0

1
0

文字

分享

0
1
0

夏普誕辰|科學史上的今天:12/25

張瑞棋_96
・2015/12/25 ・970字 ・閱讀時間約 2 分鐘 ・SR值 494 ・六年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

如果你來到十九世紀初的巴黎郊外,很有可能看到有如宮崎駿電影中機械時代的奇景:原野上一幢孤立的建築物上豎起高高的柱子,頂端一根4.5米長的橫樑,橫樑兩端各有一支2米長的懸臂。突然兩支懸臂動了起來,各自慢慢轉到特定角度後才停下來。隨後十公里外一座類似的高塔立即模仿它的動作,接著更遠的一座也如法泡製,如此一路下去。像是站崗的機械巨人平舉手臂,用擺動小臂來傳遞訊息。

夏普所發明的「電報」-傳訊塔。圖/wikipedia

沒錯,這正是法國發明家夏普發明的傳訊塔,在電報還沒發明之前,就能迅速將訊息傳送到遠方,是史上第一個實現遠距傳訊的通訊系統。事實上,電報 (telegraph) 這個字就是他此時所創,代表遠距 (tele) 書寫 (graph) 之意。

夏普。圖/wikimedia

雖然自古即有狼煙,但狼煙只能傳達幾個事先約定好的暗號,效用相當有限。傳訊塔的懸臂可以像時鐘指針那樣旋轉,夏普平均劃分成八種角度,各相隔45度。因其中一個角度會被橫樑遮住,所以每個懸臂有七種角度,再加上橫樑本身可以左上右下或右上左下,所以一共有98種不同組合(7 x 7 x 2)。你可能會覺得奇怪:字母加上數字也不沒這麼多個啊?這是因為當時傳訊塔只有軍事用途,總不能讓每個人都能輕易看出軍事情報的內容吧!因此夏普賦予它們不同代碼,再對照代碼表查閱所代表的意義。

1791年3月2日,夏普兄弟在政府官員面前成功用傳訊塔傳遞了一則訊息。此時被法國大革命趕下台的皇室得到鄰國出兵支持,國會為了打贏戰爭,指派夏普趕緊建造。於是夏普自1792年夏天開始建造,先從羅浮宮到里爾 (Lille),二百公里的距離布署了15座塔。雖然第二年法軍即打敗普奧聯軍(當然是由傳訊塔率先傳回勝利的消息),政府仍繼續擴建通訊網路,最後建了556個站,總長度達四千八百公里。歐洲各國也紛紛仿效。

不過夏普沒能看到這樣的榮景,他在1805年就投井自殺,據說是因為被指抄襲軍隊原來就有的旗語而想不開。他發明的傳訊塔也沒存活太久,到了一八四○年代電報興起後,就完全被取代而荒廢了。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 633 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

1

2
0

文字

分享

1
2
0
金魚的記憶才不只 7 秒!記憶力怎麼回事?好想要超大記憶容量
鳥苷三磷酸 (PanSci Promo)_96
・2022/12/01 ・2720字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文由 美光科技 委託,泛科學企劃執行。

你是不是也有過這樣的經驗?本來想上樓到房間拿個東西,進到房間之後卻忘了上樓的原因,還完全想不起來;到超巿想著要買三四樣東西回家,最後只記得其中兩樣,結果還把重要的一樣給漏了;手機 Line 群組裡發的訊息,看過一轉身回頭做事轉眼就忘了。

發生這種情況,是不是覺得很懊惱:明明才想好要幹嘛,才不過幾秒鐘的時間就全部忘記了?吼呦!我根本是金魚腦袋嘛!記憶力到底是怎麼回事啊?要是能擁有更好的記憶力就好了!

明明才想好要幹嘛,一轉眼卻又都忘記了。 圖/GIPHY

金魚的記憶才不只 7 秒!

忘東忘西,我是金魚腦?!無辜地的金魚躺著也中槍!被網路流傳的「魚只有 7 秒記憶」的說法牽累,老是被拖下水,被貼上「記憶力不好、健忘」的標籤,金魚恐怕要大大地舉「鰭」抗議了!魚的記憶只有 7 秒嗎?

根據研究顯示,魚類的記憶可以保持一到三個月,某些洄游的魚類都還記得小時候住過的地方的氣味,甚至記憶力可以維持到好幾年,相當於他們的一輩子。

還有科學家發現斑馬魚在經過訓練之後,可以很快學會如何走迷宮,根據聲音信號尋找食物。但是當牠們壓力過大時會記不住東西,注意力分散也會降低學習效率,而且記憶力也會隨著衰老而逐漸衰退。如此看來,斑馬魚的記憶特點是不是跟人類有相似之處。

記憶力到底是怎麼回事?

