0

0
0

文字

分享

0
0
0

重力波:仰望時間的起點,相對論中的最後一塊拼圖

科學人_96
・2014/04/02 ・1188字 ・閱讀時間約 2 分鐘 ・SR值 571 ・九年級

-----廣告,請繼續往下閱讀-----

420_ac4182326b54ff68d34d00f9b4fe985d
參與監測的郭兆林教授(右二)

科學家找到了相對論中尚未證實的最後一塊拼圖──重力波,可望讓我們更了解宇宙誕生的瞬間。

文/洪志良

「遍尋你千百回也不厭倦」這句話,或許是最適合用來形容重力波(gravitational wave)這個集眾多科學家之力、費盡巧思仍找尋不到的現象,當然也適用於科學家努力不懈追尋科學真理的精神。

終於,在2014年3月18日,美國研究團隊宣佈已找到「初始重力波」,印證了愛因斯坦的預測。大約在100年前,愛因斯坦意識到,「重力」其實是具有質量的物體彎曲了時空結構的表現。若超大質量的物體(例如黑洞)激烈晃動時,時空也會跟著晃動起來,產生重力波。不過愛因斯坦認為,重力波非常微弱,以致於永遠無法觀測到,而重力波也是至今相對論中尚未證實的最後一塊拼圖。

1974年,侯斯(Russell Hulse)與泰勒(Joseph Taylor)研究了一對互相繞行的波霎與超緻密中子星。他們推論,若相對論正確無誤,則互相繞行的這對天體應該能夠產生重力波,使它們的軌道縮小、速率變快。在經年累月的觀測後,數據結果完全符合侯斯與泰勒的預測,兩位天文學家也於1993年榮獲諾貝爾物理獎。

-----廣告,請繼續往下閱讀-----

侯斯與泰勒的研究成果間接證實了重力波的存在,但是仍然沒有直接觀測到重力波。後來,美國斥資5億7000萬美元搭建雷射干涉儀重力波觀測站(LIGO),經歷10多年的觀測,仍然鎩羽而歸,沒有接收到重力波的訊號。在那之後,科學家設計了各式各樣的儀器,例如2009年升空的普朗克衛星(Planck)、位於南極的南極望遠鏡(SPT)等,耐心守著天空,卻依然不見重力波的影子。

奇蹟出現

在全球科學家的苦心等候之下,奇蹟終於出現了!由美國哈佛史密森尼天文物理中心、史丹佛大學、加州理工大學、明尼蘇達大學等組成的研究團隊,利用位在南極的BICEP2望遠鏡,避開了較強訊號來源的天體、觀測乾淨的天空,他們從宇宙微波背景(CMB)中首次找到了早期宇宙時空漣漪所留下的足跡──B模態偏振(B-mode polarization)。

CMB是大霹靂後旅行了約140億年才抵達地球的電磁波,會有電場和磁場在方向上的變動,或稱為偏振性。依據現在的物理理論,只要有日月星辰的存在,就會使CMB產生E模態偏振。1980年,粒子物理學家古斯(Alan Guth)提出了「暴脹理論」。這個理論指出,在大霹靂後約10-36~10-32秒內,宇宙經歷了一段極為快速的膨脹。暴脹理論解釋了宇宙學的數個難題,例如宇宙為什麼這麼老?為什麼如此均勻?而宇宙在暴脹過程中,擾動時空結構,形成了初始重力波,初始重力波則會讓CMB具有B模態偏振。

暴脹理論提出後,又有許多其他的理論闡述了早期宇宙的形成面貌,包括一些不支持重力波的理論。這一次美國研究團隊的研究成果不但確立了重力波以及暴脹理論,也否定了其他理論。畢業於台灣大學物理系、現為史丹佛大學助理教授的郭兆林也是團隊成員之一,他說:「我們找到了暴脹理論的證據,而且我們也得到了第一幅重力波劃過天空的影像。」

-----廣告,請繼續往下閱讀-----

 

本文刊載於《科學人》2014年第146期4月號

-----廣告,請繼續往下閱讀-----
文章難易度
科學人_96
39 篇文章 ・ 5 位粉絲
《科學人》雜誌-遠流出版公司於2002年3月發行Scientific American中文版,除了翻譯原有文章更致力於本土科學發展與關懷。

0

0
0

文字

分享

0
0
0
環境共生的牆:冠軍磁磚如何幫建築降溫
鳥苷三磷酸 (PanSci Promo)_96
・2025/08/29 ・4556字 ・閱讀時間約 9 分鐘

本文與 冠軍磁磚 合作,泛科學企劃執行

夏天早已不是可以輕忽的季節巨獸,就連位於中高緯度的歐洲也深受其威脅。然而,在德國漢堡,有一棟建築不僅不用付電費,還能自行發電,同時維持室內恆溫。它的秘密武器,不是屋頂上的太陽能板,而是長在牆壁上的「太陽能葉片」(SolarLeaf)

