0

0
0

文字

分享

0
0
0

為什麼氣象預報老是不準?

陳 慈忻
・2013/12/25 ・1985字 ・閱讀時間約 4 分鐘 ・SR值 555 ・八年級

國小高年級科普文,素養閱讀就從今天就開始!!

日本氣象預報依照準確性(信心水準)高低,將每一預報日分為A、B、C三級,是一種機率預報的展現形式。(圖片來源:日本氣象廳)
日本氣象預報依照準確性(信心水準)高低,將每一預報日分為A、B、C三級,是一種機率預報的展現形式。(圖片來源:日本氣象廳)

2013年8月29日因康芮颱風環流影響,水淹台南,為什麼台南市卻沒有停班停課?台南市長賴清德認為應該歸咎於氣象局預報,因為預報中台南不會在康芮暴風圈範圍,但台南卻下了豪大雨,氣象局千萬則「不準」的歷史紀錄又添一樁,網友認為「報不準就下台,才有肩膀」,也有網友指出「全部交給氣象局提供的科學數據,幹嘛要人(地方首長)來判斷放不放」。每每出現預報不準確或是決策出現失誤時,總是會有些不同的聲音,到底是誰該負責?地方首長和老百姓又該如何理解氣象預報,使預報更具實用性?

氣象局早已承認氣象預報從來就不可能100%精準。事實上,當社會各界一次又一次的抱怨氣象預報不準時,早已突顯台灣的防災溝通不夠充分,民眾對於氣象預報的科學原理理解不足,以至於無法接受氣象預報測不準的事實。到底為什麼氣象預報會不準?我們可以從回顧氣象觀測技術的發展來理解:

人類觀測天象已有幾千年的歷史,透過經驗的累積,尋找氣象變化的蛛絲馬跡。但是氣象觀測技術的第一個轉捩點,卻是到19世紀中葉才出現,科學家研發儀器以蒐集各種氣象資料,可以繪製出天氣圖,甚至分析氣壓、鋒面等天氣系統;而1940年代是氣象觀測技術的第二個轉捩點,讓氣象學得以從「觀測」邁入「預測」,原因是科學家發現大氣流動的現象,可以用幾個基本的物理方程式來解釋,因此只要帶入幾個氣象變數,就可以估算出未來的氣象變化。

原本以為天地間的風雲因而可以預知,沒想到才二十一年,氣象學家的美夢便碎了。1961年,麻省理工學院(MIT)的勞侖次(Lorenz)教授在冬天的實驗室裡頭使用電腦程式,運算大氣中空氣流動的數學模型,當他在進行第二次的檢驗時,心想重新運算太花時間,逾時直接從上一次完成的實驗中,抽取一個運算中途的數據來繼續運算,結果居然與第一次的運算結果相去甚遠。

起初,勞侖次還以為他的電腦程式出了問題,但最後發現,真正的問題是,他在第二次檢驗時只輸入到小數點後三位的數據,但是第一次連貫性完成運算的過程中,其實每一筆數據都儲存到小數點後六位。初始變數的誤差看似極為微小,但是隨著模式中的時間演進,運算結果的差異會越來越大,也就說明氣象觀測的微小誤差會造成氣象預測的不確定性,而且隨著預測時間愈遠,準確的難度就愈高,這是氣象學中著名的「渾沌理論」,也是人們耳熟能詳的「蝴蝶效應」。

儘管科學是有限的,我們依然可以搭配「機率預報」和「風險管理」等概念,來提升氣象預報的實用價值,可惜台灣目前的預報形式仍提供相對單一的預報結果,關鍵是氣象局沒有把握更改預報形式的時機已成熟,民眾能不能接受更科學(承認不準確)的預報模式呢?先來看看國外氣象預報如何報出不準確性:

美國某電視台的氣象預報在2005年Rita颶風前後是這樣子播報天氣預報的:在未來的五天,明後天會下雨、風會增強,但是第三、四天的天氣如何?圖示皆為「?」,下方註記著,要視颶風Rita的變化而定;第五天呢?待觀察。這樣的預報方式可說是「知之為知之,不知為不知,是知也。」的現代代言人!

