第一後,也與合作夥伴事實查核中心及資策會討論,正著手建立中文事實查核法模型所需資源。預期在不久的將來,AI 就能幫讀者標出新聞中所有說法的資料來源,節省讀者查證新聞真偽的時間。

AI 的無限可能:專屬於你的療癒「杯麵」

想像與 AI 共存的未來,蔡宗翰研究員驚嘆於 AI 的學習能力,只要提供夠好、夠多的資料,幾乎都可以訓練到讓人驚訝的地步!圖/研之有物

AI 的未來充滿無限可能,不僅可以成為分類與查證資料的得力助手,還能照護並撫慰人類的心靈,這對邁入高齡化社會的臺灣來說格外重要!許多青壯年陷入三明治人(上有老、下有小要照顧)的困境,期待有像動畫《大英雄天團》的「杯麵」(Baymax)機器人出現,幫忙分擔家務、照顧家人,在身心勞累時給你一個溫暖的擁抱。

機器人陪伴高齡者已是現在進行式,新加坡南洋理工大學 Gauri Tulsulkar 教授等學者於 2021 年發表了一項部署在長照機構的機器人實驗。這名外表與人類相似的機器人叫「娜丁」(Nadine),由感知、處理、互動等三層架構組成,可以透過麥克風、3D和網路鏡頭感知用戶特徵、所處環境,並將上述資訊發送到處理層。處理層會依據感知層提供的資訊,連結該用戶先前與娜丁互動的記憶,讓互動層可以進行適當的對話、變化臉部表情、用手勢做出反應。

長照機構的高齡住戶多數因身心因素、長期缺乏聊天對象,或對陌生事物感到不安,常選擇靜默不語,需要照護者主動引導。因此,娜丁內建了注視追蹤模型,當偵測到住戶已長時間處於被動狀態,就會自動發起話題。

實驗發現,在娜丁進駐長照機構一段時間後,住戶有一半的天數會去找她互動,而娜丁偵測到的住戶情緒多為微笑和中性,其中有 8 位認知障礙住戶的溝通能力與心理狀態有明顯改善。

照護機器人娜丁的運作架構。圖/研之有物

至於未來的改進方向,研究團隊認為「語音辨識系統」仍有很大的改進空間,需要讓機器人能配合老年人緩慢且停頓較長的語速,音量也要能讓重聽者可以清楚聽見,並加強對方言與多語混雜的理解能力。

臺灣如要發展出能順暢溝通的機器人,首要任務就是要開發一套臺灣人專用的 AI 語言模型,包含華語、臺語、客語、原住民語及混合以上兩種語言的理解引擎。這需花費大量人力與經費蒐集各種語料、發展預訓練模型,期待政府能整合學界與業界的力量,降低各行各業導入 AI 相關語言服務的門檻。

或許 AI 無法發展出情感,但卻可以成為人類大腦的延伸,協助我們節省處理資料的時間,更可以心平氣和地回應人們的身心需求。與 AI 共存的未來即將來臨,如何讓自己的行事邏輯跟上 AI 時代,讓 AI 成為自己的助力,是值得你我關注的課題。

延伸閱讀

文章難易度
所有討論 1
研之有物│中央研究院_96
253 篇文章 ・ 2220 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
被 Covid-19 感染後,病毒進入人體後去了哪裡?嗜好你哪一個細胞?——《從一個沒有名字的病開始》
商周出版_96
・2022/11/14 ・3757字 ・閱讀時間約 7 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

我們的生命被機緣所定義,即使是那些我們錯過的。
——《班傑明的奇幻旅程》

「有症狀的人,請戴口罩。」

這是長久以來,預防呼吸道感染的策略。我們一貫以呼吸道症狀,來辨識誰是那個可能散播病毒的「行動病毒複製機」。但隨著新冠病毒的出現,呼吸道症狀不再適用於辨識感染性與否;於是在疫情蔓延期間,防疫策略是無論有沒有症狀都得戴上口罩,甚至激進一點的作法,直接規定大眾關在家中、減少移動。