這面牆不是冰冷的水泥,而是一片片富有生命力的綠色面板,正式名稱是「光合生物反應器」。它由四層玻璃製成,僅 2 公分寬的玻璃空腔內,充填著 24 公升的微藻培養液。為了讓藻類保持活力,系統會定時從底部打入回收自鄰近設施的二氧化碳。產生的大量氣泡不僅提供光合作用所需的原料,還產生「氣舉效應」(airlift effect):向上浮力會帶動周圍的液體一起向上運動,產生液體流動、持續攪動培養液,就像為藻類進行 SPA 按摩,確保每顆藻都能均勻曬到陽光。

產生的大量氣泡不僅提供光合作用所需的原料,還產生「氣舉效應」(airlift effect)/ 照片:© Colt International、Arup Deutschland、SSC GmbH

在這過程中,微藻吸收日光,提供了動態的遮陽效果,並透過光合作用將能量轉化為可儲存的生物質。與僅能吸熱的水泥牆不同,這片牆真正「存住」了太陽能,同時避免城市熱島效應。更重要的是,這些反應器還能蒐集住家與周邊建築燃燒或煮菜所排放的二氧化碳,將其迅速封存於藻類體內。

-----廣告,請繼續往下閱讀-----

聽起來像科幻小說?別急,這才只是今天要介紹的第一種前衛建築。接下來,還有用真菌「種」出來的隔熱磚、會隨太陽軌跡跳舞的窗花,以及在台灣就能落實的降溫磁磚設計。在這些千變萬化的創新方法中,總有一款會讓你眼睛一亮。它們不僅節能省錢,更代表一種與環境共生的全新可能。

不只種藻,還能「種磚」

要讓建築自我降溫,科學家的靈感往往向自然界取經。前面提到的 SolarLeaf 是極致案例,但如果不想大動工程,也可以從「建材本身」著手。最常見的方法是鋪設隔熱磚,而有些科學家則做出更環保的版本,不是培養微藻,而是「種真菌」。

作法是先將稻殼、稻草、鋸末或紙漿廢料滅菌,去除雜菌後再將這些基材混入菌種,灌入特定形狀的模具。接著在攝氏 20~25 度、濕度控制良好的條件下,菌絲體便會自行生長,像一種有生命的「超級膠水」,分泌酵素分解廢料當作養分。並將它細長的纖維網絡穿透、包裹、纏繞所有廢棄物顆粒,把所有廢棄物緊緊地固化成一塊緻密的隔熱板 。整個過程約需 5 至 21 天。

這種材料的熱傳導係數介於 0.03~0.07 W/m·K之間,性能已能與常見的保麗龍板或礦棉相媲美。原因在於菌絲體本身是由真菌生長出的細長纖維所構成,纖維之間會自動交織形成一個三維網絡。當它「吃掉」農業廢料並填滿模具後,就會生成密實卻輕盈的纖維結構,材質類似「天然泡棉」,但更為堅固。

-----廣告,請繼續往下閱讀-----

想像一座由菌絲長出的「無限城」:熱能被困在層層彎曲的通道裡,難以迅速穿過。熱走得越慢,隔熱效果就越好。這種材料最大的優勢在於生命週期完整,它以廢棄物為食、生產過程低耗能,最後還能完全被生物分解,回歸大地。

菌絲體本身是由真菌生長出的細長纖維所構成,纖維之間會自動交織形成一個三維網絡/ 照片:©https://ecovative.com/

目前這項技術最成熟的應用來自美國 Ecovative Design 公司,他們利用大麻稈或玉米莖等農業廢棄物培養菌絲。2024 年,該公司啟動「鳳凰計劃」(The Phoenix),在加州奧克蘭打造一個含有三百間住宅的社區,外牆便採用這種菌絲材料。由於原料取得容易,只要有農業廢棄物與菌種,就能培養出建材,應用範圍從建築延伸到日常使用的包裝材料,潛力無窮。

生物混凝土:讓苔蘚在牆上自然降溫

藻類、真菌還不夠?那就再「種」苔蘚。

西班牙加泰隆尼亞理工大學的研究團隊開發出一種名為 「生物混凝土」 的創新材料,其設計宗旨在於支持苔蘚、地衣等微生物的生長。

這種材料是一個多層系統:第一層是結構層,也就是標準混凝土,負責承重;第二層是防水層,保護內部結構不受水分侵蝕;第三層則是最外面的生物層,經特殊處理的外層,其孔隙率和表面粗糙度經過調整,利於捕捉和保持雨水,為微生物的定殖提供一個理想的生活環境。 

-----廣告,請繼續往下閱讀-----

這個「活的」表面帶來多重效益:植被層本身形成了一層隔熱層,更關鍵的是,其保水能力使其可以透過蒸發冷卻(evaporative cooling)來主動降低牆體表面溫度,從而顯著減少建築的熱增益 。   

不過,從藻類到真菌,再到苔蘚,這樣住個房子還要考慮陽光、空氣、水,難道沒有更方便的方法嗎?

