0

0
0

文字

分享

0
0
0

2013 年 Quirks & Quarks 科普答客問

李志昌
・2014/01/01 ・3756字 ・閱讀時間約 7 分鐘 ・SR值 512 ・六年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

聽加拿大CBC 廣播電台的 Quirks & Quarks 有段時間了,有時錯過廣播時間,還可以上網去下載播出過的mp3,透過網路提供全球聽眾的廣播服務,真是周到。

這個節目每年年終都會有一個特別企劃,聽眾透過email 或是電話留言提出問題,製作單位找到相關的專家學者來回答,科普迷的我當然不會錯過。在 2013年Quirks & Quarks 科普答客問特別節目中,聽到幾個有趣的答客問,在此跟大家分享。

cbc

Q1: 如果想催熟水果,把它們跟蘋果或蕃茄擺在一起,對嗎?

A1: 成熟的果子,變軟,變甜,發出果香,藉此吸引動物前來攝取,在享受完甜美的果實後,順便幫植物把種子散播出去。除了果肉質地之外,果皮顏色的變化也是常見成熟的特徵之一,香蕉皮由黃變褐的過程即是一例。這個成熟的過程中,乙烯(ethylene)扮演一種植物賀爾蒙的角色,當植物成長到適當的時機要轉為成熟時,體內的基因調控機制會啟動某些基因,使其表現後,在植物體內出現製造乙烯的功能,當乙烯製造出來以後,接著扮演觸發果實成熟機制的關鍵。如果想催熟水果,把它們跟會釋出乙烯的蘋果或蕃茄擺在一起,是正確的。但是因為市場供需或運輸時間的考量,有的蘋果在未成熟前就摘下,那時還未具備產生乙烯的能力,這種情況就需要人工催熟。把番茄或香蕉密封在袋子中,你會發現催熟的速度會加快,因為他們釋放出來的乙烯累積在袋子中繼續催熟的緣故。另外,和蘋果比較,香蕉釋放的乙烯速度較快,量也較大。

並不是所有的水果都可用乙烯來催熟,柑桔類的水果,綠色的果皮在乙烯的催化下變黃橙色,但是對內部果實的成熟作用不大。葡萄和草莓,一經採收之後,便停止繼續成熟,所以趁新鮮吃吧,不用再跟香蕉或蘋果擺一起催熟。

 

Q2: 為什麼太陽系中的氣體巨行星有環狀結構,但是岩質的小行星沒有?

A2: 太陽系的四顆氣體巨行星:木星、土星、天王星和海王星都有行星環,其中以土星環最為明亮,大家較為熟知,天王星行星環次之,較為稀薄,木星和海王星也有行星環,但是非常的稀薄。主要形成的成份可能是冰與岩石碎片。

談到土星環形成的原因,可回顧「洛希極限」(Roche limit)的理論,土星本身的質量產生的重力分布有一個臨界點,當另一個小星體進入這個範圍時,重力與兩星體間潮汐力的作用,會把小星體撕裂成碎片,這些碎片就是土星環的成分來源。有幾個理論,包括數百公里直徑的小星體,進入土星的洛希極限之內而被撕裂,還有,小星體間互相撞擊產生的碎片,都可能是形成行星環的來源。也許曾有材質含冰的小星體進入土星的洛希極限範圍內而被撕裂過,所以有很多細冰在土星環內,使它看起來很明亮。木星環和海王星環看起來非常的稀薄,推測是在這兩顆星球發生小星體撞擊,或是進入洛希極限內被撕裂的事件,遠少於發生在土星的緣故吧!

土星是一顆很大的氣體行星,其洛希極限的範圍很大,有機會捕捉到很多空間中的物質。相較下地球是岩質的小行星,洛希極限的範圍小,把小星體撕成碎片而形成行星環的機會就很小了。所以太陽系中只發現在氣體巨行星有環狀結構,但是岩質的小行星沒有。附帶一提,在太陽系以外的星系中,已觀察到有很多氣體巨行星也有行星環。

 

Q3:如果只有雌蚊會吸血,那麼雄蚊吃什麼維生?