疫情蔓延期間,無論是否有症狀都得戴上口罩。圖/Pixabay

但是病毒真的這麼安分,就只待在呼吸道嗎?透過不同研究,我們可以一窺在 Omicron 出現前,新冠病毒在人體內到底「去了哪裡」。

最受新冠病毒青睞的人體細胞

新冠病毒透過棘蛋白與人類細胞表面的 ACE2 蛋白質受體結合。與特定細胞受體結合,是病毒「可能」入侵人體的第一個步驟。

那麼人體中哪些地方有最多 ACE2 呢?不管是口腔或鼻腔黏膜的上皮細胞,都有非常高量的 ACE2。

值得注意的是,與 SARS 病毒相比,新冠病毒棘蛋白與人體 ACE2 分子的親和力,增加了 10~20 倍[1]

也就是說,當你吸入含有病毒的空氣(機率較低),這些新冠病毒在路過上呼吸道之際,附著在上皮細胞的機率可能是 SARS 病毒的 10~20 倍,或者更有可能是透過你沾染病毒的手,觸摸鼻腔、口腔、眼睛的黏膜表皮(機率較高),而給了病毒機會感染上皮細胞。這足以解釋,為何新冠病毒最初感染階段,都是先在上呼吸道複製,且被感染的人甚至在沒有症狀的情況下,就具有傳播病毒的能力。這一點與 SARS 病毒非常不一樣,SARS 主要感染下呼吸道,且病人要在肺炎重症發病後 3~4 天才具有效感染性。

2020 年新冠疫情剛爆發時,穿梭在東亞各國的鑽石公主號遊輪[2],因為一位被感染的乘客在香港上了船,造成全遊輪被隔離在日本橫濱港。最終咽喉試子呈 PCR 陽性的有 712 人(占 19.2%),其中超過 50% 的人自始至終都沒有覺察到病毒的存在,這就是無症狀感染的比例。另外,約有 20% 的感染者出現下呼吸道肺炎症狀,以及 30% 屬於輕症的上呼吸道感染。整體來看,最大宗的感染者(80%)呈現輕微或無症狀。

而根據研究,24% 的確診者,眼睛結膜試子也會呈 PCR 陽性,陽性率約可維持五天左右。

現在就很清楚,為什麼防疫宣導一直告訴大家不要用手摸眼睛、嘴巴、鼻子,這是絕對有科學根據的。這些黏膜表皮,就是病毒入侵人體的要害,同時是人體系統受到影響的元凶,值得持續探討。

免疫機制控制病毒不亂竄

病毒在口腔或鼻腔黏膜上皮細胞的複製過程中,我們的身體也不是閒著沒事等病毒大軍進攻。當病毒嘗試與 ACE2 結合時,人體有足夠的時間,透過自身的先天性免疫反應對付病毒。

當免疫系統開始作用,我們可能會出現發燒、流鼻水、咳嗽等症狀。因為鼻腔與口腔是貫通的,病毒可以緩慢移到口咽、鼻咽、喉咽和整個上呼吸道,附著在黏膜上與 ACE2 結合進行複製。所以當我們使用快篩劑,無論是鼻咽或是唾液快篩,很容易從這些部位檢測到病毒。

鼻咽或是唾液快篩容易檢測到病毒。圖/Envato Elements

如果身體的先天免疫機制和肺部防禦能力夠強,透過上呼吸道局部的免疫反應,將病毒圍堵並控制,就可以預防病毒侵入下呼吸道和其他器官。病毒感染上呼吸道的表皮,並沒有影響到關鍵的人體功能(嬰幼兒除外,因為他們的呼吸通道較窄小,若有任何發炎腫脹,就可能造成呼吸困難的緊急狀況),因此新冠感染者多數呈現無症狀,或者可能只有輕微的上呼吸道症狀。最終新冠患者在完全無症狀或症狀輕微的情況下,有效地抵抗了病毒的入侵;大多數健康的年輕感染者都是這樣的情況。

但若是入侵的病毒量過高,或個人先天性的免疫力不足,病毒會在體內持續擴散。嚴重呼吸道感染症狀,甚至呼吸衰竭,可能發生在 1~3% 的人身上,而且經由解剖的結果已證實呼吸衰竭是最主要的死因。

德國解剖註冊中心在 2021 年10 月之前就已收集 1,129 名新冠疫歿者的解剖資料[3],認定 86% 的死因為新冠病毒感染,14% 為其他共病。研究發現,肺部的病變,以及病毒侵襲肺細胞,以至於大量發炎細胞浸潤,從而得出「嚴重發炎反應造成肺功能衰竭」是最主要的死因這個結論。

新冠病毒讓我們再度正視,肺臟這個重要器官,因其功能所需而座落在如此易受傷害的人體部位。台灣每年的十大死因,肺炎都有上榜,可見不論健康與否,一不小心,肺炎都可能成為終結生命的最後一根稻草。

病毒與你的「表面關係」可以很長久

我們已經知道新冠病毒嗜好人體的呼吸道,除此之外,它還有其他落腳處嗎?

