0

0
0

文字

分享

0
0
0

2013 年 Quirks & Quarks 科普答客問

李志昌
・2014/01/01 ・3756字 ・閱讀時間約 7 分鐘 ・SR值 512 ・六年級

聽加拿大CBC 廣播電台的 Quirks & Quarks 有段時間了,有時錯過廣播時間,還可以上網去下載播出過的mp3,透過網路提供全球聽眾的廣播服務,真是周到。

這個節目每年年終都會有一個特別企劃,聽眾透過email 或是電話留言提出問題,製作單位找到相關的專家學者來回答,科普迷的我當然不會錯過。在 2013年Quirks & Quarks 科普答客問特別節目中,聽到幾個有趣的答客問,在此跟大家分享。

cbc

Q1: 如果想催熟水果,把它們跟蘋果或蕃茄擺在一起,對嗎?

A1: 成熟的果子,變軟,變甜,發出果香,藉此吸引動物前來攝取,在享受完甜美的果實後,順便幫植物把種子散播出去。除了果肉質地之外,果皮顏色的變化也是常見成熟的特徵之一,香蕉皮由黃變褐的過程即是一例。這個成熟的過程中,乙烯(ethylene)扮演一種植物賀爾蒙的角色,當植物成長到適當的時機要轉為成熟時,體內的基因調控機制會啟動某些基因,使其表現後,在植物體內出現製造乙烯的功能,當乙烯製造出來以後,接著扮演觸發果實成熟機制的關鍵。如果想催熟水果,把它們跟會釋出乙烯的蘋果或蕃茄擺在一起,是正確的。但是因為市場供需或運輸時間的考量,有的蘋果在未成熟前就摘下,那時還未具備產生乙烯的能力,這種情況就需要人工催熟。把番茄或香蕉密封在袋子中,你會發現催熟的速度會加快,因為他們釋放出來的乙烯累積在袋子中繼續催熟的緣故。另外,和蘋果比較,香蕉釋放的乙烯速度較快,量也較大。

並不是所有的水果都可用乙烯來催熟,柑桔類的水果,綠色的果皮在乙烯的催化下變黃橙色,但是對內部果實的成熟作用不大。葡萄和草莓,一經採收之後,便停止繼續成熟,所以趁新鮮吃吧,不用再跟香蕉或蘋果擺一起催熟。

 

Q2: 為什麼太陽系中的氣體巨行星有環狀結構,但是岩質的小行星沒有?

A2: 太陽系的四顆氣體巨行星:木星、土星、天王星和海王星都有行星環,其中以土星環最為明亮,大家較為熟知,天王星行星環次之,較為稀薄,木星和海王星也有行星環,但是非常的稀薄。主要形成的成份可能是冰與岩石碎片。

談到土星環形成的原因,可回顧「洛希極限」(Roche limit)的理論,土星本身的質量產生的重力分布有一個臨界點,當另一個小星體進入這個範圍時,重力與兩星體間潮汐力的作用,會把小星體撕裂成碎片,這些碎片就是土星環的成分來源。有幾個理論,包括數百公里直徑的小星體,進入土星的洛希極限之內而被撕裂,還有,小星體間互相撞擊產生的碎片,都可能是形成行星環的來源。也許曾有材質含冰的小星體進入土星的洛希極限範圍內而被撕裂過,所以有很多細冰在土星環內,使它看起來很明亮。木星環和海王星環看起來非常的稀薄,推測是在這兩顆星球發生小星體撞擊,或是進入洛希極限內被撕裂的事件,遠少於發生在土星的緣故吧!

土星是一顆很大的氣體行星,其洛希極限的範圍很大,有機會捕捉到很多空間中的物質。相較下地球是岩質的小行星,洛希極限的範圍小,把小星體撕成碎片而形成行星環的機會就很小了。所以太陽系中只發現在氣體巨行星有環狀結構,但是岩質的小行星沒有。附帶一提,在太陽系以外的星系中,已觀察到有很多氣體巨行星也有行星環。

 

Q3:如果只有雌蚊會吸血,那麼雄蚊吃什麼維生?