外牆乾掛系統:利用空氣與模組化磁磚實現隔熱

如果不想「種生物」,也可以透過工程手法和巧妙設計來降溫,那就是第四種方法「外牆乾掛系統」

它的原理,其實就是用了最便宜的隔熱材料:空氣。傳統牆壁中,磁磚是用水泥直接黏死,但乾掛系統透過金屬骨架,將外層飾面板「掛」在建築結構外,中間刻意留出一個連續的空氣腔。

-----廣告,請繼續往下閱讀-----
傳統牆壁中,磁磚是用水泥直接黏死,但乾掛系統透過金屬骨架,將外層飾面板「掛」在建築結構外,中間刻意留出一個連續的空氣腔 / 圖片來源:冠軍建材

為什麼有效?普通水泥的導熱係數約在 1.5–2.0 W/(m·K),而靜止空氣在標準條件下約 0.025 W/m·K,兩者相差了 70 倍。也就是說,傳統水泥建築在太陽照射下,熱量會直接傳入室內;而使用外牆乾掛系統的建築,就像多了一層隔熱盾,從一開始就將大部分熱量隔絕在外。這種方法的最大優勢,是不需研發複雜的新材料或製程,關鍵在於將瓷磚模組化,只要能安裝到外牆乾掛系統上,磁磚的樣式、顏色和種類也可以一樣多元。

在台灣,磁磚龍頭「冠軍建材」便推出了應用這原理的系統。該公司委託成功大學實驗室進行隔熱試驗,結果顯示:2 公分厚磚搭配特定乾掛工法,熱傳透率(U 值)可達 1.66 W/m²K,符合高性能綠建材 U 值需低於 1.8 的標準。這不僅能讓室內降溫約 4°C,空調用電還可減少 24–36%

屋頂同樣是最曬重災區。全球建築師常用屋頂綠化或太陽能板降低陽光的熱吸收,而冠軍建材提供更簡單的方法:將屋頂磁磚架高。他們的架高節能工法,採用義大利 ETERNOIVICA 架高器,將磁磚架高 15 公分。別小看這 15 公分,就能阻絕 90% 的熱傳導,並讓樓板降溫 15°C

這種降溫方式不影響美觀與安全性。冠軍建材推出了大理石、石紋等多種質感的磁磚,價格約為天然石材的 3 到 5 成。同時,其外牆乾掛節能工法也通過了17級風雨試驗、50 公斤多次撞擊測試,即便在地震、颱風頻繁的台灣,也能安心使用。產品具高抗折強度、低吸水率,可抵抗酸雨、風化等問題引起的剝落風險,並兼具耐火、防水、耐磨、防滑及易保養等優點。

-----廣告,請繼續往下閱讀-----
冠軍建材推出了大理石、石紋等多種質感的磁磚,其外牆乾掛節能工法也通過了17級風雨試驗、50 公斤多次撞擊測試。/ 圖片來源:冠軍建材

雖然不是生物建材,但冠軍製造的建材仍符合廢棄物減量(Reduce)、再利用(Reuse)及再循環(Recycle)的3R原則。他們在生產中使用廢陶瓷粒料、無機污泥及非有害廢集塵灰等回收料,並與大型建設公司合作回收工地廢磚。產品運至工地後,切割產生的邊角料亦會回收再利用。冠軍建材將永續理念融入生產,產品使用了50%的生產循環回收料、6.5%的廢陶瓷粒料與43.5%的天然原料,有效減少了廢棄物並降低碳排。

顛覆想像:三大建築降溫策略

到這裡,我們介紹的都是利用被動方式將熱量隔絕在外的方法。接下來,來看看幾種由工程師顛覆傳統想像、腦洞大開的「讓建築主動降溫的策略」。

1. 水源熱泵:讓水域成為建築的低耗電恆溫空調

第一個方法,是用更大尺度的環境系統來調節建築溫度—水源熱泵(Water‑Source Heat Pump, WSHP)。

-----廣告,請繼續往下閱讀-----

想像一台超大的冷氣機,冷媒在密閉管路裡吸收室內的熱量後蒸發,再進入壓縮機被壓縮後凝結,並釋放熱量。依照熱力學定律,熱總是從高溫流向低溫,如果想要讓熱量逆向流動,就需要消耗能量。也就是說,當室外空氣溫度越高,要再把熱量搬到空氣中,就需要耗費更多電力。

工程師們想到,比起氣溫會隨季節劇烈起伏,水體的溫度相對穩定,冬暖夏涼。像河川、湖泊,甚至城市污水系統,都能當作一個大型的「散熱水冷排」。如果熱量不是排進空氣中,而是排進溫度較低的水中,需要消耗的電力就可以下降。

研究顯示,空氣源熱泵的性能係數(COP)約為 2.33,每消耗 1 焦耳的電力,可搬運 2.33 焦耳的熱能;而使用水作為冷卻源的水源熱泵的平均 COP 可穩定在 3.9左右,比空氣源熱泵高出 67%。更棒的是,水源熱泵不只在夏天吹冷氣省電,只要反過來運作,讓熱泵把熱量從室外搬到室內,也能在冬天開暖氣時幫你省電。等於整個水域都是我家的低耗電恆溫空調。

