0

0
0

文字

分享

0
0
0

恩索現象(ENSO)有愈演愈烈嗎?

葉綠舒
・2014/08/12 ・1247字 ・閱讀時間約 2 分鐘 ・SR值 555 ・八年級

所謂的恩索現象(ENSO),是聖嬰(El Niño)與南方震盪(Southern Oscillation)的合稱;早期本以為這兩個現象互不相干,但現在大部分的學者都已經認同這兩件事是互相有關連的。

在正常的狀態下,赤道風將溫暖的海水向西(亞洲、印度)吹送;而這時冷的海水會從南美洲海岸區上湧,使得鯷魚會游近海岸,讓秘魯的漁民有鯷魚可捉,海鳥有食物可吃。而亞洲、印度因為溫暖的海水而帶來季雨。

正常狀況的太平洋。圖片來源:維基百科
正常狀況的太平洋。圖片來源:維基百科

在聖嬰年時,東太平洋氣壓降低,西太平洋氣壓就上昇,使得南太平洋的東南信風減弱或甚至往相反的方向吹,造成溫暖的海水不再往西岸吹送;於是在南美洲冷的海水不上湧,鯷魚游到離岸較遠的地方,漁夫沒有鯷魚可抓、海鳥大量餓死。而這時印度也因為溫暖的海水不到來,於是季雨不降臨,鬧旱災。

聖嬰年的太平洋。圖片來源:維基百科
聖嬰年的太平洋。圖片來源:維基百科

由於這個現象最早是由秘魯的漁民發現,而且海水變暖的時間都是在聖誕節前後,所以被稱為「聖嬰」現象。而東西太平洋之間的氣壓就如蹺蹺板一樣,此高彼低、此低彼高,因此被稱為「南方震盪」。目前認為南方震盪是啟動聖嬰的關鍵。

-----廣告,請繼續往下閱讀-----

說了這麼多,其實聖嬰年就是多災多難的年份;因此,研究ENSO的學者,無不致力於了解它究竟如何發生,以及發生的頻率,試圖從中找到一些答案。過去的研究都認為ENSO應該是在全新世(Holocene,即最近的一萬一千年左右)之後才開始的,而且有愈演愈烈的狀態。

不過,最近有一群美國、法國、秘魯的科學家們所組成的研究團隊,研究在秘魯海邊的七個地點的貝殼,發現現代ENSO的機制,其實在四萬五千年前到三萬年前就已經建立了;而過去一萬年來ENSO出現頻率的變化並不顯著。

研究團隊測定七個地點的貝殼中的碳同位素與氧同位素含量。其中碳同位素含量可以確定貝殼的年代,而氧同位素的含量可以確定在牠活著的時候的二到四周間的海水溫度。由這些數據,研究團隊可以發現並得到過去一萬年來ENSO出現的頻率。

1997年TOPEX/Poseidon衛星觀測到的聖嬰事件。南美和北美赤道區域海岸外的白色區域暗示暖水彙集。 圖片來源:維基百科
1997年TOPEX/Poseidon衛星觀測到的聖嬰事件。南美和北美赤道區域海岸外的白色區域暗示暖水彙集。
資料圖片來源:維基百科

原刊載於作者部落格Miscellaneous999 

-----廣告,請繼續往下閱讀-----

參考文獻:

  1. Matthieu Carré, Julian P. Sachs, Sara Purca, Andrew J. Schauer, Pascale Braconnot, Rommel Angeles Falcón, Michèle Julien, Danièle Lavallée. 2014.Holocene history of ENSO variance and asymmetry in the eastern tropical Pacific. Science. DOI: 10.1126/science.1252220
  2. Brain Fagan. 洪水、飢饉與帝王。浙江大學出版社。
文章難易度
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

7
2

文字

分享

0
7
2
透過花粉考古認識古代氣候!——宜蘭 2 千年前的豪雨,竟和聖嬰現象有關?
科技大觀園_96
・2021/12/13 ・3861字 ・閱讀時間約 8 分鐘