A3: 沒錯,只有雌蚊會吸血,會叮咬你的蚊子是母的。雌蚊從吸來的血獲得需要的蛋白質,作為產卵所需的養分,但是雌蚊也會吸取植物的蜜汁,以此獲得的糖分,是重要的動力能量來源。雄蚊,其嘴部的構造與雌蚊不同,其結構沒有賦予它吸血的功能,所以雄蚊只能去找植物的蜜汁維生。另外,雌蚊具有偵測二氧化碳的感受器,用來找到目標吸血,但是雄蚊缺乏這種靈敏的感受器,所以我們人類對雄蚊而言,沒有吸引力。

雄蚊生命中的重責大任就是找到雌蚊完成交配,蚊子的品種很多,不同品種的生殖過程或有些許差異,一般而言,雌蚊會先交配把精子儲存起來,找機會吸血飽餐一頓,有了足夠的養分後,再使卵成熟,然後讓卵受精後產出。

 

Q4: 如果用化石內的 DNA 成功複製猛獁象,現今地球上有哪裡適合它們生活?

A4: 北半球在 20,000 年前,上一次冰河時期的期間,是一片稱之為「猛獁草原」(Mammoth steppe)的乾冷生態環境,分布從今日的英國一路延伸,跨過白令陸橋 (Bering land bridge),到加拿大的育空(Yukon)。今日加拿大北方的極地凍土區,溫度可比當時,但是寸草不生,與當時的猛獁草原大相逕庭。

在 12,000 年前左右,是上一次全球暖化,那時冰河消退,溫度上升的結果,草原逐漸被樹林取代,到10,000 前左右,僅剩一些南向坡與山腳地帶遺留零星的獨立袋狀區域,還保有適合猛獁象的生活環境。

估計猛獁象一天要消耗400磅的草,現在已經不容易找到既乾又冷,還有可供足夠草料的地方,在加拿大草原省分的北方,或許還可以找到,像育空西南方的Kluane 國家公園保留區就還蠻合適的

 

Q5: 為何早晨太陽出來了,可是有時氣溫卻還是繼續下降?

A5: 其實,這種情形並不是常態,根據氣象記錄,大約只有三分之一的日子,會出現日出後溫度繼續下降的情形。太陽光的能量,有不同的波長,大氣吸收掉部分短波長的部份,地表吸收長波長的部分,陽光照射後,環境上昇,那是必然的,但是日出時,角度低,照射效率不高,而地表經一晚輻射釋熱之後,需要一點時間回溫,地面的水份多一些時,回溫的速度也會慢一點,若有風的作用增強散熱作用,就算是太陽出來了,溫度還是可能繼續往下掉。

 

Q6: 蜜蜂是怎麼建出每格都是完美正六角形的蜂窩?

A6: 蜜蜂下腹部有四對腺體可以分泌蠟液,在與唾液混合後,做成小蠟球,築窩時,不是一蜂做一格,而是很多蜂合作完成。它們像搬運工一樣,把蠟球堆積起來築成一個個圓筒狀的結構,蜜蜂築成的窩,一開始不是六角形的。蜂蠟在40度左右有很大的可塑性,蜂群利用體溫加熱的效果,讓這些圓筒狀的蜂窩,在物理變化下,自然變成六角形的,很神奇吧!六角形,省材料又堅固的結構,是自然的力量。一公斤的蜂蠟,可以做出約50,000 個蜂格,開始時可育嬰,之後可轉作貯藏,多用途的!

 

Q7: 遮住一眼,睜開一眼,這種情形下,進入光亮的房間時,睜開那一眼的瞳孔會縮小,遮住的那一眼瞳孔會繼續維持放大狀態嗎?

