0

0
1

文字

分享

0
0
1

深度攝影機與即時3D建模技術

創新科技專案 X 解密科技寶藏_96
・2014/01/16 ・1635字 ・閱讀時間約 3 分鐘 ・SR值 568 ・九年級

-----廣告,請繼續往下閱讀-----

報導/江書賢

在《關鍵報告》與《鋼鐵人》等科幻電影中,經常出現主角用手勢凌空操縱電腦資訊的場面,想必是許多人心目中對於未來科技的經典想像。不遠的未來,這種科幻技術就會實現了!運用「深度攝影機」設備,加上後端軟體演算法的開發,工研院目前正在著手研發手勢控制、即時3D建模等等技術,一步步創造出愈來愈加直覺化的人機互動介面。

「深度攝影機」(Depth Camera)和一般攝影機不同的是:目前一般的攝影機是將真實世界的三維空間影像儲存成二維XY軸的平面畫面,但是深度攝影機可以測量出每一個影像點和攝影機之間的Z軸距離,因此儲存的是三維的空間資訊。藉由深度攝影機的兩個鏡頭所擷取的影像,用演算法比較兩者的差異後就能得到影像點深度的Z軸資訊(有一些類型的深度攝影機還會在鏡頭處以紅外線等不可見光源,發射光線到拍攝目標,藉由反射回來的資訊計算各反射點與攝影機之間的距離)。

藉由深度攝影機所感測到的三維影像資訊,配合工研院研發團隊所開發的手部辨識演算法,目前已經可以讓使用者在不需要配戴任何感測元件的條件下,運用手部動作就可以進行電腦螢幕畫面中物件的抓取、移動、翻轉、縮放等操作。工研院將持續深入研發這一項技術,使辨識能力更加精細,具體的實用目標是應用在市場逐漸成長的智慧電視Smart TV上,使用者只要動一動手指,不需要遙控器,就可以進行各種複雜的操作。這一項技術也可以應用在互動大型電子看板、簡報會議系統等方面。

-----廣告,請繼續往下閱讀-----

工研院南分院微系統中心視覺互動技術部的陳柏戎經理表示,研究團隊開發出一項創新的深度攝影機應用方式:即時性3D建模。目前要產生3D影像模型有以下幾種不同的方式:

  1. 由3D動畫師做人工的電腦繪圖。
  2. 動作擷取系統(motion capture)
  3.  3D掃描器。

每一種方法都有各自的限制:

  1. 由動畫師做人工繪圖無法達到快速、即時的需求。
  2. 動作擷取系統,即目前許多結合實景、演員和動畫的3D電影所使用的技術,在演員身上貼上動作的感測器以擷取身體各部位的數據,這一項技術會受到器材架設、場地等等因素的限制。
  3. 3D掃描器,通常能掃描的尺寸範圍有一定的限制。陳柏戎經理表示,在研發深度攝影機的應用時,想到了可以運用深度攝影機所拍攝的三維的空間資訊來做即時性的3D建模。也就是,使用者在深度攝影機前做身體的動作,拍攝影像之後,即時由後端的軟體演算法進行辨識,並且轉化成3D的動畫模型骨架。

  這一項技術的重點在於從深度攝影機所拍攝的影像數據中進行人體動作的辨識,並且必須以足夠快的效率進行即時的運算處理,轉化成模型。研發團隊在演算法的設計上,引入牆壁、天花板等等做為參考空間平面,來更加精準的計算拍攝到的影像中運動的主體,如人、車等,在空間中的三維位置;並且特別著重於人的形狀,與手肘、膝等各部位的動作辨識的強化,肢體骨架的分析等等,來提高建模的效率。目前已經能夠達到每秒做出30張以上的圖,高於動畫所需的每秒24張的最低要求。能夠達成動畫的即時運算要求,便可能實現讓攝影機前的被拍攝者和電腦中轉換出來的3D動畫影像進行即時互動。

用深度攝影機來做3D建模,雖然目前在精細度上還比不上動作擷取系統和3D掃描器,但是具有設備輕便,而且相較之下較便宜的優點。陳柏戎經理表示,研發團隊將會持續改進系統的精細度,希望在未來這一項技術能夠取代動作擷取系統;並且在另一方面,打造出平價、用途廣的3D掃描技術,可以用來滿足未來大量成長的3D列印市場所渴望的3D模型設計圖的需求。而使用者與建模出來的3D物件進行即時互動的功能,更是未來的主要研發重點。

-----廣告,請繼續往下閱讀-----

工研院所開發,利用深度攝影機進行體感與手勢辨識的技術,規格可參考:

  1.  工研院網站 — 最新消息
  2. 2012/07/06 活動報導:國產體感辨識深度攝影機只要1/2成本,搶smart TV市場
  3. 參考網址:工業技術研究院
  4. 工研院電子報第10004期

技術專頁:錄影即建3D模

更多創新技術歡迎瀏覽解密國家寶藏

文章難易度
創新科技專案 X 解密科技寶藏_96
81 篇文章 ・ 3 位粉絲
由 19 個國家級產業科技研發機構,聯手發表「創新科技專案」超過 80 項研發成果。手法結合狂想與探索,包括高度感官互動的主題式「奇想樂園」區,以及分享科技新知與願景的「解密寶藏」區。驚奇、專業與創新,激發您對未來的想像與憧憬!