宜蘭梅花湖,林淑芬採樣沉積物的地點之一。圖/林淑芬

用花粉認識古代氣候

人類從古至今都受到氣候影響,想認識古代人類,勢必要了解當時當地的環境條件。考古領域中,擅長古代氣候的專家也有一席之地,中央研究院歷史語言研究所的研究副技師林淑芬,就扮演這樣的角色。

林淑芬在臺灣大學地質科學系就讀碩士班時,專注的題材是土壤。後來因緣際會進入中研院史語所工作,接觸到考古學,因此就讀博士班時改以花粉為主題,調查宜蘭近 4,200 年來的花粉紀錄,藉此探討古代的環境及氣候,與宜蘭史前文化發展的關係。這些工作令她成為臺灣罕見以花粉研究考古的專家。

植物是環境中重要的一部分,但是植物的組織幾乎難以留存;所幸小小的花粉不但輕、數量多,而且結構堅固,有機會長期保存。花粉專家只需要普通的光學顯微鏡,多半能識別到植物「屬」的層級,再加上電子顯微鏡,可以進一步分辨出「物種」。 

電子顯微鏡下的蒿屬花粉。圖/林淑芬

然而,環境中每種植物花粉留存下來的機率不一,光憑花粉不足以重建當時的地貌;不過比較各種植物花粉組成在不同年代間的變化,推論氣候、環境在不同年代的改變,倒是十分合適的分析策略。

-----廣告,請繼續往下閱讀-----

林淑芬主要研究宜蘭的古代花粉,她從梅花湖、龍潭湖等地點採樣,分析地層中不同年代留下的沉積物,推測當時的氣候與環境。在取得豐富成果的過程中,她曾經犯下推論錯誤,卻意外成為目前新方向的突破契機,還連結到反聖嬰現象對臺灣史前文化的影響。這其中的曲折是怎麼回事呢?

茵陳蒿的誤會:耐旱植物,反而是豪雨指標

距今約 800 年前,宜蘭有大量茵陳蒿的花粉留下。一般認為茵陳蒿是長在沙地的耐旱植物,所以沉積物中見到大量茵陳蒿花粉,表示那時氣候乾燥,有利於耐旱植物大量生長。當時的考古紀錄也出現超過百年的中斷,即沒有人類活動的紀錄,林淑芬推論那時大環境乾旱,不利於人類生存。

然而,其他資訊令林淑芬懷疑自己早期的推論。詳細考察茵陳蒿在宜蘭的生長模式以後,林淑芬驚覺真相其實完全相反:耐旱的茵陳蒿,事實上是暴雨頻繁的指標!

羅東溪上游河床上的茵陳蒿。(圖/林淑芬)

宜蘭有些河流,在雨量少的季節地表水量不足,河水往往潛入地下成為伏流。乾涸的河床佈滿礫石,不利植物生長,只有如茵陳蒿一類的耐旱植物可以生存。在雨季或颱風帶來大雨時,河床恢復為流水的河道,乾季時生長在河床的植物會被沖走;等到再度進入乾季,茵陳蒿又會再次長滿河床。

-----廣告,請繼續往下閱讀-----

上述狀況若是一再反覆發生,花粉記錄中茵陳蒿的出現數量就會大增。假如古代狀況一樣,意謂茵陳蒿大量生長的年代,其實是豪雨頻繁發生的時期;因此當時考古紀錄中斷,其實和降雨過多有關,而非氣候乾燥。

宜蘭的環境與考古記錄

藉由花粉及其他資訊,可以重建宜蘭古代的環境、氣候變化。宜蘭地形如同口袋般,三面被高山圍繞,一面朝向太平洋。冰河時期結束後,海平面上升。距今約 14,000 年前,海水逐漸湧入宜蘭平原地區;8,000 多年前,淹沒面積達到最大,當時宜蘭平原只有現在一半大。接著,海水漸漸後退,距今 3,000 年前,海水退到距離目前海岸線西方 2 到 3 公里處。 

