0

0
0

文字

分享

0
0
0

2013 年 Quirks & Quarks 科普答客問

李志昌
・2014/01/01 ・3756字 ・閱讀時間約 7 分鐘 ・SR值 512 ・六年級

聽加拿大CBC 廣播電台的 Quirks & Quarks 有段時間了,有時錯過廣播時間,還可以上網去下載播出過的mp3,透過網路提供全球聽眾的廣播服務,真是周到。

這個節目每年年終都會有一個特別企劃,聽眾透過email 或是電話留言提出問題,製作單位找到相關的專家學者來回答,科普迷的我當然不會錯過。在 2013年Quirks & Quarks 科普答客問特別節目中,聽到幾個有趣的答客問,在此跟大家分享。

cbc

Q1: 如果想催熟水果,把它們跟蘋果或蕃茄擺在一起,對嗎?

A1: 成熟的果子,變軟,變甜,發出果香,藉此吸引動物前來攝取,在享受完甜美的果實後,順便幫植物把種子散播出去。除了果肉質地之外,果皮顏色的變化也是常見成熟的特徵之一,香蕉皮由黃變褐的過程即是一例。這個成熟的過程中,乙烯(ethylene)扮演一種植物賀爾蒙的角色,當植物成長到適當的時機要轉為成熟時,體內的基因調控機制會啟動某些基因,使其表現後,在植物體內出現製造乙烯的功能,當乙烯製造出來以後,接著扮演觸發果實成熟機制的關鍵。如果想催熟水果,把它們跟會釋出乙烯的蘋果或蕃茄擺在一起,是正確的。但是因為市場供需或運輸時間的考量,有的蘋果在未成熟前就摘下,那時還未具備產生乙烯的能力,這種情況就需要人工催熟。把番茄或香蕉密封在袋子中,你會發現催熟的速度會加快,因為他們釋放出來的乙烯累積在袋子中繼續催熟的緣故。另外,和蘋果比較,香蕉釋放的乙烯速度較快,量也較大。

並不是所有的水果都可用乙烯來催熟,柑桔類的水果,綠色的果皮在乙烯的催化下變黃橙色,但是對內部果實的成熟作用不大。葡萄和草莓,一經採收之後,便停止繼續成熟,所以趁新鮮吃吧,不用再跟香蕉或蘋果擺一起催熟。

 

Q2: 為什麼太陽系中的氣體巨行星有環狀結構,但是岩質的小行星沒有?

A2: 太陽系的四顆氣體巨行星:木星、土星、天王星和海王星都有行星環,其中以土星環最為明亮,大家較為熟知,天王星行星環次之,較為稀薄,木星和海王星也有行星環,但是非常的稀薄。主要形成的成份可能是冰與岩石碎片。

談到土星環形成的原因,可回顧「洛希極限」(Roche limit)的理論,土星本身的質量產生的重力分布有一個臨界點,當另一個小星體進入這個範圍時,重力與兩星體間潮汐力的作用,會把小星體撕裂成碎片,這些碎片就是土星環的成分來源。有幾個理論,包括數百公里直徑的小星體,進入土星的洛希極限之內而被撕裂,還有,小星體間互相撞擊產生的碎片,都可能是形成行星環的來源。也許曾有材質含冰的小星體進入土星的洛希極限範圍內而被撕裂過,所以有很多細冰在土星環內,使它看起來很明亮。木星環和海王星環看起來非常的稀薄,推測是在這兩顆星球發生小星體撞擊,或是進入洛希極限內被撕裂的事件,遠少於發生在土星的緣故吧!

土星是一顆很大的氣體行星,其洛希極限的範圍很大,有機會捕捉到很多空間中的物質。相較下地球是岩質的小行星,洛希極限的範圍小,把小星體撕成碎片而形成行星環的機會就很小了。所以太陽系中只發現在氣體巨行星有環狀結構,但是岩質的小行星沒有。附帶一提,在太陽系以外的星系中,已觀察到有很多氣體巨行星也有行星環。

 

Q3:如果只有雌蚊會吸血,那麼雄蚊吃什麼維生?