A7: 不會。外界光線刺激,會使瞳孔縮小;當注視的物體由遠移近,瞳孔也會縮小;面臨情緒緊張狀態如「戰鬥或逃跑」反應 (Fight-or-flight response),關乎存亡的刺激警覺時刻,瞳孔會放大;藥物的作用也會改變瞳孔縮放的狀態。

光線刺激造成的瞳孔縮小反應,神經系統是以兩側同時控制的方式操作,所以即使一眼遮住了,但是另一眼接受的光線刺激,正常狀況下會引起兩眼瞳孔同時收縮。

 

Q8: 雙引擎的螺旋槳飛機,為什麼兩個螺旋槳轉動方向的設計,有的為同向,有的為逆向?

A8: 兩個螺旋槳轉動逆向的設計,從後方看,一般左引擎為順時針,右引擎為逆時針,從上方看,兩個引擎把上方的東西捲入中間,往下方推出。這種設計,兩組引擎方轉動向相反,旋轉時產生的力矩可以互相抵消,穩定性高。同向轉動的引擎,則兩個引擎轉動產生的力矩會加成,設計上需要用其他的方式來抗衡這項差異。既然這樣,為何不全部採用逆向旋轉的設計呢?左右引擎不同,螺旋槳也不同,是不能互換的,因此在維護上或備用零件上的花費,都要比同向旋轉的設計加倍,在經濟考量上,同向轉動的引擎設計較為划算

 

Q9: 太陽系中,太陽自轉的方向和其他行星的繞行方向一致,在其他的星系有沒有可能發現恆星自轉方向和行星繞行方向相反的?

A9: 有的,目前已發現約20個這種星體。新星形成過程中,星雲旋轉的方向,決定了恆星自轉與行星繞行軌道的方向,但是近年來卻發現「熱木星」(Hot Jupiter)這類的星體,其軌道運行方向與其母星自轉旋轉相反,其造成原因有多種說法,星體間的重力交互作用是較普遍的解釋。

 

Q10: 雪地上灑鹽,可以把冰雪融掉,做冰淇淋時也用鹽,卻是用來結冰,同樣是用鹽,既可融冰,又可結冰,用法上有何不同?

A10: 鹽使水的凝固點下降,所以鹽水結冰的溫度比純水要用低。鹽灑在冰雪上時,造成冰融解後形成鹽水,因為凝固點降低了,與鹽水接觸的冰,溫度不能讓鹽水凝結,反而是紛紛融解。用食鹽(氯化鈉)與冰混合,凝固點可降至-20度 C,用氯化鈣,則溫度可降至-40度 C。

冰淇淋製作時,鹽與冰混合,用來提供一個低溫的環境,製造冰淇淋時,是將裝了冰淇淋材料的容器,浸置於低溫的鹽水中,藉其低溫來製成冰淇淋,不是把鹽加入冰淇淋材料中。

 

想聽完整的的節目可上網站,從2000年到現在的幾百集節目都在上面,是我喜歡的科普廣播節目之一,可以知道很多科學新知,也是練習英語聽力的好教材。想試聽一下的話,參考資料中有這輯節目的mp3 檔的下載連節點,在上面按滑鼠右鍵,把連結檔案儲存起來,就可以隨時播放收聽。

 

原文發表於: 網路城邦部落格

 

參考資料:

延伸閱讀:

 

文章難易度
李志昌
6 篇文章 ・ 0 位粉絲
台灣大學博士後研究員,曾旅居加拿大於多倫多大學工作多年,喜好科普閱讀與寫作。


1

4
2

文字

分享

1
4
2

什麼是「造父變星」?標準燭光如何幫助人類量測天體距離?——天文學中的距離(四)

CASE PRESS_96
・2021/10/22 ・3033字 ・閱讀時間約 6 分鐘
  • 撰文|許世穎

「造父」是周穆王的專屬司機,也是現在「趙」姓的始祖。以它為名的「造父變星」則是標準燭光的一種,讓我們可以量測外星系的距離。這幫助哈柏發現了宇宙膨脹,大大開拓了人們對宇宙的視野。然而發現這件事情的天文學家勒梅特卻沒有獲得她該有的榮譽。