再以亞洲國家為例,日本則運用「統計機率的分級」來呈現氣象預報的真實性,將每一天的預報依照可預測的準確度,也就是統計學中的信心水準,由高至低分為A、B、C三級。譬如在一周當中,估計第三、四天有鋒面系統通過,會因為鋒面通過速度的變化,影響第二、五天的預報結果,因此距離鋒面通過最遠的第一、六、七天分為信心水準最高的A級;第三、四天因為鋒面通過而天氣波動較大,則分為B級;第二、五天剛好在鋒面過境與否的臨界點,不確定性最大,因此分為信心水準最低的C級。

你接受以上的氣象預報形式嗎?同一份氣象預報對於學生、婚紗公司、地方首長有不同的意義,氣象局提供的單一預報結果不會全面適用,未來透過機率預報,讓人們作風險管理操作者,能夠找到更合適的解答,氣象專家應是災防溝通的教育者,而政府官員,乃至形形色色的社會大眾,也應該是災防知識的學習者。(本文由國科會補助「新媒體科普傳播實作計畫─重大天然災害之防救災科普知識教育推廣」執行團隊撰稿)

 

責任編輯:鄭國威│元智大學資訊社會研究所

本文原發表於行政院科技部-科技大觀園「科技新知」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!

延伸閱讀:
文章難易度
陳 慈忻
55 篇文章 ・ 0 位粉絲
在丹麥的博士生,專長是用機器學習探索人類生活空間,正在研究都市環境變遷與人類健康的關係。曾擔任防災科普小組編輯、社會創新電子報主編。

0

5
2

文字

分享

0
5
2
怪獸襲來!為什麼會有哥吉拉形狀的雲朵?:千變萬化的流體(三)
ntucase_96
・2021/12/11 ・2345字 ・閱讀時間約 4 分鐘

  • 作者/劉詠鯤

本文轉載自 CASE 報科學 《千變萬化的流體(三):哥吉拉雲—流體的不穩定性

海岸邊的雲層上緣,出現一隻隻如同哥吉拉形狀的雲;原子彈投下後,劇烈爆炸引起的蕈狀雲;土星大氣層內形狀獨特的雲帶……等。這些看似毫無相關的現象,背後其實成因都可以歸納為:流體中的不穩定性。

2020 年在青森縣的海邊,有網友分享了一張雲朵彷彿在進行「哥吉拉大遊行」的照片(圖一左上);也有飛行員在雲層上分享過類似的照片(圖一右上);除此之外,天文學家在土星的大氣層也觀察到相似形狀的雲層(圖一下)。這些「哥吉拉」的行動力竟然如此之高,不只在地球上出現,連土星上都有。這是否暗示它們背後其實具有相同的形成機制呢?

圖一左上:海岸邊的哥吉拉雲,圖/大間觀光土產中心推特
圖一 右上:飛行員在雲層上看到的哥吉拉雲,圖/世界氣象組織(WMO)推特
圖一下:土星大氣層內的雲帶照片。圖/NASA

在<千變萬化的流體(一)>一文中,我們介紹了流體流動的狀態主要可以分成兩種:層流與紊流。層流狀態的流體十分穩定,它可以被視為一層一層獨立的流動來討論;相對的,紊流如同它的名字所表示,流體內部的流動較為混亂,不同層之間的流體會互相混合、影響。而決定是層流還是紊流的關鍵因素便是「不穩定性」[1]

在描述天氣系統為甚麼難以預測時,常常會提到「蝴蝶效應」這個小故事:位在大西洋的颶風,其成因可能只是在亞馬遜森林裡面一隻蝴蝶煽動了翅膀,這個初始的小擾動,隨著時間演變,最終形成尺度龐大的結構。不穩定性在流體中扮演的角色也十分相似。起初流體內部隨機的產生十分微小的擾動,若整個流體的不穩定性足夠大,微小的擾動便有機會繼續成長,直到對整個流體都造成影響。流體中具有各式各樣的不穩定性,在本篇文章中,我們將會介紹與哥吉拉雲還有蕈狀雲有關的兩種不穩定性:克耳文-亥姆霍茲不穩定性以及瑞利-泰勒不穩定性。

克耳文-亥姆霍茲不穩定性:哥吉拉雲

這個不穩定性得名於兩位對此現象進行研究的物理學家:發明絕對溫標的克耳文爵士,以及對聲學共振系統做出系統性研究的亥姆霍茲(在<香檳聲音哪裡來?>一文中,他曾經登場過)。這個不穩定性發生的條件是:兩層流體之間具有相對速度。

請搭配圖二,讓我們一起來理解這個不穩定性是如何產生哥吉拉雲的。假設有兩層流體,分別向左與向右運動。當它們彼此完美平行時,一切無事,如圖二(a)。但這個狀態其實並不穩定,任何的擾動,都可能會破壞這個完美狀態。例如,流體中形成了如圖二(b)的擾動,接下來流體的運動會如何變化呢?