A3: 沒錯,只有雌蚊會吸血,會叮咬你的蚊子是母的。雌蚊從吸來的血獲得需要的蛋白質,作為產卵所需的養分,但是雌蚊也會吸取植物的蜜汁,以此獲得的糖分,是重要的動力能量來源。雄蚊,其嘴部的構造與雌蚊不同,其結構沒有賦予它吸血的功能,所以雄蚊只能去找植物的蜜汁維生。另外,雌蚊具有偵測二氧化碳的感受器,用來找到目標吸血,但是雄蚊缺乏這種靈敏的感受器,所以我們人類對雄蚊而言,沒有吸引力。

雄蚊生命中的重責大任就是找到雌蚊完成交配,蚊子的品種很多,不同品種的生殖過程或有些許差異,一般而言,雌蚊會先交配把精子儲存起來,找機會吸血飽餐一頓,有了足夠的養分後,再使卵成熟,然後讓卵受精後產出。

 

Q4: 如果用化石內的 DNA 成功複製猛獁象,現今地球上有哪裡適合它們生活?

A4: 北半球在 20,000 年前,上一次冰河時期的期間,是一片稱之為「猛獁草原」(Mammoth steppe)的乾冷生態環境,分布從今日的英國一路延伸,跨過白令陸橋 (Bering land bridge),到加拿大的育空(Yukon)。今日加拿大北方的極地凍土區,溫度可比當時,但是寸草不生,與當時的猛獁草原大相逕庭。

在 12,000 年前左右,是上一次全球暖化,那時冰河消退,溫度上升的結果,草原逐漸被樹林取代,到10,000 前左右,僅剩一些南向坡與山腳地帶遺留零星的獨立袋狀區域,還保有適合猛獁象的生活環境。

估計猛獁象一天要消耗400磅的草,現在已經不容易找到既乾又冷,還有可供足夠草料的地方,在加拿大草原省分的北方,或許還可以找到,像育空西南方的Kluane 國家公園保留區就還蠻合適的

 

Q5: 為何早晨太陽出來了,可是有時氣溫卻還是繼續下降?

A5: 其實,這種情形並不是常態,根據氣象記錄,大約只有三分之一的日子,會出現日出後溫度繼續下降的情形。太陽光的能量,有不同的波長,大氣吸收掉部分短波長的部份,地表吸收長波長的部分,陽光照射後,環境上昇,那是必然的,但是日出時,角度低,照射效率不高,而地表經一晚輻射釋熱之後,需要一點時間回溫,地面的水份多一些時,回溫的速度也會慢一點,若有風的作用增強散熱作用,就算是太陽出來了,溫度還是可能繼續往下掉。

 

Q6: 蜜蜂是怎麼建出每格都是完美正六角形的蜂窩?

A6: 蜜蜂下腹部有四對腺體可以分泌蠟液,在與唾液混合後,做成小蠟球,築窩時,不是一蜂做一格,而是很多蜂合作完成。它們像搬運工一樣,把蠟球堆積起來築成一個個圓筒狀的結構,蜜蜂築成的窩,一開始不是六角形的。蜂蠟在40度左右有很大的可塑性,蜂群利用體溫加熱的效果,讓這些圓筒狀的蜂窩,在物理變化下,自然變成六角形的,很神奇吧!六角形,省材料又堅固的結構,是自然的力量。一公斤的蜂蠟,可以做出約50,000 個蜂格,開始時可育嬰,之後可轉作貯藏,多用途的!

 

Q7: 遮住一眼,睜開一眼,這種情形下,進入光亮的房間時,睜開那一眼的瞳孔會縮小,遮住的那一眼瞳孔會繼續維持放大狀態嗎?

A7: 不會。外界光線刺激,會使瞳孔縮小;當注視的物體由遠移近,瞳孔也會縮小;面臨情緒緊張狀態如「戰鬥或逃跑」反應 (Fight-or-flight response),關乎存亡的刺激警覺時刻,瞳孔會放大;藥物的作用也會改變瞳孔縮放的狀態。

光線刺激造成的瞳孔縮小反應,神經系統是以兩側同時控制的方式操作,所以即使一眼遮住了,但是另一眼接受的光線刺激,正常狀況下會引起兩眼瞳孔同時收縮。

 

Q8: 雙引擎的螺旋槳飛機,為什麼兩個螺旋槳轉動方向的設計,有的為同向,有的為逆向?