回答這個問題之前,得先釐清一個重點:不同變異株喜歡去的人體部位不一樣。Delta 嗜好感染肺部,Omicron 的感染位置大多止於上呼吸道的咽喉部位。(參見第三章)

為什麼要知道病毒在我們體內去了哪裡?根據觀察,新冠確診者癒後可能出現各式與呼吸道功能無明顯關係的症狀,也就是現在俗稱的「長新冠」(Long Covid)。病毒學家因此懷疑,病毒是否透過不同機制持續存活在人體內,造成更深層的器官感染,才會導致多元症狀的長新冠出現。這是非常值得探討的問題。

事實證明,的確如此。

病毒透過不同機制持續存活在人體內。圖/Envato Elements

除了呼吸道的分泌物及口水(咽喉感染相關)等新冠診斷的主要檢體外,糞便也經常被檢測到病毒存在的跡象,頻繁到可以用下水道的病毒監測系統瞭解疫情的起伏,甚至可以監測變異株的多寡[4]

腸胃道:病毒長存的溫床

病毒不只頻繁出現在糞便中,還會長期存在某些人的腸胃道內。史丹佛大學團隊進行的長期研究[5],針對 113 名新冠輕症與中症的病人(重症已被排除),追蹤研究十個月,收集並分析他們糞便中是否仍有病毒 RNA。

結果發現,在確診後的第一週內,49.2% 的患者糞便中可檢測到新冠病毒 RNA; 四個月後仍有 12.7% 的人糞便中檢測得到病毒 RNA,但此時這些人的口咽試子的病毒 RNA 都已呈陰性,而在七個月後, 還有 3.8% 的人糞便中仍能檢測到病毒 RNA。仔細分析後,發現胃腸道症狀(腹痛、噁心、嘔吐)與病毒 RNA 是否持續存在於糞便中具有關聯性。

作者同時提醒,以上研究是在變異株 Omicron、Delta 出現之前進行的。不同變異株可能對呼吸道與胃腸道有不同嗜好或親和力,可能也會表現出清除率(每單位時間去除某種物質)的差異,這是病毒變異株固有的生物學特點,可能影響潛在疾病的特性。同時病毒如何存在於體內,也會受到自然感染生成的免疫反應,或疫苗接種引起的宿主免疫狀態的影響而有所差異。

病毒如何存在於體內會受疫苗接種引起的宿主免疫狀態而有所差異。圖/Envato Elements

另一項多中心的合作研究[6],長期追蹤 87 位新冠確診患者六個月,發現他們的 RBD 特異性記憶型 B 細胞數量維持不變(沒有減少),還出現單株抗體細胞有更新的現象,表達的抗體具有更多抗原差異,但病人血清對原始病毒株的中和抗體效價則持續下降。這表示六個月後,這些確診病人體內的 B 細胞仍持續對新冠病毒製造的分子作出反應,而這些病毒分子的來源就是腸胃道。研究指出,14 位確診者當中有一半可以在他們的小腸中檢測到新冠病毒 RNA,同時呈現陽性免疫反應。

病毒不只長存於腸胃,而且還是活跳跳的病毒。另一項研究[7]提供了充分證據。該研究追蹤免疫功能下降的病患,在確診一年之後,還可以從他們的盲腸組織細胞及乳房細胞直接培養出活病毒。研究者的結論是,免疫功能低下的患者,同時經歷了長新冠症狀和持續的病毒複製。整體而言,這些研究結果以及新興的長新冠研究,提高了胃腸道做為病毒長期藏匿之處,且可以長期影響症狀的可能性。