對於淺藍流體來說,A 點的體積較原本略小,因此流動速度較大,如同澆花時,將水管捏住(管徑縮小),水可以噴得更遠。此外,流速較快也會使得 A 點的壓力減小;但對於紅色流體來說,A 點的壓力反而會增大。如此會導致流體內部的壓力分佈形成圖二(c)。兩種流體之間的壓力差,會進一步使擾動長大,如圖二(d)。最後,由於流體本身橫向的速度,使擾動在橫向上出現變形,如圖二(e)。如此一來,哥吉拉形狀是不是就出現了呢?

圖二:克耳文-亥姆霍茲不穩定性形成示意圖。圖/CASE 報科學

瑞利-泰勒不穩定性:核爆蘑菇雲

接下來,讓我們來看另一種在生活中沒那麼常見,但是看過就很難忘記的不穩定性現象:核爆產生的蘑菇雲。這種現象的成因,是來自於瑞利-泰勒不穩定性,它會發生於密度較大的流體壓在密度小的流體之上時。核彈爆發會在極短時間內釋放出極大熱量,將爆炸中心的空氣瞬間加溫。我們知道,氣體的溫度越高,密度越低,因此在爆炸中心,會瞬間形成大量的低密度空氣。

讓我們用簡單的模型來看看,這種不穩定性是如何造成蘑菇雲的。圖三(a)中有兩種流體,密度較高的在上,此時整個流體系統處於不穩定態,只要有一點擾動 ,如圖三(b) ,不穩定性就會使擾動擴大。由於密度差異,重力使得密度小的流體上升,密度大的下降,使不穩定度振幅逐漸增大。此外,由於壓力差與密度差的方向並不平行,會導致流體的邊界形成渦旋,如圖三(c)。以上這些效應疊加在一起後[2],流體邊界處便會逐漸形成如蘑菇狀的特徵,如圖三(d)。

圖三:瑞利-泰勒不穩定性示意圖。圖/CASE 報科學

以上兩種流體不穩定性,其實在我們生活中也存在,例如:點燃的線香。由於線香燃燒處的溫度上升,空氣密度下降,此時就滿足瑞利-泰勒不穩定性的條件;當熱空氣上升時,和兩側靜止的空氣有一相對速度,也滿足了克爾文-亥姆霍茲不穩定性條件。只是由於規模較小,發生速度較快,肉眼未必可以清楚的看到如前文中提到的明顯特徵。儘管如此,各位讀者在了解這些不穩定性之後,若是試著觀察看看生活中的各種流體,也許也能找到隱藏起來的「蕈狀雲」喔!

註解

[1] 更詳盡的說明可以參考 CASE<上下顛倒漂浮船>一文
[2] 實際上,形成蘑菇狀構造還與流體在三維條件下的非線性效應有關,數學模型較為複雜,此處只是簡單概述其成因。

參考資料

  1. Kelvin–Helmholtz instability
  2. Rayleigh–Taylor instability
  3. “Single mode hydrodynamic instabilities” draft from Hideaki Takabe.
ntucase_96
30 篇文章 ・ 571 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。

1

4
3

文字

分享

1
4
3
解析「福衛七號」的觀測原理——它發射升空後,如何讓天氣預報更準確?
科技大觀園_96
・2021/10/25 ・2915字 ・閱讀時間約 6 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

2019 年 6 月 25 日,福爾摩沙衛星七號(簡稱福衛七號)在國人的引頸期盼下升空。一年多來(編按:以原文文章發佈時間計算),儘管衛星還沒有全部轉換到預定的軌道,但已經回傳許多資料,這些資料對於天氣預報的精進,帶來很大的助益。中央大學大氣系特聘教授黃清勇及團隊成員楊舒芝教授、陳舒雅博士最近的研究主題,就是福衛七號傳回的資料,對天氣預報能有哪些改善。