A8: 兩個螺旋槳轉動逆向的設計,從後方看,一般左引擎為順時針,右引擎為逆時針,從上方看,兩個引擎把上方的東西捲入中間,往下方推出。這種設計,兩組引擎方轉動向相反,旋轉時產生的力矩可以互相抵消,穩定性高。同向轉動的引擎,則兩個引擎轉動產生的力矩會加成,設計上需要用其他的方式來抗衡這項差異。既然這樣,為何不全部採用逆向旋轉的設計呢?左右引擎不同,螺旋槳也不同,是不能互換的,因此在維護上或備用零件上的花費,都要比同向旋轉的設計加倍,在經濟考量上,同向轉動的引擎設計較為划算

 

Q9: 太陽系中,太陽自轉的方向和其他行星的繞行方向一致,在其他的星系有沒有可能發現恆星自轉方向和行星繞行方向相反的?

A9: 有的,目前已發現約20個這種星體。新星形成過程中,星雲旋轉的方向,決定了恆星自轉與行星繞行軌道的方向,但是近年來卻發現「熱木星」(Hot Jupiter)這類的星體,其軌道運行方向與其母星自轉旋轉相反,其造成原因有多種說法,星體間的重力交互作用是較普遍的解釋。

 

Q10: 雪地上灑鹽,可以把冰雪融掉,做冰淇淋時也用鹽,卻是用來結冰,同樣是用鹽,既可融冰,又可結冰,用法上有何不同?

A10: 鹽使水的凝固點下降,所以鹽水結冰的溫度比純水要用低。鹽灑在冰雪上時,造成冰融解後形成鹽水,因為凝固點降低了,與鹽水接觸的冰,溫度不能讓鹽水凝結,反而是紛紛融解。用食鹽(氯化鈉)與冰混合,凝固點可降至-20度 C,用氯化鈣,則溫度可降至-40度 C。

冰淇淋製作時,鹽與冰混合,用來提供一個低溫的環境,製造冰淇淋時,是將裝了冰淇淋材料的容器,浸置於低溫的鹽水中,藉其低溫來製成冰淇淋,不是把鹽加入冰淇淋材料中。

 

想聽完整的的節目可上網站,從2000年到現在的幾百集節目都在上面,是我喜歡的科普廣播節目之一,可以知道很多科學新知,也是練習英語聽力的好教材。想試聽一下的話,參考資料中有這輯節目的mp3 檔的下載連節點,在上面按滑鼠右鍵,把連結檔案儲存起來,就可以隨時播放收聽。

 

原文發表於: 網路城邦部落格

 

參考資料:

延伸閱讀:

 

文章難易度
李志昌
6 篇文章 ・ 0 位粉絲
台灣大學博士後研究員,曾旅居加拿大於多倫多大學工作多年,喜好科普閱讀與寫作。

0

0
0

文字

分享

0
0
0
【成語科學】以管窺天:視野狹隘才看得清楚!「窺管」是怎麼幫助古人觀測星空的?
張之傑_96
・2023/09/29 ・1018字 ・閱讀時間約 2 分鐘

這個成語出自《莊子》秋水篇。戰國時,公孫龍自認學問、口才高人一等,可是聽到莊子的言論卻大惑不解。他的一位朋友說,是他眼界狹小,有如用管子看天,只能看到天空的一小部分,以為天空就這麼小。

後來「以管窺天」演變成一個成語,比喻見識淺薄狹窄。談到這裡,讓我們造兩個句吧。

沒讀幾本書,就說自己了解明史,猶如以管窺天,所知太有限了。

這篇討論新冠肺炎的論文,只是以管窺天,並沒看到問題的全貌。

成語「以管窺天」,常和「以蠡測海」並用。蠡,指用葫蘆做的瓢。用瓢測量海水,能測得完嗎?以蠡測海,也是比喻見識淺薄狹窄。

成語「以蠡測海」,純粹是個比喻,沒什麼科學意義。成語「以管窺天」則不然,原來用來窺天的「管」,是古人的天文觀測儀器啊!