丸山遺址。圖/蘭陽博物館提供

宜蘭最早的考古遺址可能距今達 5,000 年。在新石器時代早期、中期,整體上遺址數量稀少,位置接近海邊;到了新石器時代晚期(以丸山文化為代表),遺址數量增加;距今 2,400 到 3,600 年間,遺址幾乎都位於內陸的丘陵地帶,或許和平原被海水入侵有關。

有趣的是,宜蘭在距今 2,000 多年前之後,幾乎不再有人類活動的記錄,要等到 1,300 年前才恢復。距今 800 到 1,300 年間,宜蘭進入鐵器時代早期(以十三行文化普洛灣類型為代表),遺址分佈於海岸附近,接著便是上述提到超過百年的中斷期。直到距今 600 年前的鐵器時代晚期開始(以十三行文化舊社類型為代表),宜蘭平原上再度留下大量遺址。

-----廣告,請繼續往下閱讀-----
宜蘭地區史前遺址分布圖。圖/林淑芬

宜蘭 2000 年前頻繁豪雨,竟然和聖嬰現象有關?

為什麼距今 2,000 多年前開始,人類在宜蘭消失那麼久?氣候應該是重要因素。不論河流沖積扇或湖泊沉積物,都見證當時頻繁的豪雨,而且比距今 800 年前的規模更大。那段時期出現不少赤楊屬植物的花粉,赤楊是所謂的先驅植物,通常在植被匱乏的地區搶先生長,若它們能留下大量花粉,意謂那個時期原本的植被遭到消滅。

不過數百年的龐大雨量也改變了宜蘭的地貌,創造出更平坦、肥沃的沖積平原,彷彿「都更」一般,令宜蘭平原成為更適合人類居住的地區,才有隨後鐵器時代的興旺。

非常有趣的是,宜蘭最近數千年來降雨量最高的兩個時段,距今 800 和 2,000 多年前之後一段時期,剛好都是聖嬰—南方震盪(El Niño-Southern Oscillation,簡稱 ENSO)最頻繁發生的時候。這令林淑芬想到:莫非太平洋遠方發生的 ENSO,也影響到遙遠的宜蘭? 

宜蘭梅花湖沉積物的氾濫砂層,可與熱帶東太平洋自距今 2,000 年前開始,ENSO 活動頻繁發生的時期相對應。上方為加拉巴哥群島 El Junco 湖泊的砂級沉積物百分比,中間為宜蘭梅花湖(MHL-5A 岩心)中的砂級沉積物百分比,下方為宜蘭梅花湖(MHL-5A 岩心)中的沉積物性質變化。圖/林淑芬

東北季風與颱風,共伴效應帶來豪雨

颱風以外,宜蘭降雨主要來自秋冬季的東北季風。假如颱風經過臺灣南方,當時又有東北季風同時出現,颱風的外圍環流與東北季風交互作用,便可能導致豪雨,稱為「共伴效應」。由於牽涉東北季風,共伴效應往往在 9、10、11 月上演。此時路過的颱風有機會變成共伴颱風,即使颱風沒有靠近臺灣,仍可能引發共伴效應。

-----廣告,請繼續往下閱讀-----

林淑芬由蘇澳、宜蘭、竹子湖氣象站取得 1982 到 2016 年的降雨數據,和颱風等資訊比較,判斷這 35 年間至少出現過 18 次共伴颱風。有些颱風距離臺灣數百公里遠,臺灣甚至沒有發佈颱風警報,但是它們導致的共伴效應,仍帶給宜蘭龐大雨量。

反聖嬰年,共伴颱風數目最多

ENSO 發生的地點位於太平洋東部赤道一帶,卻可能帶來世界性的影響,使某些地區出現極端氣候。根據海洋聖嬰指標的定義,假如區域內的海洋表面溫度(SSTA)連 5 個月比平均高出 0.5 度,便定義作異常溫暖的「聖嬰年」;反之,則為異常寒冷的「反聖嬰年」。1982 到 2016 年期間有 13 年為正常年,聖嬰、反聖嬰年各 11 年。