2. 動態遮陽外牆:讓建築自己追著太陽動

-----廣告,請繼續往下閱讀-----

第二個方法,是讓建築的外牆自己能動起來。位於阿布達比的 Al Bahar Towers,它的整個外牆被超過1000個獨立的、傘狀的六角形遮陽單元所覆蓋,這些單元的設計靈感來自傳統伊斯蘭窗花「Mashrabiya」。

位於阿布達比的 Al Bahar Towers,它的整個外牆被超過1000個獨立的、傘狀的六角形遮陽單元所覆蓋 / 圖片來源:shutterstock

每個單元由 PTFE(聚四氟乙烯)面板構成,並由線性致動器驅動,整個系統由電腦集中控制,程式會追蹤太陽軌跡,在東、南、西向立面上,於最需要遮陽的時刻與位置提供蔭蔽。系統還配備感測器,在強風或陰天時自動收回遮陽單元以保護結構。

這套動態系統可減少超過 50% 的太陽熱增益,顯著降低空調負荷,使整體空調設備規模減少 20%,資本成本降低 15%,冷氣負載下降 15%,每年更能減少超過1750公噸的二氧化碳排放。

3. 電致變色智慧玻璃:光與熱量隨心控制

最後,概念相同但更簡潔的方法,那就是「電致變色智慧玻璃」(EC Glass)。這種內部,有一層由氧化鎢製成的電致變色層 。只需施加 3–5 伏特微弱電壓,玻璃中的鋰離子就會開始移動,改變材料的光學特性,讓玻璃從透明變成深色,進而阻擋陽光與熱量 。

它最大的優點,就是只有在「切換顏色」的那一瞬間才耗電,一旦固定在透明或深色狀態,耗電量就是零 。研究顯示,在炎熱氣候下,這種玻璃可以節省10%-58%的空調耗能 。

結語

從會呼吸的藻類牆、運用大地熱能的水源熱泵,到巧妙駕馭空氣流動的通風帷幕,以及能追蹤太陽軌跡的智慧窗花,我們可以看到,未來建築的趨勢已不再只是「遮風避雨」,而是一個個高度整合、能與環境互動的複雜系統。

展望未來,建築不太可能依賴單一技術主宰,而更可能透過多種技術的智慧整合,創造出更高效、可持續且環境友善的建築方案。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
愛因斯坦的光速魔術
賴昭正_96
・2024/10/05 ・7055字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正 前清大化學系教授、系主任、所長;合創科學月刊

起初神創造了天地。大地空虛混沌; 深淵的表面一片黑暗;神的靈運行在水面上。神說,「讓它有光」,於是就有了光。 神看見光是好的;神將光明與黑暗分開。 -創世紀 1:3

1905 年愛因斯坦在題為「關於運動物體的電動力學」(On the Electrodynamics of Moving Bodies)的論文引言裡謂:

我們建議將「相對性原理」這個猜想(conjecture)提升到一個公設(postulate)的地位,並引入另一個表面上與它不調和(irreconcilable)的公設,即光在真空中的傳播速率為一與發射體運動狀態無關的定值 c。這兩個假設足以(讓我們)透過適用於靜止物體(狀態)之馬克斯威(James Maxwell)理論,導出一個簡單且不矛盾(consistent)的電動力學理論。

愛因斯坦真大膽:一個可以用實驗來確定的光速,怎麼可以定為「公設」呢?光速與發射體運動狀態無關不是完全違反了我們日常生活的經驗(如聲速)嗎?

更令人難以相信的是:當時的物理與天文學家因為馬克斯威方程式(Maxwell Equation)的成功,都認為空間充滿了絕對靜止的「以太」,「光速為定值」僅是相對於這一固定的「以太」而言;而愛因斯坦竟初生之犢不畏虎,開宗明義地謂不要爭辯了,我們將光在真空中的速度「公訂」為與發射體運動狀態無關的定值 c!幸運地,在「立即引起了我的熱烈關注」下,當時歐洲受人尊敬的理論物理學大師普朗克(Max Planck)立即在柏林大學開始講授相對論,並公開為愛因斯坦的抽象概念理論辯護!由於普朗克的影響,這篇愛因斯坦根本沒想到是「革命性的」、完全改變牛頓之時空觀念的論文終於與量子力學一起開創了近代物理學。

當然,我們現在知道實驗上已經證明了這一「公設」的正確性;愛因斯坦怎麼那麼「神」呢?

