0

0
0

文字

分享

0
0
0

福島核災該是廢核的理由嗎?—《寫給未來總統的能源課》

azothbooks_96
・2014/04/14 ・3059字 ・閱讀時間約 6 分鐘

2011年3月11日,巨大的地震侵襲了日本,震度規模達9.0,威力是1906年舊金山大地震的30倍。更糟的是,這次地震攪動海洋並催生了一個怪物─高達30英呎(相當於三層樓高)的海嘯,海嘯襲擊了海岸線,灌進內陸,死亡人數超過1萬5000人,並摧毀超過10 萬棟建築。

這次海嘯最知名的受害者之一是福島第一原子力發電所,一座設置於海岸,以便從海中就近取得冷卻水的核電廠(圖1)。兩名發電廠員工在地震中喪生,還有一名員工死於海嘯,據信當時的海嘯高度達50英呎。但是在接下來的幾小時、幾週以及幾個月裡,人們越來越擔心這座受損的核電廠最終會造成數千、數萬甚至更多的受害者。

福島核電廠空照圖

這座核電廠在設計時已經把大規模地震納入考量,並且也安然度過地震,但是沒人想到會發生50英呎高的海嘯。核子反應器遭到嚴重的破壞,當中存放的鈾會像原子彈一樣爆炸嗎?

答案是否定的。無論是海嘯、小行星的撞擊,甚至是核電廠整個落入恐怖分子的手中,福島的核子反應器都不會像核彈一樣爆炸。最根本的理由與工程無關,而是基於設計核子反應器所使用的物理。光有鈾是無法讓核子反應器像核彈一樣爆炸;如果並非如此,許多國家以及恐怖組織早就擁有核子武器了。

核彈和核子反應器使用的都是核連鎖反應,在這個反應中, 一個輕鈾(鈾235)原子分裂所釋放出的巨大能量相當於一個TNT(Trinitrotoluene,三硝基甲苯,即黃色炸藥)分子所釋放能量的2000萬倍。核分裂反應中也會釋放出一些中子,中子是存在於原子核中的微小粒子,當這些中子與其他的鈾235原子產生碰撞時,就會造成原子分裂,而產生更多的中子。中子的數量會在每一級反應中倍增,經過大約80級反應後(大約只需要數百萬分之一秒),就可以讓1磅的鈾分裂,並且釋放出相當於2000萬磅(或是1萬噸)TNT 爆炸所產生的能量。分裂後的原子核以熱的方式釋放出能量,使得這些原子殘骸的溫度超過1000個太陽。物質被蒸發、離子化,轉變成大量的高壓電漿然後爆發,將一切破壞殆盡。

要產生如核彈般的核反應,必須使用純度非常高的鈾235。但是一般核子反應器使用的燃料棒中,只含有4%的鈾235,其他部分則是較重的鈾238,鈾238也會吸收中子,但是其核分裂反應並無法形成持續的連鎖反應。由於鈾238的存在,必須要藉由某種方法才能維持連鎖反應的進行。這個方法是費米(Enrico Fermi)在二戰期間發明的,他把鈾和碳或水混合在一起,當碳或水的量足夠時,中子在撞擊到鈾238之前會先與這些分子產生碰撞而失去部分能量,減緩速度成為慢中子。鈾238的一個特別且重要的特性就是,不會吸收這些慢中子,只會把它們彈開。這些慢中子最後會與鈾235產生碰撞,讓連鎖反應持續下去。核子反應器會設計成平均只有一個中子 能觸發核分裂反應,讓能量釋放的速率維持穩定。

緩慢的中子可以避免發生大爆炸。當連鎖反應因為某些地方出錯而出現失控的情形時,便稱為反應性事故。這時能量會開始累積,然而由於中子的速度非常緩慢,因此發生爆炸所需的時間也很長。當能量密度達到TNT的等級時,反應器會被炸開而中斷進一步的連鎖反應。此時所釋放的能量與TNT相當,只有原子彈所釋放能量的2000萬分之一。

1986年的車諾比核子反應器,就是因為失控的連鎖反應所造成的反應性事故發生如炸藥般的爆炸。爆炸後的情形如圖2的照片所示。爆炸的威力的確足以摧毀大部分的反應器建築,但是也僅止於此。這次事故所造成的災難並不是爆炸本身,而是爆炸時所釋放出的大量放射性塵埃。據估計,這些外洩的輻射造成了2萬4000人罹患癌症。幸運的是,其中許多人罹患的是可以治癒的甲狀腺癌。