18 次共伴颱風中,13 個正常年出現 2 次,11 個聖嬰年出現 5 次,反聖嬰年最多,11 年出現 11 次。研究鎖定的 35 年間,共伴颱風在反聖嬰年出現的數量、比例都最高。例如 2010 年的梅姬颱風,就是反聖嬰年在宜蘭帶來豪雨的共伴颱風。

熱帶太平洋地區 1982-2016 年 Nino 3.4 海洋聖嬰指標(Oceanic Niño Index, ONI)隨時間變化圖。黃色菱形符號為宜蘭地區的秋季共伴颱風事件;位於紅色區塊為聖嬰年,發生 5 次,藍色區塊為反聖嬰年,發生 11 次,未填色區塊為正常年,發生 2 次。圖/修改自林淑芬,2018,《大氣科學》。

反聖嬰年為什麼有更多共伴颱風?一個可能是反聖嬰年颱風生成的位置距離臺灣比較近,路過臺灣的機率更大;另一個可能是反聖嬰年的東北季風比較強,不過仍需要更多證據。ENSO 會不會、如何影響臺灣,至今仍沒有定論。假如推論正確,表示儘管臺灣距離遙遠,至少在擁有獨特口袋地形,能突顯共伴效應的宜蘭,仍然會受到 ENSO 的影響。 

-----廣告,請繼續往下閱讀-----
林淑芬認為,在反聖嬰年,東北季風與颱風發生共伴效應的事件較多,帶給宜蘭龐大雨量。圖/何庭劭繪

不過上述研究對象是現代,該如何應用於千百年前的考古?古代 ENSO 事件沒有這麼詳細的逐年解析度,只能估計一段時間內發生的頻率;對照之下,發現古代宜蘭降雨量高的時期,ENSO 的頻率也高。假如 ENSO 透過共伴效應影響臺灣,可以想像宜蘭受到的影響最大,而考古上宜蘭人類消失的時候,周圍的臺北、新北、花蓮仍持續有人居住。 

宜蘭平原。圖/林淑芬

上百年頻繁豪雨,應該不會只有單一成因;人類活動除了氣候之外,也還受到許多因素影響。不過透過古代花粉、最近的氣象記錄,林淑芬依然找到一條很有價值的線索。倘若歷史上 ENSO 真的影響過臺灣,或許不只限於宜蘭,也在臺灣其他地區造成過不一樣的影響——這也是林淑芬接下來希望回答的問題。

即使如今科技水準遠勝古代,現代人依舊受到氣候影響。研究現在能找到認識古代的線索,了解古代也能替現在帶來指引,這是考古學研究過去,對現在的一大意義。

參考資料

  • 林淑芬,2008,聚落發展與自然環境變遷——以宜蘭地區史前為例,《臺灣史前史專論》
  • 林淑芬,2018,宜蘭地區秋季共伴豪雨與聖嬰—南方震盪的遙相關,《大氣科學》
  • 林淑芬,2019,大地脈動下的宜蘭史前先民,《地質,38卷,第4期,第66-70頁》
科技大觀園_96
82 篇文章 ・ 1124 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

0
0

文字

分享

0
0
0
「你對釣魚台的看法是?釣魚台的重要性是什麼?」國立海洋科技博物館籌備處主任柯永澤博士表示……
PanSci_96
・2012/10/11 ・3388字 ・閱讀時間約 7 分鐘 ・SR值 521 ・七年級

「哇!是海!」PanSci小編忍不住盯著窗外的海還有大船看。國內科學展館第三站來到位在基隆八斗子,即將進入試營運階段,擁有超級無敵海景海科館

鐵灰色現代外觀的館舍,沿著海邊山丘而建,沒有唐突的外表,很符合基隆陰鬱多雨的景象。海科館外觀和四周景物連成一片,以曲線輪廓表現「海洋」、直線和簡單的幾何表現「科技」,但這個最新的國家級科學博物館要如何呈現其實在台灣被嚴重忽略的「海洋科學」呢?海科館設在港都基隆將扮演起什麼樣的角色?這就得問問負責建館計畫忙翻天、關心且以實際行動參與社會議題的籌備處主任柯永澤博士了(如果沒意外的話正式營運之後就是館長啦!)