古時沒有望遠鏡,只能用肉眼觀看星空。用肉眼觀測大範圍的天象尚能應付,觀測細微的天象就不敷需要了,所以古人想出一個辦法,用竹管的管孔來縮小觀測範圍,這種觀測天象的管子,特稱「窺管」。

窺管。圖/Wikimedia

窺管能「窺」出什麼呢?首先,能夠消除側光的影響,一些較暗的星,看起來就變亮了。小朋友可以做個實驗,用手握出個孔洞,湊近一隻眼睛,望向遠處目標,是不是看得更清楚了。

窺管除了可以增加亮度,還可以觀測星星的經度和緯度,這就得談談古代的天文觀測儀器渾儀。大約西元前 1 世紀,古人發明了渾儀。渾儀由 1 至 3 重的金屬環構成,外重是固定的,內重可以轉動,窺管嵌於其中。後來環數加多,構造變得複雜,但基本原理是一樣的。

自古以來,天文學家就假想「天」是個球體——天球,做為觀察星空的依據。假想中的天球,是以地球為中心、向外擴充的無限大球面。地球的南北極,向外擴充,就成為天球南北極;地球的赤道,向外擴充,就成為天球赤道。地球有經緯度,天球也有經緯度,稱為赤經、赤緯。

北京古觀象台的渾儀。圖/Wikimedia

根據《隋書.天文志》,當時渾儀上的窺管,長 8 尺,有直徑 1 寸的圓孔。觀測時,轉動內層的環,將窺管導向某一星星,經過微調,根據環上的刻度,就可以定出這顆星星在天球上的座標,也就是它的經緯度。

張之傑_96
98 篇文章 ・ 221 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。

0

6
0

文字

分享

0
6
0
造訪危險鄰居:歐西里斯的貝努採樣返回任務
EASY天文地科小站_96
・2023/09/23 ・3760字 ・閱讀時間約 7 分鐘

  • 謝承安/現就讀臺大物理系,因喜愛動畫《戀愛小行星》而喜好小行星
  • 林彥興/現就讀清大天文所,努力在陰溝中仰望繁星

2016 年 9 月 8 日,歐西里斯探測器(OSIRIS-REx)由擎天神五號火箭發射升空,追隨著前輩們 ── 隼鳥號隼鳥二號 ── 的腳步,前往近地小行星貝努(101955 Bennu),執行人類史上第三次的小行星取樣任務。

經過兩年多的飛行,歐西里斯號於 2018 年底成功抵達貝努,並在幾個月後成功採集樣本,預計在今年 9 月 24 號返回地球。透過採集小行星上的原始樣本,科學家將能夠推論 46 億年來太陽系的演變歷史,但除此之外,歐西里斯探測器也在環繞貝努的過程中進行了眾多觀測,也為小行星研究貢獻許多,現在就讓我們回顧歐西里斯號的浩瀚之旅!

歐西里斯基本介紹

歐西里斯想像圖。圖/NASA’s Goddard Space Flight Center Conceptual Image Lab

要了解歐西里斯號的觀測目標,我們只需要把他的英文全名攤開來看:

Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer

翻譯作太陽系起源、光譜解析、資源識別、安全保障、小行星風化層探索者。其縮寫歐西里斯,是埃及神話中的冥神。儘管你可能無法了解各個專有名詞,但在看過那麼長的名字後,應該也能知道歐西里斯探測器的任務可不僅是採集樣本而已。

歐西里斯號的目標是小行星 101955 號「貝努」。

這是一顆於 1999 年由林肯近地小行星研究小組(LINEAR)發現的近地小行星。之所以選擇貝努作為觀測目標,是因為貝努的軌道與地球十分接近,有撞擊地球的潛在風險,另一方面距離近,也可以讓探測器在較短的時間內抵達。

值得一提的是,「貝努」這個名字源自古埃及神話的神鳥,同時也是引領前往冥界的諸神之嚮導。同時,貝努小行星上的各式地形或是地點,也都是以不同神話中的鳥類來命名。

貝努的表面地圖,圖中的地名皆與鳥類神話有關。如 Strix 來自羅馬神話中的條紋鳥、Simurgh 則來自波斯神話中的西摩格鳥。圖/NASA/Goddard/University of Arizona