車諾比核災02
圖2. 爆炸後的車諾比核電廠。1986年的車諾比核電廠爆炸,雖然爆發失控的連鎖反應,但是威力只能摧毀反應器所在的建築。

與車諾比不同的是,福島核電廠的反應器並未爆炸。雖然上半部的建築因為累積的氫氣而炸毀,但是反應器本身並未遭到海嘯破壞,最後成功停止運轉並且安然地度過了幾個小時。即使連鎖反應已經停止,但反應器的核心仍有放射性物質足以產生危險的高熱,起初冷卻泵成功阻擋事態失控。最現代化的反應器並不需要這些冷卻泵,而是使用自然對流來維持冷卻水的循環。但是福島的反應器並不是最新型的反應器,必須借由輔助的動力系統來維持冷卻泵的運轉。這套系統在地震與海嘯的考驗下仍然正常地運作,並順利冷卻了反應器。

當然,這套輔助冷卻系統無法永遠運轉下去,根據設計大約可持續運作8小時,在正常的情況下,這段期間內動力應該已經恢復。然而當初的設計並未預料到海嘯會對基礎設施造成如此巨大的破壞。最後緊急動力耗盡,造成大部分的燃料棒因為過熱而熔毀。 就技術上而言,應該把福島核災稱為一次跳電事故,因為這座電廠是因為失去電力而毀壞。熔毀的燃料棒造成大量可怕的輻射外洩,程度超過1979年美國的三哩島核子反應器事故。事實上,福島核災外洩的大量輻射僅次於1986年的車諾比核災,是史上第二嚴重的核子事故。

底線:我們應該怎麼做

海嘯很可怕,超過1萬5000人在滔天巨浪下喪生。海嘯還讓一座核子反應爐嚴重熔毀,為周邊地區帶來癌症和其他的後果,包括撤離未經海嘯侵襲的區域。反應器損毀帶來的經濟後果很嚴重。就死亡和撤離而言,對居民造成的影響也很巨大。從輻射外洩而罹癌致死人數很可能少於100人來看,同樣都是悲劇,但與海嘯所造成的死亡相比,這個數字是如此之小,實在不該當成決定政策時的中心考量。

福島的反應器當初並非設計來承受規模9.0的地震和50英呎的海嘯。周圍的土地遭到汙染,必須要花上許多年才能回復。但要注意的是,核能造成的損害比起地震與海嘯還算輕微。位於日本(以及美國)的核子反應器應該要強化備用系統,以確保這樣的事故不會 再發生。我們當然應該從悲劇中汲取教訓,但應該把福島核災作為停用核能的理由嗎?

沒有什麼是絕對安全的。設計核子反應器時,我們得要考量所有可想像得到的天災人禍嗎?比如說小行星或彗星的撞擊?或是大規模的核子戰爭?當然不可能。因為小行星或戰爭所造成的傷害, 遠超過核電廠受損時的輻射外洩。

福島的輻射外洩會得到世界上那麼多關注相當不尋常,尤其是考慮到海嘯造成的直接死亡人數和破壞是輻射外洩100倍以上。或許人們把焦點放在反應器的熔毀上,因為這個問題是人力可解決的;相對而言,似乎沒有一種方法可以讓日本免於50英呎海嘯的侵襲。 難道要規定離海岸20英里之內都不可居住嗎?或是沿著包含東京灣在內的整個日本東海岸,建一道高達50英呎的堤防?

kk0371309下面是我對如何擬定核電廠安全標準的建議:核電廠必須足夠堅固,才能在被破壞或損毀時,讓輻射外洩所造成的額外傷害遠小於使核電廠受損的災害本身。如果你有額外的預算,請花在防範根本的災害上,而不是二次災害上。 除此之外,在考慮輻射傷害時,應該以丹佛輻射量為標準。在計畫或是進行災害應變時,忽略任何低於丹佛居民每年接受的額外輻射量:0.3侖目=3毫西弗。國際放射防護協會規定的撤離量至少應該提高到這個標準,而且要承認即使是12倍丹佛輻射量所造成的傷害,都遠低於撤離或其他過度反應所造成的傷害。

以這個標準來看,福島核電廠在設計上並沒有問題。當然,我們還可以把新的反應器建得更安全,但至少福島通過了這個標準的檢驗。福島反應爐的熔毀所造成的最大悲劇是,在我寫這本書的時候(2012年初),日本正在逐一關閉核電廠。這個政策遭遇的困難和對經濟帶來的損傷極為巨大,遠超過核電廠本身可能造成的危險。 或許針對核電的抗議行動有助於將人們的注意力從日本真正的危機移開,這個危機就是他們無力避免另一個巨大的地震和海嘯的威脅。

 

摘自PanSci 2014四月選書《寫給未來總統的能源課》,由漫遊者文化出版。

文章難易度
azothbooks_96
35 篇文章 ・ 10 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