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
電報的發明者──惠斯登誕辰|科學史上的今天:2/6
張瑞棋_96
・2015/02/06 ・864字 ・閱讀時間約 1 分鐘 ・SR值 532 ・七年級

-----廣告,請繼續往下閱讀-----

十九世紀初,倫敦一家樂器行走出來一位十幾歲的學徒,他握著剛領到的工資,興奮地又來到附近的舊書攤買書。這一次他的目光被一本描述伏打 (Alessandro Volta) 所作電學實驗的書給吸引住,但他身上的錢不夠,而且這是本法文書,他還得再買本辭典才能看得懂。他還是下定決心將手中的錢給老闆當訂金,並在之後攢夠錢時將書與辭典買回家。

查爾斯.惠斯登。圖/wikimedia

研讀之後,他找了哥哥一起打造書中所述的伏打電池,但只剩零錢不夠買所需的銅片。他靈光一閃,根本不用買,就拿手上的銅板便士 (penny) 取代就行啦!這就是惠斯登,從小就努力追求新知,並展露發明的天份。

他的發明橫跨不同領域。除了在自己的本行上發明六角形手風琴,他也是全世界最先發明 3D 圖片顯示裝置的人──他讓左右兩眼同時各自觀看 45 度角的反射鏡,而產生立體效果。他發現不同的金屬放電時產生的火花,透過稜鏡會呈現各自特有的光譜,為光譜學開啟了先河。他還發明一種矩陣加密法 (Playfair cipher),而廣被軍隊採用,直到第二次世界大戰初期仍被部分英軍使用。

-----廣告,請繼續往下閱讀-----

不過他奉獻最多的還是在電磁學方面。他將電線從中切開,接上萊頓瓶,再用快速旋轉的鏡子測量跳過電線缺口的火花延遲的時間,而估算出電流的速度。雖然他得出的數值比真正的電流速度還快了 50%,但他所發明的旋轉鏡卻在後來物理學家測量光速時派上用場。他和威廉・庫克 (William F. Cooke) 於 1837 年共同發明電報,不但成為最早的發明者,並且在兩年後沿著鐵路建造了世界上第一條商用電報線路。他改良別人的設計而發明的「惠斯登電橋」(Wheatstone bridge) 至今仍被廣泛用來測量電阻。他也是最先在發電機中用電磁鐵取代永久磁鐵,而成為能產生大電流的工業用發電機的發明人之一。

惠斯登靠著自學,從一個樂器行的學徒變成一位多產的發明家,還成為英國皇家學會的一員,可說是事在人為的最佳例證。

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

 

 

張瑞棋_96
423 篇文章 ・ 998 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
以「虛」補「實」,躍然紙外 — 工研院研發無圖標AR(擴增實境)自主技術
創新科技專案 X 解密科技寶藏_96
・2014/01/16 ・1906字 ・閱讀時間約 3 分鐘 ・SR值 509 ・六年級

-----廣告,請繼續往下閱讀-----

報導/江書賢

在生活中各種時刻,拿起智慧型手機把所見的人事景物拍攝下來,或者透過網路攝影機和朋友視訊通話,對於許多人來說已經是生活不可或缺的部分。在不知不覺間,我們常常是透過屏幕來觀察實體世界;另一方面,我們更是經常透過屏幕來瀏覽網路等資訊世界裡的訊息。既然兩者都常常透過同樣一種媒介和我們接觸,資訊和實體兩個世界愈來愈加緊密的結合,便是一個不讓人意外的趨勢。例如我們藉由掃描印在實體物品上的QR code,來讀取連結的資訊,或者是用手機拍了照片以後,使用Line等軟體把相片加上可愛的熊大與兔兔貼圖,像這些把來自資訊世界裡的文字或者影像,附加在來自真實世界的物件影像上的需求,將會更加普遍的成長。