宇宙中的距離指引:標準燭光

經過了三篇文章的鋪陳以後,我們終於要離開銀河系,開始量測銀河系以外的星系距離。在前作<天有多大?宇宙中的距離(3)—「人口普查」>中,介紹了距離和亮度的關係。想像一支燃燒中、正在發光的蠟燭。距離愈遠,發出來的光照射到的範圍就愈大,看起來就會愈暗。

我們把「所有發射出來的光」稱為「光度」,而用「亮度」來描述實際上看到的亮暗程度,而它們之間的關係就是平方反比。一旦我們知道一支蠟燭的光度,再搭配我們看到的亮度,很自然地就可以推算出這支蠟燭所在區域的距離。

舉例來說,我們可以在台北望遠鏡觀測金門上的某支路燈亮度。如果能夠找到到那支路燈的規格書,得知這支路燈的光度,就可以用亮度、光度來得到這支路燈的距離。如果英國倫敦也安裝了這支路燈,那我們也可以用一樣的方法來得知倫敦離我們有多遠。

我們把「知道光度的天體」稱為「標準燭光(Standard Candle)」。可是下一個問題馬上就來了:我們哪知道誰是標準燭光啊?經過許多的研究、推論、歸納、計算等方法,我們還是可以去「猜」出一些標準燭光的候選。接下來,我們就來實際認識一個最著名的標準燭光吧!

「造父」與「造父變星」

「造父」是中國的星官之一。傳說中,「造父」原本是五帝之一「顓頊」的後代。根據《史記‧本紀‧秦本紀》記載:造父很會駕車,因此當了西周天子周穆王的專屬司機。後來徐偃王叛亂,造父駕車載周穆王火速回城平亂。平亂後,周穆王把「趙城」(現在的中國山西省洪洞縣一帶)封給造父,而後造父就把他的姓氏就從本來地「嬴」改成了「趙」。因此,造父可是趙姓的始祖呢!(《史記‧本紀‧秦本紀》:造父以善御幸於周繆王……徐偃王作亂,造父為繆王御,長驅歸周,一日千里以救亂。繆王以趙城封造父,造父族由此為趙氏。)

圖一:危宿敦煌星圖。造父在最上方。圖片來源/參考資料 2

回到星官「造父」上。造父是「北方七宿」中「危宿」的一員(圖一),位於西洋星座中的「仙王座(Cepheus)」。一共有五顆恆星(造父一到造父五),清代的星表《儀象考成》又加了另外五顆(造父增一到造父增五)。[3]

英籍荷蘭裔天文學家約翰‧古德利克(John Goodricke,1764-1786)幼年因為發燒而失聰,也無法說話。1784 年古德利克(John Goodricke,1764-1786)發現「造父一」的光度會變化,代表它是一顆「變星(Variable)」。2 年後,年僅 22 歲的他就當選了英國皇家學會的會員。卻在 2 週後就就不幸因病去世。[4]

造父一這顆變星的星等在 3.48 至 4.73 間週期性地變化,變化週期大約是 5.36 天(圖二)。經由後人持續的觀測,發現了更多不同的變星。其中一群變星的性質(週期、光譜類型、質量……等)與造父一接近,因此將這一類變星統稱為「造父變星(Cepheid Variable)」。[5]

圖二:造父一的亮度變化圖。橫軸可以看成時間,縱軸可以看成亮度。圖片來源:ThomasK Vbg [5]

勒維特定律:週光關係

時間接著來到 1893 年,年僅 25 歲的亨麗埃塔‧勒維特(Henrietta Leavitt,1868-1921)她在哈佛大學天文台的工作。當時的哈佛天文台台長愛德華‧皮克林(Edward Pickering,1846-1919)為了減少人事開銷,將負責計算的男性職員換成了女性(當時的薪資只有男性的一半)。[6]