P:你對釣魚台的看法是?釣魚台的重要性是什麼?

柯:從最近的時事來看:南海和釣魚台爭議、中國稀土紛爭、墨西哥灣漏油、北海爭議…都和海洋有關。

-----廣告,請繼續往下閱讀-----

墨西哥灣事件反映出陸上資源漸漸耗盡,於是開始轉探勘海洋資源的趨勢;加上美、日聯合控告中國壟斷稀土,這也顯示哪個國家掌握海洋資源誰就擁有優勢。英國也是個例子,北海的石化燃料資源對英國發展金融產業來說是一項很關鍵的條件。

南海、釣魚台的爭議只是反映出各國開始爭奪資源的衝突;島不是重點,爭的是海底下的資源。海洋資源可以簡單分成生物性非生物性,生物性就像是漁場,非生物性就像是潮能、礦產、燃料;擁有島嶼主權的國家就擁有這些資源。

從航海時代之後,有形或無形的海洋資源左右一個國家未來的發展。現在的「海洋國家」都具備海底探勘或者海洋工程技術,這些科技不是幾個研究單位或者小國家玩得起的,因為那都是整合性研究,像是有能力製造深海潛水艇,就表示機電、工程、海洋學等領域發展有一定的水準。而且這又是循環-有能力能探勘海底資源的強國,才有資源能再發展更多海洋技術。

P:海洋對台灣的重要性?

-----廣告,請繼續往下閱讀-----

柯:就光是氣候變遷來說,「海洋」是關鍵。洋流左右著陸地的氣候,像是聖嬰和反聖嬰現象,只要太平洋東岸的湧升流改變,就影響了幾千公里外的太平洋西岸的降雨量。

目前颱風路徑可以相當準確預測,因為其是受大氣環流控制,可是對於雨量與強度卻無法準確預測,而僅能作觀測,因為其是受海洋可以提供多少能量所控制,而這方面的資訊不完整。原本颱風只會在太平洋赤道5度附近形成,但是暖化的關係,現在連北緯10度都能形成颱風!形成颱風的區域條件變寬,就越難預測颱風的動向。目前的氣象資料也多從大氣取得,像是衛星、雷達雲圖,海洋的資料不多,但海洋卻又影響著陸地的天氣,增加海洋測站對於精準天氣觀測來說就變得非常重要。

不只是氣候變遷下的天氣預測,海洋可能也是解決的途徑。海洋面積大,控制著溫室氣體的「收支」,還有接收來自陸上河流的碳排放。海洋中有幾百萬平方公里的海面有很豐富的營養鹽,但缺微量元素鐵,因此綠藻行光合作用效果不好,無法大量吸收二氧化碳,有科學家到特定區域灑鐵粉誘發它們吸收大量的二氧化碳,海洋中二氧化碳量下降,大氣中的二氧化碳自然會再溶入海洋,而使大氣二氧化碳含量下降,這就是一個地球工程利用海洋資源解決暖化問題的例子,這都不是陸上象徵性舉辦種樹活動能達到的效果。

潮境海洋中心,是海科館的行政中心和研究單位所在地。

-----廣告,請繼續往下閱讀-----

P:你希望海科館對推廣海洋科學扮演什麼角色?

柯:海洋科學比較不被民眾重視,其中一個原因是學校沒有教,教科書沒有提到,老師也不懂;教學的人都不懂海洋了要怎麼教海洋?我希望海科館能介紹國內既有的海洋科技,配合館內的研究部門自己策展或者從事一些基本的海洋研究。

未來海科館有三個館區,分別為已於今年6月底開放的區域探索館(非主題探索館),預定明年6月底準備試營運的主題館(主要展館),以及BOT預定106年完工的水族館。。

四層樓的主題探索館最上面會規劃成餐廳,底下三樓介紹一些當地的海洋文化。主館保留了日據時期填海造陸興建的「北部火力發電廠」的鍋爐室,利用挑高的建築結構作為「深海展示廳」。另外還有國內最大的IMAX劇場。