-----廣告,請繼續往下閱讀-----
愛因斯坦以大膽創新思維,突破常規,開創物理學新紀元。 圖/wikimedia

「光」逐流

第二次世界大戰結束後不久,愛因斯坦受邀在「在世哲學家圖書館」(Library of Living Philosophers)撰寫一篇知識分子自傳(註一)。在該《自傳筆記》(Autobiographical Notes)裡,愛因斯坦開張寫道:「我坐在這裡是為了在 67 歲時寫一些類似於我自己之訃文的東西」,然後以無與倫比的溫暖和清晰解釋了他的思想路徑:從年輕時對幾何的興趣,轉向馬克斯威、馬赫(Ernst Mach)、和波爾(Niels Bohr)等哲學、科學家對他自己之理論發展的影響。此書是愛因斯坦留給我們的唯一個人自傳筆記,為科學史上的一部經典著作。

在講述導致狹義相對論的發展時,愛因斯坦在《自傳筆記》中回憶道:

…..我在十六歲時就已經遇到了一個悖論:如果我以速度c(真空中的光速)追逐上一束光,我應該觀察到其電磁場將是靜止不前進,只是在空間上振盪而已。然而,無論是根據經驗,還是根據馬克斯威方程組,這現象似乎不存在。(因此)從一開始,我就直覺地清楚看到,從這樣一個觀察者的角度來看,一切都必須按照與相對於地球靜止的觀察者相同的定律發生。第一個觀察者如何知道或能夠確定他處於一快速、等速的運動狀態?從這個悖論中可以看出,狹義相對論的種子已經包含在內。

愛因斯坦如何解決這悖論呢?

一場風暴

愛因斯坦在瑞士專利局任職時,經常與「奧林匹亞學院」(Olympia Academy)的成員討論光速之謎。1905 年 5 月中旬,他突然想到光速之謎的答案就隱藏在用於測量時間的程序中,他回憶說:「我的腦海中掀起了一場風暴」。隔天一大早碰到一位工程師同事就迫不及待地告訴說:「我已經徹底解決了這個問題。對時間概念的分析是我的解決方案:時間不能是絕對的,時間和訊號速度之間存在著密不可分的關係。」

-----廣告,請繼續往下閱讀-----

在風暴中,愛因斯坦匆匆忙忙地在數週內完成了那革命性的狹義相對論論文。在此讓我們看看為什麼他認為「時間和訊號速度之間存在著密不可分的關係」。

愛因斯坦同步程序

要測量光速,必須讓光訊號在已知距離內從一個位置跑到另一個位置,然後透過起點和終點的時鐘讀數之差異來確定傳播時間。因此用於測量傳播時間的時鐘必須同步,否則它們之讀數差異將毫無意義。可是我們卻需要利用光速來同步化兩個不同地方之時鐘,這顯然是「雞生蛋、蛋生雞」的循環邏輯問題。

愛因斯坦的風暴就是他終於想出了可以避免循環邏輯的同步化假想實驗:在 tA 時從 A 發出一道光線,當它在 tB 到達 B 時立刻讓它反射回去,於 t’A 時到達 A;如果

則我們稱 A、B 兩地的時鐘精確地同步化了。例如 A 在 1:00 發出光信號,1:10 收到反射回來的光信號,如果 B 收到光信號的時刻是 1:05(或者將它調到 1:05),那麼 A、B 兩地的時鐘便是同步。今天的物理學家將此方法稱為「愛因斯坦同步程序」( Einstein Synchronization Procedure )。

-----廣告,請繼續往下閱讀-----

光速定值的「公

愛因斯坦接著說:「另外,根據經驗,我們進一步要求

為普適常數(真空中的光速)。」這是根據經驗計算光在兩點間之平均速度的方法,毫不起眼,但卻隱藏著一個非常不尋常的「陰謀」?

邏輯告訴我們:如果我們用另一毫不起眼的 tB 定義去測單方向的光速(A 到 B或 B 到 A),其值一定是 c ( 註二 )!因此愛因斯坦說:「…我們根據定義確定,光從 A 傳播到 B 所需的時間等於光從 B 傳播到 A 所需的時間。」也就是說愛因斯坦在這裡從「平均速度」及「愛因斯坦同步程序」的定義,魔術般地導入了他的公設:光在任何方向的速度都是一樣的 c 值!

為什麼這是個「陰謀」呢?在愛因斯坦的假想實驗中,我們既然不需要知道光的速度,為什麼不用聲音呢?答案很簡單:因為我們知道聲速會受到 A、B 兩點與空氣之相對速度的影響;如果風從 A 吹到 B,那麼 B 收到聲音的時間將比愛因斯坦之 tB 早! 可是那時候幾乎所有的物理學家都相信光是在「乙太」中傳播的(見後),愛因斯坦怎麼知道光速不會受到 A、B 兩點與「乙太」之相對速度的影響?