最後我們要問,除了上述提及的部位,還有其他人類的分泌物可以檢測到病毒嗎?我們必須釐清病毒會在哪些分泌物出現,以便在執行防疫措施時,可依重點需求區分輕重緩急的必備資訊,否則防疫很容易落入草木皆兵,造成不必要的恐慌與浪費資源。

* 本文內容所引用的文獻均發表在 Omicron 出現之前。基於 Omicron 與其他變異株在細胞嗜性的差異,本文部分內容不適用於 Omicron 感染。

——本文摘自《從一個沒有名字的病開始》,2022 年 11 月,商周出版,未經同意請勿轉載。

參考資料

  1. Wrapp et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020 Mar 13;367(6483):-1263.
  2. Sakurai et al. Natural History of Asymptomatic SARS-CoV-2 Infection. N Engl J Med. 2020 Aug 27;383(9):885-886.
  3. von Stillfried et al., First report from the German COVID-19 autopsy registry. Lancet Reg Health Eur. 2022 Feb 18;15:100330.
  4. Amman, et al. Viral variant-resolved wastewater surveillance of SARS-CoV-2 at national scale. Nat Biotechnol (2022). https://doi.org/10.1038/s41587-022-01387-y
  5. Natarajan, et al. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. Med (N Y). 2022 Jun 10;3(6):371-387.e9.
  6. Gaebler, et al. Evolution of antibody immunity to SARS-CoV-2. Nature. 2021 Mar;591(7851):639-644.
  7. RNAhttps://www.researchsquare.com/article/rs-1379777/v2

0

1
1

文字

分享

0
1
1
一波未平,一波又起!我們該擔心猴痘疫情嗎?——《科學月刊》
科學月刊_96
・2022/08/05 ・2479字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 文/林翰佐 銘傳大學生物科技學系副教授,本刊總編輯。

「一波未平,一波又起。」正當這個世界仍為嚴重特殊傳染性肺炎(COVID-19)疫情疲於奔命之際,猴痘(monkeypox)疫情似乎也有逐步升溫的趨勢。我們該以何種心態面對新的未知疫情?或許這篇文章能提供讀者一些方向和理性。

猴痘病毒的近親——造成數十億人喪命的天花

猴痘是由猴痘病毒(monkeypox virus, MPV)感染所引起,猴痘病毒在分類上有個赫赫有名的同屬——造成天花(smallpox)的天花病毒(variola virus)。

天花病毒的穿透式電子顯微鏡圖,內部呈現啞鈴形的部分包含了病毒的 DNA。圖/Wikipedia

天花是一種能透過空氣傳播、致死率約 30% 的病毒,且疾病痊癒後仍會在病人身上留下難以磨滅的坑疤,令人聞之色變,更是人類疾病歷史上最黑暗的篇章。據歷史記載,在 735 至 737 年間,一場爆發於日本的天花流行,一共奪走了 100~150 萬人的生命,約相等於當時日本總人口數的 1/3,足見其威力。

諷刺的是,天花也是人類第一個戰勝的疫病。由英國醫師詹納(Edward Jenner)推行的牛痘(cowpox)接種技術,意外開啟生命科學中的免疫學篇章,使疫苗成為對抗病毒性傳染病最有效的武器。1980 年代,在世界衛生組織(World Health Organization, WHO)防堵策略的運用下,曾經造成人類歷史上約數十億人喪命的天花,在地球上徹底地被根除。

猴痘的病毒結構與傳播能力

繼承表親天花病毒的威名,猴痘疫情似乎顯得山雨欲來。

其實,痘病毒科(Poxviridae)的親戚一直存在於脊椎動物的族群當中。這類病毒的基因組由雙股 DNA 所組成,長達 186 千鹼基對(kb),記錄著 180 多個基因訊息,是感染哺乳動物的病毒當中體型最大,最為複雜的病毒。

相較於目前大家最為熟知的新型冠狀病毒(SARS-CoV-2)基因體長度大約只有 2 萬 6000 至 3 萬 2000 個核苷酸(nucleotides)所組成,透過分子機轉可以生產約 20 種左右的結構性蛋白(structural protein)及非結構性蛋白(nonstructural protein),在巨大的天花病毒前面顯得單純許多。