-----廣告,請繼續往下閱讀-----

園區附近也會分期發展,像是前面(指行政大樓前)這岸邊會規劃成潮間帶教育區,配合附近的漁港作浮潛觀光。不過在那之前我們得先調查附近有什麼魚種,還要讓魚群熟悉人類,敢親近人,要這麼做就是得輔導漁村轉型生態旅遊。至於附近的街景也有規劃要改造,但難度很高。

要做的事很多,還需要地方政府、民眾的理解跟支持才行。

海科館蠻強調從鄰近的海洋出發,讓民眾認識海。像海科館也一直有支持附近的軟絲復育,就是《產房》紀錄片提到的那群潛水教練,他們利用竹叢作為軟絲產卵的空間,效果很好;而且因為沒有捕捉,所以那裡的軟絲都很親近人,可以近距離觀察它們。

我們也和海洋大學合作,希望培養專業領域的學生來這服務學習,讓學生不只在學校學,也要知道怎樣推廣這些專業知識。

-----廣告,請繼續往下閱讀-----

P:海科館和海生館有什麼不同,會競爭嗎?

柯:海洋領域可以分成三大類:海洋科學-包括物理、化學、生物、地質,有些國家-像是美國-還有包括聲學;工程;水產科技海洋生物雖然只是一小領域,相對來說不是關鍵技術,但為什麼容易受到重視?因為海洋生物資源貼近我們的生活,而且吸引學童,很適合作為海洋教育的切入點。

另外,海科館和海生館都隸屬教育部,但都是由民間公司負責營運,採BOT加OT的模式,雖然要自己承擔營運盈虧的壓力,但也會比較容易有創新的思維。

P:對台灣開採可燃冰或海洋能源發展的看法

-----廣告,請繼續往下閱讀-----

柯:可燃冰是很棒的資源,很多國家都想開採,不過目前在技術上都很有困難,而且風險又很大;可燃冰主要成份是甲烷,一不小心會起火,而且如果弄不好,大量外洩到大氣中,會改變氣候,非常危險!現在有國家是明文禁止開採,當然也有國家-像是日本就積極研究。台灣的海洋研究預算遠低於鄰近的日本和韓國,沒有技術能開採可燃冰,現在只有探勘可燃冰的含量。

國內有在研究怎麼利用周遭海域的潮汐能,可是潮汐變化太大,不能穩定發電。我們的研究團隊最近發現東岸的黑潮潮汐能蠻穩定的,但是淺層的潮汐能太弱,要深一點才能有發電的潛能。其他的海洋技術研究可能要問海洋中心會比較清楚。

台灣的研究環境太強調論文發表了,很多攸關人類和國家發展的研究因為要花上很長的時間,也比較強調應用面,這些議題的研究相對比較難有漂亮的論文。在這樣的研究風氣下重要的研究就很難有科學家願意投入。

超級無敵海景辦公大樓

-----廣告,請繼續往下閱讀-----

採訪結束後柯主任還帶小編參觀水族研究區,雖然Z編參觀過屏東海生館的後棟,海科館的水族規模小了許多,但是看到活生生的海洋動物還是忍不住多看幾眼加尖叫!

 

這些巨大的龍膽石斑是水試所提供的,當時只是小魚,現在都跟人一樣大了。(這也顯示海科館真的籌備很久…)

▲很想拿手去餵硨磲貝的P(其實是在玩弄海葵對陰影的反射動作)

這些海洋生物目前由兩位研究同仁和替代役負責照顧,也在研擬治療一些魚病的方法。

 

就期待海科館開幕後告訴我們更多海洋的故事囉~(是否該來篇海科館開箱文?)

 

延伸閱讀-PanSci小編遊台灣科學展館系列:

1. 「如果寶傑邀請你去擔任來賓,你會……?」科博館周副館長表示…

2. 「外星人如果造訪地球,是福是禍?」台北天文館資訊組徐組長表示…

PanSci_96
1217 篇文章 ・ 2148 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。