A3: 沒錯,只有雌蚊會吸血,會叮咬你的蚊子是母的。雌蚊從吸來的血獲得需要的蛋白質,作為產卵所需的養分,但是雌蚊也會吸取植物的蜜汁,以此獲得的糖分,是重要的動力能量來源。雄蚊,其嘴部的構造與雌蚊不同,其結構沒有賦予它吸血的功能,所以雄蚊只能去找植物的蜜汁維生。另外,雌蚊具有偵測二氧化碳的感受器,用來找到目標吸血,但是雄蚊缺乏這種靈敏的感受器,所以我們人類對雄蚊而言,沒有吸引力。

雄蚊生命中的重責大任就是找到雌蚊完成交配,蚊子的品種很多,不同品種的生殖過程或有些許差異,一般而言,雌蚊會先交配把精子儲存起來,找機會吸血飽餐一頓,有了足夠的養分後,再使卵成熟,然後讓卵受精後產出。

 

Q4: 如果用化石內的 DNA 成功複製猛獁象,現今地球上有哪裡適合它們生活?

A4: 北半球在 20,000 年前,上一次冰河時期的期間,是一片稱之為「猛獁草原」(Mammoth steppe)的乾冷生態環境,分布從今日的英國一路延伸,跨過白令陸橋 (Bering land bridge),到加拿大的育空(Yukon)。今日加拿大北方的極地凍土區,溫度可比當時,但是寸草不生,與當時的猛獁草原大相逕庭。

在 12,000 年前左右,是上一次全球暖化,那時冰河消退,溫度上升的結果,草原逐漸被樹林取代,到10,000 前左右,僅剩一些南向坡與山腳地帶遺留零星的獨立袋狀區域,還保有適合猛獁象的生活環境。

估計猛獁象一天要消耗400磅的草,現在已經不容易找到既乾又冷,還有可供足夠草料的地方,在加拿大草原省分的北方,或許還可以找到,像育空西南方的Kluane 國家公園保留區就還蠻合適的

 

Q5: 為何早晨太陽出來了,可是有時氣溫卻還是繼續下降?

A5: 其實,這種情形並不是常態,根據氣象記錄,大約只有三分之一的日子,會出現日出後溫度繼續下降的情形。太陽光的能量,有不同的波長,大氣吸收掉部分短波長的部份,地表吸收長波長的部分,陽光照射後,環境上昇,那是必然的,但是日出時,角度低,照射效率不高,而地表經一晚輻射釋熱之後,需要一點時間回溫,地面的水份多一些時,回溫的速度也會慢一點,若有風的作用增強散熱作用,就算是太陽出來了,溫度還是可能繼續往下掉。

 

Q6: 蜜蜂是怎麼建出每格都是完美正六角形的蜂窩?

A6: 蜜蜂下腹部有四對腺體可以分泌蠟液,在與唾液混合後,做成小蠟球,築窩時,不是一蜂做一格,而是很多蜂合作完成。它們像搬運工一樣,把蠟球堆積起來築成一個個圓筒狀的結構,蜜蜂築成的窩,一開始不是六角形的。蜂蠟在40度左右有很大的可塑性,蜂群利用體溫加熱的效果,讓這些圓筒狀的蜂窩,在物理變化下,自然變成六角形的,很神奇吧!六角形,省材料又堅固的結構,是自然的力量。一公斤的蜂蠟,可以做出約50,000 個蜂格,開始時可育嬰,之後可轉作貯藏,多用途的!

 

Q7: 遮住一眼,睜開一眼,這種情形下,進入光亮的房間時,睜開那一眼的瞳孔會縮小,遮住的那一眼瞳孔會繼續維持放大狀態嗎?

A7: 不會。外界光線刺激,會使瞳孔縮小;當注視的物體由遠移近,瞳孔也會縮小;面臨情緒緊張狀態如「戰鬥或逃跑」反應 (Fight-or-flight response),關乎存亡的刺激警覺時刻,瞳孔會放大;藥物的作用也會改變瞳孔縮放的狀態。

光線刺激造成的瞳孔縮小反應,神經系統是以兩側同時控制的方式操作,所以即使一眼遮住了,但是另一眼接受的光線刺激,正常狀況下會引起兩眼瞳孔同時收縮。

 

Q8: 雙引擎的螺旋槳飛機,為什麼兩個螺旋槳轉動方向的設計,有的為同向,有的為逆向?