19
0

文字

分享

0
19
0

恐龍稱霸地球的秘訣,竟是牙齒自帶避震器?——《追光之旅:你所不知道的同步輻射》

天下文化_96
・2021/09/12 ・1747字 ・閱讀時間約 3 分鐘

《侏羅紀公園》系列電影掀起大家對恐龍的好奇,但其實科學家早就在研究遠古時代的各種生物。以恐龍為例,平均每星期會發現一種新種恐龍,每年大約會發現五十種新種恐龍。而在探討物種起源及鑑定遠古生物領域,同步輻射分析技術也展現了它的獨特價值。

例如,南非威特沃特斯蘭德大學(University of the Witwatersrand)領導的國際科學家團隊,針對一些世界上最古老的恐龍蛋胚胎頭骨,進行 3D 複製重建,發現牠們的頭骨生長順序與當今的鱷魚、雞、烏龜和蜥蜴相同,研究成果發表在《科學報導》(Scientific Reports)上。

美國自然歷史博物館收藏的恐龍蛋化石,內部留有胚胎構造。圖/WIKIPEDIA

在台灣,由加拿大多倫多大學教授賴茲(Robert Reisz)與台灣學者組成國際團隊,花費兩年時間,運用超高解析二維紅外光譜顯微術,在活躍於一億九千五百萬年前的雲南祿豐龍胚胎股骨化石中,發現殘留有機物,找到古化石內保存複雜有機物的最古老紀錄。這個破天荒的發現在 2013 年登上了《自然》(Nature)雜誌封面。

此外,在祿豐龍肋骨化石的微血管通道中,國輻中心研究員李耀昌也發現全球最古老且保存完整的膠原蛋白與赤鐵礦微粒聚晶。

「即使經過億萬年時空轉換,恐龍的軟組織經血液中鐵的氧化及碳酸鈣化包覆作用後,還是有機會被保存下來,」李耀昌表示,這將有助科學家進一步了解恐龍的生理機能與遺傳密碼。

李耀昌團隊將成果發表於《自然通訊》(Nature Communications)期刊,並獲選為《發現》(Discover)雜誌「 2017 年全球百大發現」第十二名,是近年來台灣學者主導的研究成果首度登上《發現》雜誌全球百大發現。

英國 Dinosaurland 化石博物館的鐮刀龍巢與蛋化石。圖/WIKIPEDIA

發現牙齒裡的避震器

恐龍胚胎裡有膠原蛋白,恐龍的嘴巴裡則是自帶「避震器」。

國輻中心團隊與台灣博物館、台灣石尚博物館、中國大陸北京自然博物館、加拿大安大略皇家博物館,以及中國大陸地質科學院地質研究所合作,蒐集十五種肉食性與植食性恐龍牙齒,利用同步輻射穿透式 X 光顯微術與現代的眼鏡凱門鱷牙齒進行研究比對,首度發現肉食恐龍牙齒具有避震結構。

在肉食性恐龍牙齒的琺瑯質與象牙質中間,存在一層相對柔軟且布滿微細孔洞的被覆牙本質層,可以保護牙齒,避免因撕裂骨肉造成牙齒瞬間斷裂。這項研究結果修正了過去對於原始爬蟲類牙齒結構的認知,因此登上國際知名期刊《科學報導》(Scientific Reports)與各大媒體。為了蒐集恐龍牙齒進行研究比對,國輻中心研究員王俊杰透露了一段小故事。

「當時我到桃園興仁花園夜市拜訪鱷魚攤,沒想到使用斜口鉗幫鱷魚拔牙時,斜口鉗當場應聲斷裂,只好再買一把硬度更高的老虎鉗,費了好大一番功夫才順利拔下鱷魚牙齒。」

透過同步輻射 X 光顯微鏡發現暴龍牙齒藏有「避震器」,保護牙齒不致斷裂。1:X光下的暴龍牙齒構造。2:暴龍牙齒外觀。 3:無避震結構的牙齒內部應力分布。4:有避震結構的牙齒內部應力分布。圖/王俊杰提供

牙齒的特殊結構,使得肉食恐龍成為頂尖獵食者,稱霸地表一億六千五百萬年。相較於人類咬合力約為 40 公斤、眼鏡凱門鱷咬合力約 1,000 公斤,以及咬合力可達 2,000 公斤、目前世上咬合力最大的動物—— 灣鱷,「暴龍的咬合力約 6,000 公斤,且拖行的獵物體重可能超過 1 公噸,但靠著微小的避震結構設計,便不致因巨大應力而造成牙齒斷裂,」王俊杰說。

遠古生物的活動型態一直是科學家亟欲解開的謎題,透過同步光源高解析度檢測技術,可以幫助我們了解古生物化石組織結構的細微差異,提供了一種嶄新的古生物分類與古生態研究檢測方法,而藉由恐龍胚胎化石中探測到的有機質殘留物,未來將可逐步解開更多遠古生物的奧祕。

——本文摘自《追光之旅:你所不知道的同步輻射》,2021 年 8 月,天下文化

天下文化_96
4 篇文章 ・ 7 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策