為什麼魚會有記憶?為什麼人會有記憶?記憶力跟腦袋好不好、聰不聰明有關係嗎?這個就要探究記憶歷程的形成源頭了。

依照訊息處理的過程,外界的訊息經由我們的感覺受器(個體感官)接收到此訊息刺激形成神經電位後,被大腦轉譯成可以被前額葉解讀的資訊,最終會在我們的前額葉進行處理,如果前額處理後認為是有意義的內容就有可能被記住。

在問記憶好不好之前,先了解記憶形成的過程。圖/GIPHY

根據英國神經心理學家巴德利 Alan Baddeley 提出的工作記憶模式,前額葉處理資訊的能力稱為「短期工作記憶」,而處理完有意義、能被記住的內容則是「長期記憶」。

你可能會好奇「那記憶能被延長嗎」?只要透過反覆背誦、重覆操作等練習,我們就有機會將短期記憶轉化為長期記憶了。

要是能有超大記憶容量就好了!

比如當我們在接聽客戶電話時,對方報出電話號碼、交辦待辦事項,從接收訊息、形成短暫記憶到資訊篩選方便後續處理,整個大腦記憶組織海馬迴區的運作,如果用電腦儲存區來類比,「短期記憶」就像隨機存取記憶體 RAM,能有效且短暫的儲存資訊,而「長期記憶」就是硬碟等儲存裝置。

從上一段記憶的形成過程,可以得出記憶與認知、注意力有關,甚至可以透過刻意練習、習慣養成和一些利用大腦特性的記憶法來輔助學習,並強化和延長記憶力。

雖然人的記憶可以被延長、認知可以被提高,但當日常生活和工作上,需要被運算處理以及被記憶理解的事物越來越多、越來越複雜,並且需要被快速、大量地提取使用時,那就不只是記憶力的問題,而是與資訊取用速度、條理梳理、記憶容量有關了!

日常生活中需要處理的事務越來越多,那就不只是記憶力的問題,而是有關記憶力容量的問題了……。圖/GIPHY

再加上短期記憶會隨著年齡增加明顯衰減,這時我們更需要借助一些外部「儲存裝置」來幫我們記住、保存更多更複雜的資訊!

美光推出高規格新一代快閃記憶體,滿足以數據為中心的工作負載

4K 影片、高清晰品質照片、大量數據、程式代碼、工作報告……在這個數據量大爆炸的時代,誰能解決消費者最大的儲存困擾,並滿足最快的資料存取速度,就能佔有這塊前景看好的市場!

全球第四大半導體公司—美光科技又領先群雄一步!除了推出 232 層 3D NAND 外,業界先進的 1α DRAM 製程節點可是正港 MIT,在台灣一條龍進行研發、製造、封裝。日前更宣布推出業界最先進的 1β DRAM,並預計明年於台灣量產喔! 

美光不久前宣布量產具備業界多層數、高儲存密度、高性能且小尺寸的 232 層 3D NAND Flash,能提供從終端使用者到雲端間大部分數據密集型應用最佳支援。 

美光技術與產品執行副總裁 Scott DeBoer 表示,美光 232 層 3D NAND Flash 快閃記憶體為儲存裝置創新的分水嶺,涵蓋諸多層面創新,像是使用最新六平面技術,讓高達 232 層的 3D NAND 就像立體停車場,能多層垂直堆疊記憶體顆粒,解決 2D NAND 快閃記憶體帶來的限制;如同一個收納達人,能在最小的空間裡,收納最多的東西。

藉由提高密度,縮小封裝尺寸,美光 232 層 3D NAND 只要 1.1 x 1.3 的大小,就能把資料盡收其中。此外,美光 232 層 NAND 存取速度達業界最快的 2.4GB/s,搭配每個平面數條獨立字元線,好比六層樓高的高速公路又擁有多條獨立運行的車道,能緩解雍塞,減少讀寫壽命間的衝突,提高系統服務品質。

結語

等真正能在大腦植入像伊隆‧馬斯克提出的「Neuralink」腦機介面晶片,讓大腦與虛擬世界溝通,屆時世界對資訊讀取、儲存方式可能又會有所不同了。

但在這之前,我們可以更靈活地的運用現有的電腦設備,搭配高密度、高性能、小尺寸的美光 232 層 NAND 來協助、應付日常生活上多功需求和高效能作業。

快搜尋美光官方網站,了解業界最先進的技術,並追蹤美光Facebook粉絲專頁獲取最新消息吧!