擴增實境(Augmented Reality,AR)是將電腦、網路等資訊世界中的虛擬影像(尤其是3D影像),和實體世界中的物品互相結合,並且實現使用者與虛擬影像物件之間互動的技術。想像我們手拿一張圖片,在手機鏡頭或Web cam前面輕輕一晃,屏幕中所顯示的影像,除了出我們手拿著實體圖片以外,還憑空長出一些3D的虛擬物件,比如說飛碟或機器人,會追著我們手拿的圖片跑,甚至我們可能可以和這些虛擬3D影像進行互動,是不是很有趣呢?又或許是拿著某個商品的包裝盒,屏幕中的包裝盒上就會浮現出盒內商品的3D影像,比起印刷在平面上的包裝照片來說,能更增加消費者和包裝商品的接觸感。擴增實境的技術,想必在未來的物聯網中將會是一項商品銷售競爭上的利器。

既然要達成虛擬物件和真實物件兩者之間的連結,就必須讓電腦具備能從攝影機所拍攝到的影像中辨識出實體物件的能力。目前比較普遍的是利用QR code標示在實體物件上,但是如果要更普遍的廣泛應用在各種物品上,大家應該不會喜歡見到隨處可見的各種物品都印上死板的黑白方框圖像吧?如果電腦能夠直接辨認出物件上本身就具有的紋理特徵,就可以讓虛實物件之間的整合更加自然而不留痕跡,這就是無圖標AR技術所要達成的目標。

-----廣告,請繼續往下閱讀-----

工研院南分院微系統中心視覺互動技術部的陳柏戎經理表示,先前無圖框AR的技術已在外國發展一段時間,技術由外國公司掌握,若是國內的廠商想要將無圖框AR的技術應用在商品上,必須支付很高昂的授權費用,所以目前國內很少廠商能利用這一種技術。工研院為了提供國內廠商的底層技術支援,因此著手進行無圖框AR的自主技術開發。

研發團隊目前的軟體技術開發成果,除了能達成不需要有特定邊框圖案的物件紋理特徵辨識與追蹤以外,更可以容許辨識目標物有超過30度的旋轉,並且容許辨識目標30%的遮蔽,因此電腦能夠更容易的成功辨識物件,不會因為在實用情境下,物品沒有正對著鏡頭,或著因為手拿著物件時不小心遮蔽到一部分的圖樣,就無法成功辨識物品。

相較於QR code 使用方形邊框與黑白圖樣等預先規定的特定圖樣模式來作標示,無圖框AR的技術目標是要能辨識更加自由多樣的圖案或紋理特徵,所以圖樣辨識的演算法必然會比QR code的辨識要複雜上很多,辨識的運算速度因此成為技術開發上的一大挑戰。研發團隊在開發演算法時,必須設計目標物件紋理的不同特徵部位的定義與擷取方式、權重分配,並且考慮辨識目標在各種不同的情境,如光線、旋轉角度、目標物和鏡頭間的距離時,能夠自動選用一組適合的特徵定義方式來進行辨識,才能使執行速度夠快,以符合即時性的要求。

除了目標物件特徵辨識的演算法以外,研發團隊進行的另一項技術開發重點是實體物件的辨識系統與虛擬物件的3D繪圖引擎的整合。目前市面上的3D繪圖引擎有許多不同的廠牌與版本,若國內的產品開發廠商想請國外公司提供無圖標AR技術的服務,經常會碰上兩家公司所使用的軟體不一致的情況,國外的技術廠商不一定會願意為小型的客戶處理軟體的相容性問題,因此會造成技術運用上的障礙。工研院作為促進本國創新科技的研發與技術支援單位,進行自主技術的開發,可以為國內的業者提供無圖標AR系統與其他軟體相容性問題的解決服務,作為國內產業底層技術的後盾,並且促成國內相關廠商的技術合作與整合。工研院所研發的系統目前是在PC平台上運作,現在正把開發目標朝向跨平台的技術延伸,如智慧型手機等行動裝置與嵌入式系統上。

-----廣告,請繼續往下閱讀-----

擴增實境(AR)技術的概念已經被提出了十幾到二十年的時間,但是過去因為取像與顯示設備的體積、重量、成本等等硬體的限制,所以仍未充分發展,但是隨著近年來這些硬體設備的快速發展,甚至如Google Glass這些隨身的穿戴式系統也開始崛起,擴增實境的技術未來將有很大的應用空間與成長機會。或許在不久後的將來,人們就可以戴著擴增實境眼鏡上街,像許多科幻電影中機器人的視野一般,眼中所見許多物品旁邊都附帶著凌空的立體虛擬圖像或者文字資訊。

技術專頁:無圖標AR技術 

更多創新技術歡迎瀏覽解密國家寶藏

創新科技專案 X 解密科技寶藏_96
81 篇文章 ・ 3 位粉絲
由 19 個國家級產業科技研發機構,聯手發表「創新科技專案」超過 80 項研發成果。手法結合狂想與探索,包括高度感官互動的主題式「奇想樂園」區,以及分享科技新知與願景的「解密寶藏」區。驚奇、專業與創新,激發您對未來的想像與憧憬!