-----廣告,請繼續往下閱讀-----
愛因斯坦透過同步程序巧妙定義光速,避開了「乙太」的影響。圖/wikimedia

歷史上最「失敗」的實驗

在「近代物理的先驅:馬克斯威」裡,筆者提到曾被評選為有史以來第三大物理學家馬克斯威用簡潔數學方程式━「馬克斯威方程式」━闡釋了當時已知的電磁現象。1865 年,馬克斯威透過其方程式導出電磁波的存在,並證明光事實上就是一種電磁波!光既然是一種波動,那像水波及聲波一樣應該有傳播的媒體(介質),物理學家開始尋找這一稱為「乙太」的媒體,並測試地球在這一媒體中的運動狀態。

這些實驗中最有名的是後來被稱為歷史上最「失敗」的實驗:1887 年,邁克爾森(Albert Michelson)與莫利(Edward Morley)用光干涉儀測量地球與乙太的相對運動速率。邁克爾遜和莫利預計會發現:分道揚鑣的兩道光束在不同時間回到探測器,從而可以計算出地球在乙太中的運動速度。但他們非常失望地發現:無論光向哪個方向傳播,它總是以相同的速度移動,因此下結論説:如果乙太存在,地球與乙太的相對運動速率為零!他們認為這有兩種可能的解釋:(1) 在地球表面之乙太被地球拖著走;或 (2) 根本沒有乙太(參見「乙太存在與否的爭辯」)。但更簡單的解釋應該就是愛因斯坦的不要爭辯「公設」;可是誰敢提出這種違反常識的論調呢?或許只有當時還是默默無聞的瑞士專利局小職員吧?

可是愛因斯坦回憶說:「在我自己的發展中,邁克爾遜的結果並沒有(對我)產生很大的影響。我甚至不記得當我寫第一篇關於這個主題的論文時(1905 年),我是否知道它。」然而愛因斯坦也在許多場合中曾經反覆使用「可忽略不計」、「間接」、「非決定性」等詞彙來形容邁克爾遜實驗對他思想的影響…。看來「愛因斯坦當時是否知道邁克爾遜實驗結果」這個問題將永遠是個懸案。但可以肯定的似乎是:即使愛因斯坦知道邁克爾遜的結果,它對愛因斯坦理論的起源貢獻應該是非常小和間接的,絕對不是他發現相對論的主要推動因素。

事實上前面提到:愛因斯坦根本可以不需要知道,因為在他的時鐘同步程序下,光速一定是定值,與實驗結果或「乙太」是否存在無關。相反地,如果愛因斯坦清楚不用時鐘同步化的邁克爾遜-莫利實驗,那風暴可能就不會產生了!

-----廣告,請繼續往下閱讀-----

時鐘同步化與光速無關

測量單方向光速實際上並不需要同步化的兩個時鐘(即沒有循環論證的問題)。例如 A、B 兩地皆在赤道上,A 在 1:00 發出光信號,B 在收到光信號後等 12 小時再發射回去,如果 A 在收到 B 光信號的時間是 13:04,那麼因為地球 24 小時自轉一次的關係,AB 距離除以 0.02 便是光單方向(相對於宇宙)的速度。在這一個實驗中,A、B 兩地的時鐘根本不必要同步化,只要它們的精確度是一樣就可以了。

人類早在 18 世紀初就已經知道如何製造相當精確及穩定的時鐘:哈里森(John Harrison)是英國的一名木匠,自學了鐘錶製作;在 1720 年代中期,他設計了一系列卓越的精密長殼時鐘,其精確度已經高達一個月僅差一秒(註三)。我們可以將兩個 Harrison-IV 時鐘在 A 處校正,然後慢慢(原則上無限地慢)將其中一個移到它處,不但可以用它來同步化這些地點的時鐘,還可以用來直接測量單方向的光速。

還有,首次確鑿證明地球在動的布拉德利(James Bradley)早在 1729 年就已經透過「星光像差」(stellar aberration)測得高達 0.4% 精確度的光速;而發明「傅科擺」(Foucault pendulum)來證明地球在自轉的傅科(Léon Foucault)則在1862年透過旋轉鏡與單鐘測得 0.6% 精確度的光速。

馬克斯威方程式也告訴我們,不需要使用任何時鐘,透過測量自由空間的磁導率和介電常數即可間接計算光速,完全避開愛因斯坦的循環論證邏輯。事實上馬克斯威 1865 年就是用這兩個實驗數據計算出電磁波的傳播速度為每秒鐘 310740000 公尺,接近當時光速的(傅科)實驗值。馬克斯威認為這不會是巧合,謂:「我們幾乎無法避免這樣的結論:光存在於同一介質的橫向波動中,這是電和磁現象的原因」,因此他預測光是一種電磁波。

-----廣告,請繼續往下閱讀-----

上面這些說明了 20 世紀黎明前,科學家就已經知道了:時間(校時)和訊號速度之間並不存在著密不可分的關係。事實上愛因斯坦更應該知道,因為當他被問到是否站在牛頓的肩膀上時,他回答說:「不,是站在馬克斯威的肩膀上!」所以不知道愛因斯坦是否故意沒想到這些,以便透過陰謀來創造相對論?在今天,愛因斯坦那篇沒有任何參考資料的相對論論文是不可能被接受發表的!