A8: 兩個螺旋槳轉動逆向的設計,從後方看,一般左引擎為順時針,右引擎為逆時針,從上方看,兩個引擎把上方的東西捲入中間,往下方推出。這種設計,兩組引擎方轉動向相反,旋轉時產生的力矩可以互相抵消,穩定性高。同向轉動的引擎,則兩個引擎轉動產生的力矩會加成,設計上需要用其他的方式來抗衡這項差異。既然這樣,為何不全部採用逆向旋轉的設計呢?左右引擎不同,螺旋槳也不同,是不能互換的,因此在維護上或備用零件上的花費,都要比同向旋轉的設計加倍,在經濟考量上,同向轉動的引擎設計較為划算

 

Q9: 太陽系中,太陽自轉的方向和其他行星的繞行方向一致,在其他的星系有沒有可能發現恆星自轉方向和行星繞行方向相反的?

A9: 有的,目前已發現約20個這種星體。新星形成過程中,星雲旋轉的方向,決定了恆星自轉與行星繞行軌道的方向,但是近年來卻發現「熱木星」(Hot Jupiter)這類的星體,其軌道運行方向與其母星自轉旋轉相反,其造成原因有多種說法,星體間的重力交互作用是較普遍的解釋。

 

Q10: 雪地上灑鹽,可以把冰雪融掉,做冰淇淋時也用鹽,卻是用來結冰,同樣是用鹽,既可融冰,又可結冰,用法上有何不同?

A10: 鹽使水的凝固點下降,所以鹽水結冰的溫度比純水要用低。鹽灑在冰雪上時,造成冰融解後形成鹽水,因為凝固點降低了,與鹽水接觸的冰,溫度不能讓鹽水凝結,反而是紛紛融解。用食鹽(氯化鈉)與冰混合,凝固點可降至-20度 C,用氯化鈣,則溫度可降至-40度 C。

冰淇淋製作時,鹽與冰混合,用來提供一個低溫的環境,製造冰淇淋時,是將裝了冰淇淋材料的容器,浸置於低溫的鹽水中,藉其低溫來製成冰淇淋,不是把鹽加入冰淇淋材料中。

 

想聽完整的的節目可上網站,從2000年到現在的幾百集節目都在上面,是我喜歡的科普廣播節目之一,可以知道很多科學新知,也是練習英語聽力的好教材。想試聽一下的話,參考資料中有這輯節目的mp3 檔的下載連節點,在上面按滑鼠右鍵,把連結檔案儲存起來,就可以隨時播放收聽。

 

原文發表於: 網路城邦部落格

 

參考資料:

延伸閱讀:

 

文章難易度
李志昌
6 篇文章 ・ 0 位粉絲
台灣大學博士後研究員,曾旅居加拿大於多倫多大學工作多年,喜好科普閱讀與寫作。

0

1
0

文字

分享

0
1
0
準備出國啦!Surfshark VPN 快趁黑五買起來,上網購物最安心
鳥苷三磷酸 (PanSci Promo)_96
・2022/11/01 ・2113字 ・閱讀時間約 4 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文由 Surfshark VPN 贊助。

兩、三年以來的防疫生活,終於迎來全面 0+7 的這一天啦!返國之後不再需要隔離的一天來了,冰友們,你是不是已經收拾好心情、收拾好行李,在進行機+酒的比價了呢?除了規劃好出國行程、找好景點與美食店家,想要讓自己不可或缺的網路生活也更加安全,一定要趁即將到來了感恩節黑五期間,把超優惠的 Surfshark VPN 服務買起來,為自己的網路生活加買最平安的保險!

Surfshark 黑五限時 18 折折扣,額外加送兩個月
專屬連結:https://lihi2.cc/8XwRN

在疫情下,網購成為了更多人的日常。不僅各樣的在地購物節為網友帶來眾多優惠,全球化的購物活動,台灣當然也不會缺席!美國感恩節(Thanksgiving)都是 11 月第四個星期四,但是感恩節後的週五,便是聖誕節前的購物佳期啟動日,這一天通常都會業績超標(在收支表上呈現正向收入(顯示為黑色字體,而非赤字的紅色字體),各家的瘋狂優惠都會在黑五祭出!相信許多精打細算的朋友,對黑五購物節絕對不陌生(很可能還搶過很多優惠!!)

網購怎能漏掉「亞馬遜」!