掩星觀測的原理

要介紹福衛七號帶來的貢獻,得先從它的上一代──福衛三號說起。福衛三號包含了 6 顆氣象衛星,軌道高度 700~800 公里,以 72 度的傾角繞著地球運轉(繞行軌道與赤道夾角為 72 度)。這些衛星提供氣象資訊的方式,是接收更高軌道(約 20,200 公里)的 GPS 衛星所放出的電波,這些電波在行進到氣象衛星的路程中,會從太空進入大氣,並產生偏折,再由氣象衛星接收。換句話說,氣象衛星接收到的電波並不是走直線傳遞來的,而是因為大氣的折射,產生了偏折,藉由偏折角可推得大氣資訊。

▲低軌道衛星(如福衛三號)持續接收 GPS 衛星訊號,直到接收不到為止,整個過程會轉換成一次掩星事件,讓科學家取得大氣溫濕度垂直分佈。圖/黃清勇教授提供

氣象衛星會一邊移動,一邊持續接收電波,直到接收不到為止,在這段過程中,電波穿過的大氣從最高層、較稀薄的大氣,逐漸變為最底層、最接近地面的大氣,科學家能將這段過程中每一層大氣所造成的偏折角,通過計算回推出折射率,而折射率又和大氣溫度、水氣、壓力有關  ,因此可再藉由每個高度的大氣折射率,得出溫濕度垂直分布,這種觀測方式稱為「掩星觀測」。掩星觀測所得到的資料,可以納入數值預報模式,進一步做各種預報分析。 

資料同化──觀測與模式的最佳結合

在將掩星觀測資料納入數值預報模式時,必須先經過「資料同化」的過程。數值預報模式內含動力方程式,可以模擬任何一個位置的氣塊的運動,但是因為大氣環境非常複雜,模擬時不可能納入全部的動力條件,因此模擬結果不一定正確。而另一方面,掩星觀測資料提供的是真實觀測資訊,楊舒芝形容:「觀測就像拿著照相機拍照,不管什麼動力方程式,拍到什麼就是什麼。」但是,觀測的分布是不均勻的—唯有觀測過的位置,我們才會有觀測資料。

所以,我們一手擁有分布不均勻但很真實的觀測資料,另一手擁有很全面但可能不太正確的模式模擬。資料同化就是結合這兩者,找到一個最具代表性的大氣初始分析場,再以這個分析場為起點,去做後續的預報。資料同化正是楊舒芝和陳舒雅的重點工作之一。 

中央大學分別模擬 2010 年梅姬颱風和 2013 年海燕颱風的路徑,發現加入福三掩星觀測資料之後,可以降低颱風模擬路徑的誤差。圖/黃清勇教授提供

由於掩星觀測取得的資料與大氣的溫度、濕度、壓力有密切關係,因此在預報颱風、梅雨或豪大雨等與水氣量息息相關的天氣時,帶來重要的幫助。黃清勇的團隊針對福衛三號的掩星觀測資料對天氣預報的影響,做了許多模擬與研究,發現在預測颱風或氣旋生成、預報颱風路徑,以及豪大雨的降雨區域及雨量等,納入福衛三號的掩星觀測資料,都能有效提升預報的準確度。

黃清勇進一步說明,由於颱風都是在海面上生成的,而掩星觀測技術仰賴的是繞著地球運行的衛星來收集資料,相較於一般位於陸地上的觀測站,更能夠取得海上大氣資料,因此對於預測颱風的生成有很好的幫助。另一方面,這些資料也能幫助科學家掌握大氣環境,例如對於太平洋高壓的範圍抓得很準確,那麼對颱風路徑的預測自然也會更準。根據團隊的研究,加入福衛三號的掩星觀測資料,平均能將 72 小時颱風路徑預報的誤差減少約 12 公里,相當於改進了 5%。

豪大雨的預測則不只溫濕度等資訊,還需要風場資訊的協助,楊舒芝以 2008 年 6 月 16 日臺灣南部降下豪大雨的事件做為舉例,一般來說豪大雨都發生在山區,但這次的豪大雨卻集中在海岸邊,而且持續時間很久。為了找出合理的預測模式,楊舒芝探討了如何利用掩星觀測資料來修正風場。 

從 2008 年 6 月 16 日的個案發現,掩星資料有助於研究團隊掌握西南氣流的水氣分佈。上圖 CNTL 是未使用掩星資料的控制組,而 REF 和 BANGLE 皆有加入掩星資料(同化算子不一樣),有掩星資料可明顯改善模擬,更接近觀測值(Observation)。圖/黃清勇教授提供