參考資料

  1. https://pansci.asia/archives/101764
  2. 短期記憶與機制
  3. 感覺記憶、短期記憶、長期記憶  
  4. 注意力不集中?「利他能」真能提神變聰明嗎?

文章難易度
所有討論 1

0

0
0

文字

分享

0
0
0
第一條海底電纜|科學史上的今天:11/13
張瑞棋_96
・2015/11/13 ・860字 ・閱讀時間約 1 分鐘 ・SR值 534 ・七年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

1839年,惠斯登(Charles Wheatstone)和庫克(William F. Cooke)在英國建造了世界上第一條商用電報線路;約莫同時,美國的摩斯(Samuel Morse)也和維爾(Alfred Vail)發表其電報系統。自此以後,歐洲與美國各地紛紛沿著現成的鐵路,在城市與城市間架起線路。陸上的電報網迅速成形,但海洋卻是一大阻礙。

北大西洋海底電纜計劃圖。圖片來源:distantwriting

約過了十年,「盎格魯-法國電報公司」(Anglo-French Telegraph Company)總算在1850年8月拉了一條電線橫越英吉利海峽。不過這不算是第一條海底電纜,因為他們想得太天真了,竟然只用一般的漆包線,完全沒有外殼保護,因此沒幾天就損壞了。1851年11月13日,世界第一條海底電纜才終於鋪設完成,穿越英吉利海峽將英國與法國連接起來。兩年後更多海纜從英國拉往愛爾蘭、比利時與荷蘭。

橫越大西洋的洲際海底電纜則困難許多。1858年的第一條海纜也是不到一個月就毀損,直到1866年才克服技術問題,成功鋪設連接倫敦與紐約的電纜。至於台灣的第一條海底電纜,是劉銘傳以「孤懸海外,往來文報,屢阻風濤」為由,奏請清廷鋪設獲准,而於1887年鋪設了淡水至福州的海底電纜,這也成了中國第一條海底電纜。

電報內容力求簡短,因此不過是兩條銅線的電纜已足以應付,但要拿來講電話卻不適合,因為一人佔線,其他人就不能用了。第一條電話專用的洲際海底電纜直到1956年才完工,連接蘇格蘭與加拿大,可同時容納36通電話。自1980年代實用的光纖發明以後,海底光纜逐漸取代海底電纜,提供更大的國際頻寬,也才有如今網際網路的普及。

海底電纜從最初的發送電報之用,只能傳送文字;到讓地球兩端的人可以講國際電話;再進化到現在,各種型態的資訊內容經由海底光纜串起世界各個角落,每個階段都發揮了大幅縮短世界距離的功能。如今海底光纜已經是全球網路不可或缺的重要骨幹,默默的隱藏在大海底下,繼續盡責的撐起這個網路時代。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

張瑞棋_96
423 篇文章 ・ 633 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
夏普誕辰|科學史上的今天:12/25
張瑞棋_96
・2015/12/25 ・970字 ・閱讀時間約 2 分鐘 ・SR值 494 ・六年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

如果你來到十九世紀初的巴黎郊外,很有可能看到有如宮崎駿電影中機械時代的奇景:原野上一幢孤立的建築物上豎起高高的柱子,頂端一根4.5米長的橫樑,橫樑兩端各有一支2米長的懸臂。突然兩支懸臂動了起來,各自慢慢轉到特定角度後才停下來。隨後十公里外一座類似的高塔立即模仿它的動作,接著更遠的一座也如法泡製,如此一路下去。像是站崗的機械巨人平舉手臂,用擺動小臂來傳遞訊息。

夏普所發明的「電報」-傳訊塔。圖/wikipedia

沒錯,這正是法國發明家夏普發明的傳訊塔,在電報還沒發明之前,就能迅速將訊息傳送到遠方,是史上第一個實現遠距傳訊的通訊系統。事實上,電報 (telegraph) 這個字就是他此時所創,代表遠距 (tele) 書寫 (graph) 之意。