在發射後過了兩年,2018 年,歐西里斯號逐漸接近貝努,並以相機模組中的 8 吋望遠鏡(Polycam)不斷進行觀測,直至十二月成功抵達貝努。

而抵達後的第一項任務,就是詳細繪製全小行星的地圖,過去科學家曾經透過金石太陽系雷達來(GSSR)來探測貝努的模樣,但地面上的雷達雖然可以看到貝努的大致形狀,解析度卻仍不足以窺見小行星上詳細的地形起伏,也就無法事先決定採集樣本的地點但藉由探測器上攜帶的雷射測高儀(OSIRIS-REx Laser Altimeter, OLA),歐西里斯號得以透過發射雷射訊號與接收的時間差, 像是測量海底深度的聲納一樣,繪製全小行星的地形高度圖。另外其配載的高解析度相機(MapCam),也可以讓科學家一覽高解析度的貝努影像。

雷射測高儀測量過程示意圖。圖/NASA/Goddard/University of Arizona
NASA 哥達德太空中心以歐西里斯號製作的貝努表面導覽。影/Youtube

除了解地形以外,決定採樣地點時,另一項重要的考量是採樣地礦物或化學組成。正如同地球上各處的岩石化學組成不盡相同,不論是含水量、顆粒粗細程度以及有機物的有無,皆是採樣任務執行時需要考量的情況。於是,歐西里斯號使用了三種方法來探測小行星表面上的礦物。

第一種方法是透過風化層 X 射線成像光譜儀(Regolith X-Ray Imaging Spectrometer, REXIS)來觀測 X 射線光譜。讀者或許會想,X 射線多用來觀測高能天體的輻射,像是黑洞、超新星爆發等事件,並且小行星本身也不會發出 X 射線,為何要攜帶這樣的探測儀器?

事實上,當元素吸收到宇宙射線或太陽所發出的 X 射線時,內層的電子會吸收能量並游離,而外層的電子便會向下躍遷,補上原本內層電子的位置,更外層電子又再補上外層電子的位置。在這一連串的過程中,便會發出 X 射線。而由於每個元素的能階都是獨一無二的,藉由觀測X射線的光譜,我們便能了解小行星上各處的元素豐度。

這樣的分析方式被稱作 X 射線螢光分析(X-ray fluorescence, XRF),是一種非破壞性的元素鑑定方式,地質考察、考古甚至是博物館文物鑑定都常利用此方式進行探測。

REXIS 儀器。圖/REXIS Team / The planetary society

另外,歐西里斯號上還配戴可見光與紅外線分光儀(OVIRS),也能夠獲取小行星可見光與紅外線波段的光譜來辨別來辨別礦物或是有機物的種類。並且由於不同礦物的熱導率差異,歐西里斯還可以藉由熱輻射光譜儀(OSIRIS-REx Thermal Emission Spectrometer, OTES)掃描全小行星的熱輻射地圖來了解礦物與化學豐度。

熱輻射儀也可以更進一步用於研究小行星上的熱量傳輸問題。當小行星吸收太陽光後將以輻射的方式將能量釋放時,其光壓會給予小行星一個微小的作用力。在經年累月的作用下,便會對其軌道產生改變,此現象稱之為亞爾科夫斯基效應(Yarkovsky effect)。

由於亞爾科夫斯基效應的強弱會受到小行星的反照率、表面材質甚至是地形而影響,如果對小行星不夠了解,那預測小行星軌道的難度將大幅提升。因此歐西里斯號的近距離探測,對精準預測貝努的軌道非常重要。

樣本採集:歐西里斯與貝努的零距離接觸

在近兩年的搜集數據後,歐西里斯號便開始執行此次任務的最終目標:採集樣本。

一開始,科學家們有四個候選地點:夜鷺(Nightingale),此處位於年輕的隕石坑上,且具有最細顆粒的礦物;翠鳥(Kingfisher)為新的隕石坑並具有豐富的含水量;魚鷹(Osprey)具有較低反照率的岩石樣本;鷸(Sandpiper)位於兩個隕石坑之間,可能含有水合礦物。