這些「哈佛計算員(Harvard computers)」(圖三)的工作就是將已經拍攝好的感光板拿來分析、計算、紀錄等。這些計算員們在狹小的空間中分析龐大的天文數據,然而薪資卻比當時一般文書工作來的低。以勒維特來說,她的薪資是時薪 0.3 美元。順帶一提,這相當於現在時薪 9 美元左右,約略是台灣最低時薪的 1.5 倍。[6][7][8]

圖三:哈佛計算員。左三為勒維特。圖片來源:參考資料 9

勒維特接到的目標是「變星」,工作就是量測、記錄那些感光板上變星的亮度 。她在麥哲倫星雲中標示了上千個變星,包含了 47 顆造父變星。從這些造父變星的數據中她注意到:這些造父變星的亮度變化週期與它們的平均亮度有關!愈亮的造父變星,變化的週期就愈久。麥哲倫星雲離地球的距離並不遠,可以利用視差法量測出距離。用距離把亮度還原成光度以後,就能得到一個「光度與週期」的關係(圖四),稱為「週光關係(Period-luminosity relation)」,又稱為「勒維特定律(Leavitt’s Law)」。藉由週光關係,搭配觀測到的造父變星變化週期,就能得知它的平均光度,能把它當作一支標準燭光![6][8][10]

圖四:造父變星的週光關係。縱軸為平均光度,橫軸是週期。光度愈大,週期就愈久。圖片來源:NASA [11]

從「造父變星」與「宇宙膨脹」

發現造父變星的週光關係的數年後,埃德溫‧哈柏(Edwin Hubble,1889-1953)就在 M31 仙女座大星系中也發現了造父變星(圖五)。數個世紀以來,人們普遍認為 M31 只是銀河系中的一個天體。但在哈柏觀測造父變星之後才發現, M31 的距離遠遠遠遠超出銀河系的大小,最終確認了 M31 是一個獨立於銀河系之外的星系,也更進一步開拓了人類對宇宙尺度的想像。後來哈柏利用造父變星,得到了愈來愈多、愈來愈遠的星系距離。發現距離我們愈遠的星系,就以愈快的速度遠離我們。從中得到了「宇宙膨脹」的結論。[10]

圖五:M31 仙女座大星系裡的造父變星亮度隨時間改變。圖片來源:NASA/ESA/STSci/AURA/Hubble Heritage Team [1]

造父變星作為量測銀河系外星系距離的重要工具,然而勒維特卻沒有獲得該有的榮耀與待遇。當時的週光關係甚至是時任天文台的台長自己掛名發表的,而勒維特只作為一個「負責準備工作」的角色出現在該論文的第一句話。哈柏自己曾數度表示勒維特應受頒諾貝爾獎。1925 年,諾貝爾獎的評選委員之一打算將她列入提名,才得知勒維特已經因為癌症逝世了三年,由於諾貝爾獎原則上不會頒給逝世的學者,勒維特再也無法獲得這個該屬於她的殊榮。[12]

本系列其它文章:

天有多大?宇宙中的距離(1)—從地球到太陽
天有多大?宇宙中的距離(2)—從太陽到鄰近恆星
天有多大?宇宙中的距離(3)—「人口普查」
天有多大?宇宙中的距離(4)—造父變星

參考資料:

[1] Astronomy / Meet Henrietta Leavitt, the woman who gave us a universal ruler
[2] wiki / 危宿敦煌星圖
[3] wiki / 造父 (星官)
[4] wiki / John Goodricke
[5] wiki / Classical Cepheid variable
[6] wiki / Henrietta Swan Leavitt
[7] Inflation Calculator
[8] aavso / Henrietta Leavitt – Celebrating the Forgotten Astronomer
[9] wiki / Harvard Computers
[10] wiki / Period-luminosity relation
[11] Universe Today / What are Cepheid Variables?
[12] Mile Markers to the Galaxies

所有討論 1
CASE PRESS_96
156 篇文章 ・ 373 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策