愛因斯坦的規定

在愛因斯坦同步程序下,無論光的實際速度是多少,光速測量起來總是定值 c。難道愛因斯坦不知道這「魔術」充滿了漏洞嗎?一個可能的解釋是 19 世紀末電報線和鐵路將整個歐洲連接成一個巨大的網絡,為了以確保訊息、乘客、和貨物的順利流動,同步時鐘是非常實際的考慮;愛因斯坦是專利局電訊操作設備的技術專家,負責審查時鐘同步的網路電磁設備之專利申請,因此他一定在思考時鐘同步問題,加上經年累月地為光速所困,似乎很自然地便往這牛角尖裡鑽。

愛因斯坦或許因長期研究時鐘同步問題,導致忽視光速測量的漏洞。圖/wikimedia

我們知道魔術是騙人耳目與大腦的,不能用在科學上。光速是可以量的,怎麼可以根據定義確定(光從 A 傳播到 B 所需的時間等於光從 B 傳播到 A 所需的時間)?因此在其 1916 年之科普《相對論:狹義理論與廣義理論》一書中,愛因斯坦辯說:「(假設 M 在 A、B 兩處之正中間)實際上光需要相同的時間穿過路徑 AM 和穿過路徑 BM,這既不是關於光之物理性質的假設(supposition)、也不是假說(hypothesis,註四),而是我可以根據自己的自由意志做出的規定(stipulation),以便得出同時性的定義(註五)」。換句話說,愛因斯坦認為光速恆定是一種「規定」,與物理無關,無需解釋其真偽(註六)。且聽「創相對論紀 1:3」道來:

19 世紀中旬馬克斯威創造了馬克斯威方程式。大地充滿了乙太;深淵的裡面測不出地球的運動;愛因斯坦的靈運行在其中。愛因斯坦說,「讓光速為定值」,於是光就依定值傳播。愛因斯坦看見定速是好的;愛因斯坦將定速與乙太分開。

圖/作者提供

結論

從上面的分析看來,愛因斯坦這「光速為定值的規定」似乎是建基於錯誤的認知上,所以顯然愛因斯坦其實沒有那麼神

-----廣告,請繼續往下閱讀-----

開玩笑的,事實上愛因斯坦是筆者佩服的極少數科學家之一!在「思考別人沒有想到的東西──誰發現量子力學?」一文裡,筆者指出:當普朗克還一直在努力地想讓他的量子解釋能容於古典力學時,愛因斯坦已認識到量子不連續性是普朗克黑體輻射理論的重要組成部分!也只有愛因斯坦能看出波思(Satyendra Bose)一篇被英國名物理雜誌退稿、題為「普朗克定律及光量子的假設」的重要性,開創了量子統計力學!更奇怪的是:他被證明是錯的「EPR 悖論(EPR Paradox)」竟推動了許多如量子密碼學、量子計算機、量子資訊理論、量子遠程傳送等的研究;而他自認是一生中最大錯誤的「宇宙論常數」則成為研究近代宇宙的主要工具。……因此筆者總覺得愛因斯坦雖然像常人一樣犯錯,但對物理卻具有一般人所沒有的第六感!或許愛因斯坦心裡早就預感光速應該是定值(註七),其同步程序只是設計出來「證明」光速恆定的妙計?

雖然以卓越教學而備受讚賞的慕尼黑大學理論物理學教授薩默費爾德 ( Arnold Summerfeld ) 曾於 1907 年對愛因斯坦的公設提出「微辭」,但現在物理學家從未公開批評該相對論公設,只是默默地屏棄此一公設,改採將光速恆定作為可以實驗驗證的物理定律(經驗基礎):光速恆定不是規定,而是根基於實驗的自然界基本定律。

如果光相對於愛因斯坦的速度永遠為c, 那麼他將永遠無法隨「光」逐流看到光駐波,愛因斯坦不但終於解決了他16歲時所迷惑的悖論,還開創了相對論!

註釋

(註一)《世哲學家圖書館》系列的第七卷(Paul Arthur Schilpp編輯,美國紐約市 MJF Books 出版,2001 年元月一日重印版)。單行本:《阿爾伯特·愛因斯坦:哲學家-科學家》(Albert Einstein: Philosopher-Scientist;Open Court,3rd edition,December 30, 1998)。

(註二)筆者讀過多次愛因斯坦同步程序,從沒想到被騙;視而不思,真是書呆子一個!

(註三)2023 年初可攜帶型的商業原子鐘精確度高達 10-11%。

(註四)大英百科全書:科學假設是對自然界中觀察到的現像或一組狹窄現象提出初步解釋的想法。

(註五)參見『不用數學就可以解釋──相對論的著名想像實驗「雙胞胎悖論」』。

(註六)這種不顧物理的隨心所欲「規定」使筆者想到了波爾於 1913 年提出的:「電子雖然如行星繞日,但它的軌道卻不能隨便,而必須適合一個新的條件,即量子條件(quantum condition)。在這種軌道條件下的電子是穩定的,它可不服從電磁理論,因此也就不須放射出電磁波。」波爾輕而易舉地用「規定」的方法解決了拉塞福 ( Rutherford ) 原子模型與電磁理論的衝突(參見「原子的構造」)。當然,波爾原子模型的成就不只解決這衝突而已,它事實上解釋了當時存在的部份光譜問題,推動了新力學的迅速發展。同樣地,愛因斯坦的規定不只提出了「同時」是相對的觀念,還開創出一個新的力學。