夏普。圖/wikimedia

雖然自古即有狼煙,但狼煙只能傳達幾個事先約定好的暗號,效用相當有限。傳訊塔的懸臂可以像時鐘指針那樣旋轉,夏普平均劃分成八種角度,各相隔45度。因其中一個角度會被橫樑遮住,所以每個懸臂有七種角度,再加上橫樑本身可以左上右下或右上左下,所以一共有98種不同組合(7 x 7 x 2)。你可能會覺得奇怪:字母加上數字也不沒這麼多個啊?這是因為當時傳訊塔只有軍事用途,總不能讓每個人都能輕易看出軍事情報的內容吧!因此夏普賦予它們不同代碼,再對照代碼表查閱所代表的意義。

1791年3月2日,夏普兄弟在政府官員面前成功用傳訊塔傳遞了一則訊息。此時被法國大革命趕下台的皇室得到鄰國出兵支持,國會為了打贏戰爭,指派夏普趕緊建造。於是夏普自1792年夏天開始建造,先從羅浮宮到里爾 (Lille),二百公里的距離布署了15座塔。雖然第二年法軍即打敗普奧聯軍(當然是由傳訊塔率先傳回勝利的消息),政府仍繼續擴建通訊網路,最後建了556個站,總長度達四千八百公里。歐洲各國也紛紛仿效。

不過夏普沒能看到這樣的榮景,他在1805年就投井自殺,據說是因為被指抄襲軍隊原來就有的旗語而想不開。他發明的傳訊塔也沒存活太久,到了一八四○年代電報興起後,就完全被取代而荒廢了。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 633 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
0

文字

分享

0
0
0
史上首度測量電流速度 │ 科學史上的今天:06/19
張瑞棋_96
・2015/06/19 ・1058字 ・閱讀時間約 2 分鐘 ・SR值 539 ・八年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

十九世紀初,倫敦一家樂器行走出來一位十幾歲的學徒,他握著剛領到的工資,興奮地又來到附近的舊書攤買書。這一次他的目光被一本描述伏打(Alessandro Volta)所作電學實驗的書給吸引住,但他身上的錢不夠,而且這是本法文書,他還得再買本辭典才能看得懂。他還是下定決心將手中的錢給老闆當訂金,並在之後攢夠錢時將書與辭典買回家。

研讀之後,他找了哥哥一起打造書中所述的伏打電池,但只剩零錢不夠買所需的銅片。他靈光一閃,根本不用買,就拿手上的便士銅板取代就行啦!這就是惠斯登(Charles Wheatstone, 1802-1875),從小就努力追求新知,並展露發明的天份。

1834 年的今天,就在他受聘至倫敦國王學院講授實驗物理沒多久後,惠斯登發表論文,這是史上首度有人想出測量電流速度的方法,距離萊頓瓶發明已八十八年,伏打堆問世也已三十四年。這麼久的時間,沒有人知道電流的速度,因為它實在太快了!

惠斯登將八百公尺長的電線從中切開,一端接上萊頓瓶(奇怪為什麼不是用伏打堆?莫非惠斯登仍拮据到買不起銅片?),再用快速旋轉的鏡子觀測跳過電線缺口的火花相較於電線兩端的火花有多少延遲,而估算出電流的速度。雖然他得出的數值比真正的電流速度快了 50%,但在方法學上卻是正確無誤的。他所發明的旋轉鏡後來也成為物理學家測量光速所用的關鍵工具。

惠斯登繼續在電磁學上做出貢獻。1837 年,他和庫克(William F. Cooke)共同發明電報,不但成為最早的發明者之一,並且在兩年後沿著鐵路建造了世界上第一條商用電報線路。1843 年,他改良別人的設計而發明的「惠斯登電橋」(Wheatstone bridge)至今仍被廣泛用來測量電阻。他還是最先在發電機中用電磁鐵取代永久磁鐵,而成為能產生大電流的工業用發電機的發明人之一。

惠斯登的發明與發現橫跨不同領域。除了在自己的老本行上發明六角形手風琴、研究聲波,他還是全世界最先發明 3D 圖片顯示裝置的人──他讓左右兩眼同時各自觀看 45度角的反射鏡,而產生立體效果。他發現不同的金屬放電時產生的火花,透過稜鏡會呈現各自特有的光譜,為光譜學開啟了先河。他還發明一種矩陣加密法(Playfair cipher),廣被軍隊採用,直到第二次世界大戰初期仍被部分英軍使用。

憑藉著熱情與努力,惠斯登從一個樂器行的學徒成為英國皇家學會的一員,如願成為科學家與發明家,可說是事在人為的最佳例證。

 

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。