福衛七號接棒觀測

隨著福衛三號的退休,福衛七號傳承了氣象觀測的重責大任。福衛七號也包含了 6 顆氣象衛星,不過它和福衛三號有些不同之處。

福衛三號是以高達 72 度的傾角繞著地球運轉,取得的資料點分布比較均勻,高緯度地區會比低緯度地區密集一些。相較之下,福衛七號的傾角只有 24 度,它所觀測的點集中在南北緯 50 度之間,對臺灣所在的副熱帶及熱帶地區來說,密集度更高;加上福衛七號收集的電波來源除了美國的 GPS 衛星,還增加了俄國的 GLONASS 衛星,這些因素使得在低緯度地區,福衛七號所提供的掩星觀測資料將比福衛三號多出約四倍,每天可達 4,000 筆。

福衛三號與福衛七號比較表。圖/fatcat 11 繪

另一方面,福衛七號的軟硬體比起福衛三號更加先進,可以獲得更低層的大氣資料,而因為水氣主要都集中在低層,所以福衛七號對水氣掌握會比福衛三號更具優勢。

從福衛三號到福衛七號,其實模式也在逐漸演進。早期的模式都是納入「折射率」進行同化,而折射率又是從掩星觀測資料測得的偏折角計算出來的。「偏折角」是衛星在做觀測時,最直接觀測到的數據,相較之下,折射率是計算出來的,就像加工過的產品,一定有誤差。因此,近來各國學者在做數值模擬時,愈來愈多都是直接納入偏折角,而不採用折射率。黃清勇解釋:「直接納入偏折角會增加模式計算的複雜度,也會增加運算所需的時間,而預報又是得追著時間跑的工作,因此早期才會以折射率為主。」不過現在由於電腦的運算能力與模式都已經有了進步,因此偏折角逐漸成為主流的選擇。 

由左至右依序為,楊舒芝教授、黃清勇特聘教授、陳舒雅助理研究員。圖/簡克志攝

福衛七號其實還沒有全部轉換到預定的軌道,不過這一年多來的掩星觀測資料,已經讓中央氣象局對熱帶地區的天氣預報,準確度提升了 4~10%;陳舒雅也以今年 8 月的哈格比颱風為案例,成功地利用福衛七號的掩星觀測資料,模擬出哈格比颱風的生成。

除了福衛七號,還有一顆稱為「獵風者」的實驗型衛星,預計 2022 年將會升空。獵風者的任務是接收從地表反射的 GPS 衛星電波,然後推估風速。可以想見,一旦有了獵風者的加入,我們對大氣環境的掌握度勢必更好,對於颱風等天氣現象的預報也能更加準確。就讓我們一起期待吧!

所有討論 1
科技大觀園_96
82 篇文章 ・ 1097 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

2
0

文字

分享

0
2
0
換個位子,換腦袋!機率在不同行業代表什麼意思?——《塗鴉學數學》
臉譜出版_96
・2020/07/23 ・1978字 ・閱讀時間約 4 分鐘 ・SR值 494 ・六年級

國小高年級科普文,素養閱讀就從今天就開始!!

  • 作者/ 班‧歐林 (Ben Orlin);譯者/王年愷

若說人類「不擅長」機率,太過簡化又太讓人難堪了。

機率是現代數學裡一門相當精妙的分支,當中處處有悖論陷阱。即使是基本的問題,也可能讓冷靜無情的專家暈頭轉向。嘲諷別人機率算錯,就像是在笑他們怎麼那麼不會飛,或是怎麼那麼不會喝下一整個海洋的水,或是怎麼那麼不防火。

如果真要說句公道話,應該說人類處理機率的能力實在爛透了。康納曼和特沃斯基在心理學研究中發現,人類對於不確定的事件有頑固的錯誤想法。他們會一而再、再而三地高估可能性微乎其微的事件,並低估幾乎鐵定會發生的事件。

圖/臉譜出版提供

這沒什麼大不了的,不是嗎?老實說,我們什麼時候看過機率在真實世界裡冒出頭來呢?又不是一輩子都在想辦法抓住知識性的工具,讓我們也許能在每一個清醒時刻的種種不確定性混沌中稍稍有些安穩⋯⋯