(註七)用兩個簡單的公設就可推導出當時已知的洛倫茲轉換方程式(Lorentz transformation)、時間膨脹(time dilation)、洛倫茲—傅玆久拉空間收縮(Lorentz-FitzGerald contraction )等公式,這絕對不可能是一個巧合。

延伸閱讀

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
48 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲它轉載我的科學月刊上的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」。

0

101
2

文字

分享

0
101
2
時間與空間的顛覆!如何用簡單的方式了解「相對論」?——《物理角色圖鑑》
azothbooks_96
・2024/09/16 ・2086字 ・閱讀時間約 4 分鐘

時間不再絕對?牛頓與愛因斯坦的時間觀差異

川村老師,請用簡單的方式告訴我「相對論」是什麼?

圖/《物理角色圖鑑》

老師:狹義相對論源自相對性原理(Principle of relativity,指物理定律〔Physical law〕適用於所有以等速直線運動的物體) 與光速恆定原理。根據這個理論,時間是相對的,依不同觀察者而有所差異。牛頓力學中的時間是絕對的,愛因斯坦則認為,可依不同的觀察者位置對時間進行不同定義。

圖/《物理角色圖鑑》

老師:之前在討論「力」時,也提過離心力。離心力是「慣性力」的一種,慣性力指物體在加速運動時感受到的與加速方向相反的力。置身在沒有窗戶的電梯中,當電梯向上加速,電梯內的人會受到向下的慣性力(譯注:因看不到外面,使得他無法判斷電梯的運動情況)。若加速度為 g,物體質量為 m,則物體所受慣性力為 mg,與在地面所受的重力 mg 相同。愛因斯坦無法區別這兩種 mg 的差異,所以視為等效。但無論慣性力的方向為何,物體都會往向量合成後的視重力場方向掉落。

時間在任何地方都固定不變嗎?

世界上最快的速度是光速。物體的移動速度若接近光速,它的時間進程就會變慢。也就是說,在接近光速的太空船上,時間會變得悠長。而且,接近光速的物體長度會朝行進方向收縮。

物體只要具有質量,即使在靜止狀態依然擁有能量(其能量 E mc2,稱為靜止能量(Rest energy)。

-----廣告,請繼續往下閱讀-----

提到光的運動,我們已經知道光的路徑會彎曲。

1919 年,天文學家觀測到恆星發出的光線在經過太陽附近時被偏折,這種現象稱為「重力透鏡效應」(Gravitational lens),有助於了解黑洞等宇宙中質量分布的情況。此外,天體物理學家也觀測到時間的延遲。簡而言之,接近地面的時鐘行進速度會比高處的時鐘慢,GPS 也是依據這種效應來進行校正。

圖/《物理角色圖鑑》
圖/《物理角色圖鑑》

時間

牛頓力學中的「時間」(也就是我們一般理解的時間)和相對論中的時間大異其趣。牛頓在《自然哲學的數學原理》(Philosophiæ Naturalis Principia Mathematica,1687)中,假設空間是均勻平坦的;從過去到未來,在任何地方都平均延伸。在牛頓力學中,全宇宙的時間一致。

但相對論否定了這一點。

-----廣告,請繼續往下閱讀-----
圖/《物理角色圖鑑》

光速恆定原理指出,光的速度是固定不變的。這種狀況下,空間中不同地點發生的兩件事,對某個觀測者來說是同時發生,但對另一參考系的觀測者而言則非同時發生。也就是說,時間的前進速度並非在任何地方都相同。因此,時間和空間不能視為各自獨立的兩回事,應該一體化,視為四維空間(時空,Spacetime)。

不過,這是指物體移動速度接近光速時的情況。日常生活中,使用過去的時間觀不會有任何問題。

黑洞

黑洞(Black hole)是一種天體,因為密度極高,重力極強, 不只物質,連光都會被吸進去,無法逃逸。天體是宇宙中所有物體的總稱,具體來說,指太陽、恆星、行星、星團、星雲等。從相對論來看,黑洞周圍空間是扭曲的。照以下方式想像應該會比較容易理解:

把重物放在一大塊展開的薄橡皮布上,放置處就會凹下去,而這塊凹陷會影響到周圍。同樣的,黑洞所在之處會發生猛烈的空間扭曲,經過附近的天體會被極強的重力吸引,落入其中,連光也難逃魔掌。

-----廣告,請繼續往下閱讀-----

銀河系有許多黑洞,但具體數字不詳。2019 年,一個跨國研究計畫團隊首次拍攝到黑洞的「影子」,掀起一陣討論熱潮。

——本文摘自《物理角色圖鑑:用35個萌角色掌握最重要的物理觀念,秒懂生活中的科普知識》,2024 年 9 月,漫遊者文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。