而更多種蛋白質的生產力也意味著病毒的「能力」愈強,所以天花病毒一直以來都被譽為是最狡猾的病毒,它具備多套欺騙免疫系統的機轉,使人防不勝防。

痘科病毒相當狡猾,但還是希望猴痘可以安分一點。,圖 / pixabay

猴痘,顧名思義是一種流行於靈長類的流行病。1958 年,在研究用的猴子中首度被發現,而人類被感染的首起案例發生於 1970 年,之後在中非及西非偏遠地區也陸續發現零星案例。

根據流行病學的調查研究,猴痘主要透過嚙齒類、靈長類野生動物傳染給人類,是一種人畜共通傳染疾病。不過猴痘的傳播一直以來都是不慍不火,即便目前有升溫的趨勢,流行病學專家也相信它的「基本再生數」(basic reproduction number,俗稱 R0 值)介於 2 和 3 之間,遠低於目前肆虐的新型冠狀病毒 Omicron 變異株(R0≈10~15),意味著只要有適當的防疫作為,疫情不會像 COVID-19 一樣來得又快又猛。

猴痘的傳播途徑有哪些?

目前已知猴痘人傳人的途徑主要以皮膚、口對口或體液等與患者有密切接觸的方式傳染,其中也包括接觸被患者汙染過的物品以及衣物等。不過具體相關細節仍有賴後續的研究,包括患者實際具備感染能力的時程,以及是否造成胎兒垂直感染的可能性等。不過由於人類對抗天花具有相當完善的經驗,對於應付猴痘來襲,一些估算總不至於差得離譜。

若是不慎感染猴痘,需要多久才能痊癒?

猴痘的症狀類似天花,具有明確的病癥,包括發燒、頭痛、肌肉酸痛、背痛、疲倦及淋巴結腫大,此外隨著病程的演進也會在皮膚上出現丘疹。

猴痘的症狀類似天花,特別明顯的症狀是皮膚病灶。圖/Wikipedia

猴痘的病程通常持續兩到三週,多數健康的人可以自行痊癒。不過部分患者包括嬰兒、兒童,以及免疫缺陷病友,可能會面臨更嚴重的症狀,甚至死亡。有關猴痘的死亡率依照不同地區呈現相當大的差異,預估值從 1~10%,甚至於更高的數值都曾經被提出,不過死亡率也與當地的公衛條件和醫療支援程度息息相關,不排除被高估的可能。

根據世界衛生組織公開的資料顯示,近期受到猴痘疫情影響的國家及地區,迄今並未出現死亡案例。

目前有針對猴痘開發的疫苗或是藥物嗎? 

由於新藥開發的速度較慢,多數新興傳染病很難有可以立即使用的「特效藥」。但目前包括美、英、加拿大等國的藥物管理局,已陸續核准將天花的藥物特考韋端(tecovirimat)用於猴痘治療。特考韋端能干擾天花病毒細胞膜蛋白的合成,阻斷病毒在人體內複製散播的機率、降低病情的發展,在實驗室中的研究證明它對猴痘病毒的複製也能有效地進行干預,不過臨床上的效果仍有待後續研究證實。

基於猴痘與天花的同源性,接種牛痘疫苗也可以提供有效保護,多項研究表明曾接種過牛痘疫苗者,發病率可降至約 4~21%。根據臺灣衛生福利部疾病管制署的說明,臺灣目前仍保有一定數量的第一代牛痘疫苗戰備存量,可以因應緊急時所需。另外,由於牛痘疫苗的製程屬於活毒疫苗,具有相當長效的保護效力,在 1979 年前出生的民眾皆有施打牛痘疫苗,因此他們也對猴痘有較佳的抵抗能力。

疫病的可怕性來自於高傳染率、致死率,以及人類對該疾病的理解程度。由上述已知條件看來,猴痘並不是那麼可怕,可避免過度恐慌。不過衛生習慣的培養與防疫知識確實仍是趨吉避凶的基礎,願大家出入平安。

  • 〈本文選自《科學月刊》2022 年 8 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

延伸閱讀

  1. 台灣科技媒體中心,猴痘最新研究解析記者會新聞稿,2022年7月。https://smctw.tw/13545/
  2. 天平疫病大流行,2021年11月5日,維基百科,https://reurl.cc/j1XR4m