在科學家掙扎的選擇後,最終決定在名為「夜鷺」的地點進行採樣。因為此處較年輕的地質特性,能夠讓我們採集到貝努更原始的樣本,以此探討貝努在太陽系闖蕩時所遺留的痕跡,再加上較細的礦物也能讓執行任務時能有較高的成功率。至於其他候選地點,只能說後會有期了。

NASA所選定的四個樣本採集地點之照片。圖/NASA/Goddard/University of Arizona

2020年10月20號,歐西里斯號伸出他的機器手臂,名為 Touch-And-Go Sample Acquisition Mechanism(TAGSAM),顧名思義便是碰一下小行星表面後便離開。其運作原理,是在碰觸到小行星表面時釋放加壓氮氣產生爆炸,再搜集飛散出來的碎屑樣本。

說起來雖然簡單,但降落在微小重力的且未知內部構造的小行星上其實非常困難,科學家們需要考量到所有可能影響的作用力,甚至是太陽光所造成的輻射壓都必須考慮進去。

現在,想像你是個科學家,坐在任務的控制室中,透過相機模組中的 SamCam,望著歐西里斯號逐漸靠近小行星,3,2,1⋯⋯,碰!(狀聲詞,事實上,太空中是沒有聲音的。)

Touch-And-Go任務的執行過程。圖/NASA/Goddard/University of Arizona

採集任務看似十分成功,歐西里斯號將 TAGSAM 的頂端放入樣品返回艙(Sample Return Capsule, SRC)中,SRC 也使用了眾多隔板將散落在太空中的碎屑放入其中,兩天後,歐西里斯號回傳了樣本採集艙的影像,確認歐西里斯號已搜集足夠的樣本,但此時卻發現了些意外,由於採集的樣本太大顆,艙門無法完全緊閉,導致有部分樣本散逸至太空中,還好這不影響任務的完成,算是有驚無險。

小行星的樣本從樣品返回艙中散逸。圖/NASA/Goddard/University of Arizona

2021 年 4 月 7 日,歐西里斯號展開他的最後一次飛越任務,此次他以超近距離(約 3.5 公里)觀測「夜鷺」在採集後的模樣,可以清楚看見採樣任務前後的區別,中心區域產生了一個深度超過45公分的凹痕! 周圍的岩石也因此錯位。

過去天文學家們透過眾多觀測數據推論,大多數的小行星比起堅硬的石頭,更像是散亂的碎石堆。後來科學家們也透過此次採樣任務確認貝努表面並非像是地殼般的堅硬固體,而比較像是流體般,才產生如此大的凹痕。

「夜鷺」在採樣任務前後的差異。圖/NASA/Goddard/University of Arizona

在做完惜別任務後,2021 年 5 月 10 號,歐西里斯號啟動了他的主引擎,開始返回地球的旅程。預計在今(2023)年 9 月 24 號,裝載著貝努樣本的樣本返回艙將與歐西里斯號脫離,並以秒速 12 公里的高速衝入地球大氣層,並著陸於猶他州的沙漠中,由研究人員回收後取出樣本進行更近一步的分析。

然而歐西里斯號的旅程仍尚未結束。

接下來它將在 2029 年對另一個有潛在撞擊地球風險的小行星 99942 阿波菲斯(APophis)進行觀測。就讓我們歡迎冥神與他所攜帶的樣本歸來,以及期待未來科學上的重大發現吧!

延伸閱讀

EASY天文地科小站_96
23 篇文章 ・ 1144 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

0

1
0

文字

分享

0
1
0
環境 DNA 猛獁象現蹤,化石消失幾千年後才真正滅團?
寒波_96
・2023/01/13 ・3575字 ・閱讀時間約 7 分鐘

一萬多年前冰河時期結束後,許多地方的生態系明顯改變,例如歐亞大陸和美洲的猛獁象都滅絕了,僅有少少倖存者,殘存於北冰洋的小島一直到 4000 年前。

上述認知來自對化石遺骸的判斷,可是最近由環境沉積物中取樣古代 DNA 分析,卻指出猛獁象等幾種生物,在亞洲和美洲大陸其實又延續了好幾千年。這些證據可靠嗎,猛獁象到底什麼時候滅絕?