好吧,為了以防萬一——本章是一個操作指南,說明各種不同的人類怎麼去思考不確定性。這個東西就算再難,也不表示我們不能拿它來玩一玩。

如果你是政治記者

圖/臉譜出版提供

哈囉!你是一位政治記者。你會報導即將到來的選舉。你會報導失敗的選戰。在罕見的特別日子裡,你甚至還會報導像是「政策」和「治理」的事。

另外,稍微不可能的事情發生時,你好像會感到困惑。情況並非一直如此。在某個遙遠的過去,你會把選舉視為無限可能的神奇時刻。你輕描淡寫最可能發生的結果來增加刺激感,讓每一場選戰看起來都像是比賽結束鈴聲響起時從中場丟球正中籃框定勝負的。

2004 年美國總統大選當天晚上,小布希在俄亥俄州領先 100,000 票,未開出的選票不到 100,000 張時,你卻說俄亥俄州的選舉結果「太接近,無法確定」。到了 2012 年的總統大選,機率模型預測歐巴馬獲勝的可能性是 90%,你卻說選戰是「兩邊都有可能贏」。

然後,2016 年又把你的世界完全顛倒過來了。川普贏了希拉蕊.柯林頓。第二天醒來時,你覺得你經歷了一次量子奇異點,選舉結果就像是一隻突然憑空冒出來的兔子一樣完全無法預料。但對機率學家席佛(Nate Silver)及看法相近的人來說,這個結果只不過有一點意外而已,發生的機率為三分之一—就像丟骰子丟出 5 或 6 一樣。

如果你是氣象預報員

圖/臉譜出版提供

哈囉!你是一位氣象預報員,是電視上的雲層先知。你的一舉一動都自信滿滿,每一次交談的結尾都是「現在把現場交還棚內主播」。

另外,你會故意把機率說得模稜兩可,讓觀眾不會對你生氣。當然,你會盡可能誠實。如果你說明天的降雨機率是 80%,你所說的完全正確:在這樣的日子當中,降雨的日子總共有 80%。

但是,當降雨比較不可能發生時,你會誇大這些數據。你害怕有人把雨傘留在家裡,天空卻下起雨來,他們跑到網路上罵你。因此,當你說明天降雨機率是 20% 時,這種日子實際上只有 10% 會降雨。你會增加機率,來減少觀眾的咒罵。

假如觀眾更了解機率是什麼,也許你就能夠說出真話。當觀眾聽到「10%」的時候,好像會理解成「不會發生」。假如他們真的理解真正的意思(「每十次會發生一次」),你就能放鬆講出心裡真正想說的數據。在這一天到來以前,你仍然只能兜售半真半假的數據。

現在把現場交還棚內主播。

如果你是千年鷹號太空船船長

圖/臉譜出版提供

哈囉!你是「千年鷹號」(Millennium Falcon)1 太空船船長。你是一位星際暴徒、壞蛋,也是心腸寬大的俠盜。你一生的伙伴是一隻身上只穿一條子彈帶的 8 英尺長太空狗。

另外,你完完全全否認有「可能性」這件事。你不是一個會冷靜反思和考慮戰略的人。你會走私違禁品,也會顛覆整個帝國。你是快速拔槍殺人的冒險之士,只要稍有遲疑便會喪命,多猶豫幾下的話還會更慘。

在散兵坑裡沒有機率專家,而且你一生都躲在散兵坑裡。對你來說,繁複的機率算式只是累贅,和某個一直說「我的天啊」及「請容我建議」的神經質金色機器人一樣是拖油瓶。

我會覺得,我們每一個人的心裡都有一點你的特質。在需要冷靜、細心評估的時候,機率是相當有用的東西,但有時候我們需要一種自信,是頑強的量化數據給不了的。在需要直覺和行動的時刻,被機率拴住的人可能會畏縮,不敢跳出非跳不可的一大步。在這種時候,我們必須忘掉數據,儘管去飛。

註解:

  1. 譯注:《星際大戰》中的宇宙飛船,用於走私業務,影史上最著名的太空船之一。

——本文摘自《塗鴉學數學:以三角形打造城市、用骰子來理解經濟危機、玩井字遊戲學策略思考,24堂建構邏輯思維、貫通幾何學、破解機率陷阱、弄懂統計奧妙的數學課》,2020 年 5 月,臉譜出版

臉譜出版_96
64 篇文章 ・ 244 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。