距今 200 萬前的格陵蘭,生態想像圖。圖/Beth Zaikenjpg

古時候的環境 DNA,創下 200 萬年紀錄

DNA 原本位於生物的細胞之內,生態系中有很多生物,時時刻刻留下各自的 DNA,從土壤、水域等來源取樣分析所謂的「環境 DNA」(environmental DNA,可簡稱為 eDNA),能得知環境中包含哪些生物。

如果環境樣本能保存成千上萬年,那麼定序其中的 DNA 片段,再加上化石、花粉等不同線索,便有希望窺見古時候的生態系。

威勒斯勒夫(Eske Willerslev)率領的一項研究,藉由此法重現來自格陵蘭沉積層,距今 200 萬年之久的 DNA 片段,2022 年底發表時成為年代最古早的 DNA 紀錄,也得知當年存在格陵蘭的眾多植物與動物。[參考資料 5]

最出乎意料的莫過於乳齒象(mastodon),由於缺乏化石,古生物學家一直認為那時候的乳齒象,並未棲息於這麼北的地帶,此一發現充分展示出古代環境 DNA 的價值。然而 DNA 的探索範圍也明顯有侷限,例如該地區出土超過 200 個物種的昆蟲化石,DNA 卻只能偵測到 2 種。

猛獁象化石無存後幾千年,依然有留下 DNA

當時間尺度是百萬年時,實際是 200 萬 3300 年或是 199 萬 8700 年,也就是 200.33 或 199.87 萬,幾千年的誤差範圍無關緊要。但是當探討對象是最近一萬年,猛獁象的 DNA 究竟存在於 9000 或 6000 年前,意義就差別很大。

這兒的「猛獁象」都是指真猛獁象(woolly mammoth,學名 Mammuthus primigenius)。由另一位古代 DNA 名家波因納(Hendrik Poinar)和威勒斯勒夫各自率隊,同在 2021 年底發表的論文獲得類似結論:猛獁象化石消失的幾千年後,沉積物中仍然能見到 DNA,可見還有個體又存續幾千年。[參考資料 1, 2]

威勒斯勒夫主導論文的取材地點。以北極為中心,視角和台灣人習慣的地圖很不一樣。圖/參考資料 2

波因納率領的研究探討白令東部,也就是如今加拿大的育空地區,距今 4000 到 3 萬年前的沉積層;結論是原本認為早已消失的美洲馬、猛獁象,一直延續到 5700 年前。威勒斯勒夫戰隊取材的地理範圍廣得多,包括西伯利亞西北部、中部、東北部、北美洲、北大西洋,判斷猛獁象生存到 3900 年前。

更詳細看,威勒斯勒夫主導的論文指出,猛獁象在西伯利亞東北部最後現蹤於 7300 年前,西伯利亞中北部的泰梅爾半島(Taimyr Peninsula)為 3900 年前,此一年代和北冰洋的外島:弗蘭格爾島(Wrangel)之化石紀錄相去不遠。而北美洲則是 8600 年前,比波因納戰隊的 5700 年更早。

如果兩隊人馬的判斷都正確,意思是猛獁象(與某些大型動物)在北美洲延續到 5700 年前,在亞洲大陸與外島到 3900 年;比起當地出土最晚化石的時間,皆更晚數千年。

只有 DNA 不見化石,會不會是死掉好幾千年仍一直外流 DNA?

根據化石紀錄,冰河時期結束後,仍有少少生還的猛獁象在弗蘭格爾島一直延續到 4000 年前。由此想來,當大多數同類已經滅團時,某些地點還有孤立的小團體延續,並不意外。只是我們不見得能見到化石。

然而,威勒斯勒夫主導的論文受到挑戰。質疑者提出,猛獁象這類動物住在寒冷的環境,去世後遺體如果被冷凍保存,又持續緩慢解凍,在接下來的幾千年便有可能不斷釋出新鮮的 DNA,讓我們誤以為仍有活體。[參考資料 3]

舉個極端狀況。假如 2 萬年前死亡的猛獁象,去世後一直冷凍在冰層中,現在被我們取出解凍,也許其中仍保有不少生猛 DNA,可是實際上牠已經去世很久了。

上述質疑,應該是這類研究手法共通的潛在問題。發生在一百萬年前無關緊要,一萬年內卻會導致不小的誤判。

喔~~喔喔~~喔喔~~喔喔~爪爪

距今 1 萬多年前的育空,生態想像圖。圖/Julius Csotonyi

化石消失的時刻,往往比生物滅團更早

威勒斯勒夫戰隊則回應表示:論文結論沒有問題,沈積層中取得的古代 DNA 確實來自那時在世的動物。我覺得不論觀點是否正確,回應的思路都值得瞧瞧。[參考資料 4]

為什麼動物依然存在時,見不到當時的化石紀錄?主因是動物去世後,只有極低比例的個體會變成化石。一種動物在滅團以前,通常個體數目持續降低,少到一個程度後,還能留下化石的機率已逼近 0 。所以化石紀錄最後的時間點,早於動物實際消失的年代。

和化石相比,動物遺留 DNA 的機率遠高於化石。活生生的動物就會持續排放 DNA,死亡身體分解後又會釋出不少; DNA 未必會留在原本生活的地點,不過如今的偵測技術足夠敏銳,即使只有幾段也有機會抓到。

猛獁象,活的!

是否有可能,猛獁象去世幾千年仍持續釋出 DNA 片段?的確無法排除可能性。不過這項研究中有 4 個方向,支持沉積層之 DNA 源於族群規模大減,卻依然活跳跳的猛獁象。

不同時間,各地猛獁象的粒線體 DNA 型號。可以看出趨勢是,猛獁象分佈的範圍愈來愈窄,遺傳型號也愈來愈少。圖/參考資料 2

第一,如果環境中的 DNA 來自死亡多時的動物,那麼各地區應該都會見到類似現象。實際上只在少部分取樣地點偵測到。

第二,假如猛獁象遺骸緩慢分解,DNA 持續進入沉積層,同一地點的不同取樣應該都能見到。可是同一處地點,只有少數樣本能抓到猛獁象 DNA。

第三,不同沉積層取得的環境樣本,包含當時生態系中很多生物的 DNA。存在猛獁象 DNA 的樣本,也能見到適合猛獁象生態系的其他植物;表示猛獁象的命運,很可能與適合牠們生活的環境同進退。

第四,倘若較晚沉積層的猛獁象 DNA,直接源自較早去世的個體,遺傳多樣性應該不會變化。然而較晚出現的粒線體型號明顯變少,後來只剩下一款。

實際狀況沒人可以肯定。我覺得前三點,都涉及樣本保存的潛在問題,干擾因素較多。第四點大概是最有力的證據,支持環境沉積物中留下的 DNA 並非源於死象遺骸,而是活體猛獁象。

研究日新月異,腦袋也要趕上

科學研究日新月異,不少人見到論文寫什麼就信以為真,卻不了解做研究其實有很多限制,即使是結論「正確」的論文,也會處處碰到解釋的侷限。

持續搜集證據,反覆思考才能進步。腦袋要靈活運用,但是也不要胡亂腦補!

延伸閱讀

參考資料

  1. Murchie, T. J., Monteath, A. J., Mahony, M. E., Long, G. S., Cocker, S., Sadoway, T., … & Poinar, H. N. (2021). Collapse of the mammoth-steppe in central Yukon as revealed by ancient environmental DNA. Nature Communications, 12(1), 1-18.
  2. Wang, Y., Pedersen, M. W., Alsos, I. G., De Sanctis, B., Racimo, F., Prohaska, A., … & Willerslev, E. (2021). Late Quaternary dynamics of Arctic biota from ancient environmental genomics. Nature, 600(7887), 86-92.
  3. When did mammoths go extinct?
  4. Reply to: When did mammoths go extinct?
  5. Kjær, K. H., Winther Pedersen, M., De Sanctis, B., De Cahsan, B., Korneliussen, T. S., Michelsen, C. S., … & Willerslev, E. (2022). A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA. Nature, 612(7939), 283-291.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
191 篇文章 ・ 871 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。