雅虎奇摩之於台灣,就像是亞馬遜(Amazon.com)之於美國那麼的有名!絕對也是什麼都賣、什麼都不奇怪的最佳代表。

如果你平常就很喜愛一些美國品牌,趁著黑五的日子到亞馬遜清空購物車,覺對優惠不會讓你失望。這時候,透過 Surfshark 連線到亞馬遜美國站,絕對會顯示的價格絕對讓你眼睛為之一亮,這時候最新搭載 M2 晶片的 iPad Pro,獨家支援動態島顯示的 iPhone 14 Pro,絕對是最好入手的時機。除此之外,亞馬遜平台經典的 Kindle 閱讀器,也是超合適的禮物,送禮自用兩相宜啊!另外要特別留意,購買時可以確認商品有沒有幫忙送到台灣,如果還沒有,可以先跟美國的朋友確認一下,邀請他們回國時幫你一起帶回來!

跨國追劇最爽快

對於喜愛追劇的朋友,品味可能相當豐富且多元,畢竟欣賞優秀影視作品,不現語言,更是不限地區啊!只不過,若是你訂閱 Netflix 等跨國 OTT 服務,都會有各地不同的上架影視作品,可能會讓你無法在第一時間就能夠立即「追」到劇,讓你等得心癢癢!還好這一切只要連上 Surfshark VPN 都能解決,Surfshark 支援超過 100 國的 VPN 連線,無論你想看韓國、日本還是哪一國的最新戲劇,通通讓你一秒追到最新進度!

Surfshark 黑五限時 18 折折扣,額外加送兩個月

專屬連結:https://lihi2.cc/8XwRN

出差大陸翻牆超方便

在過往出國、返國都需要隔離的階段,肯定讓不少工作上需要經常往返多國之間的朋友,感到生活驟變。所幸,在防疫政策解封之後,一切都可逐漸恢復正常。對於經常有需要到中國大陸出差的朋友,肯定都會感受到網路斷聯的不方便,因為無論是 LINE、Facebook Messenger、YouTube、Gmail 等你可很能天天都在使用的網路服務,大陸都無法使用。這還不打緊,連跟家人、朋友報平安也很不便。這時候 Surfshark 連上,就可以幫助你輕鬆「翻牆」,跟台灣親人網路無距離!

 

上網不留痕跡,不被追蹤最自由

對於一個人來說,最私密的資料之一,除了你的個資,就屬我們每天耗費大量時間逗留的網路。我們所在網路上留下的痕跡,絕對是超真實的自己,當然你不會期待這樣的自己被「搜尋引擎」、「網路廣告」公司了解得太透徹,好像你在網路上的一言一行,都被監視著。

..0000000\0;也可隱藏IP位置,避免被廣告商追蹤;更可以為你我阻擋惡意程式、釣魚軟體等,讓你防止被攻擊,以及被網路充斥的廣告打擾,好處多又多!

如果對於 Surfshark 還覺得不夠熟悉的話,不得不告訴大家,今年 Surfshark 榮獲第六屆 CyberSecurity Breakthrough 頒發的「VPN 年度最佳解決方案」(VPN Solution of the Year),也就是成為今年最推薦的 VPN 方案。CyberSecurity Breakthrough 是全球領先的獨立市場情報組織,致力於表揚當今全球資訊安全市場上的頂尖企業、技術和產品。有了他們「掛保證」,代表 Surfshark 絕對是品質、信譽都讓你安心的VPN 服務。

講了這麼多,是不是讓你感到很心動了。如果你原本就是網路重度使用者,用來上網的設備是樣樣都有,Surfshark 一個帳號就能支援所有設備,CP 值超高!趁著年度超狂黑五購物節的到來,送給你自己兩年安心無虞的網路生活,肯定是送自己的最好禮物!

Surfshark 黑五限時 18 折折扣,額外加送兩個月
專屬連結:https://lihi2.cc/8XwRN

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
155 篇文章 ・ 268 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
用葉片來築巢的蜜蜂:「粗切葉蜂」築巢紀實
自然保育季刊_96
・2022/10/29 ・5420字 ・閱讀時間約 11 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 作者/羅美玲 Mei-Ling Lo|荒野保護協會桃園分會、臺灣蝴蝶保育學會、桃園鳥會推廣講師|m026802@yahoo.com.tw
  • 作者/葉文琪 Wen-Chi Yeh|行政院農業委員會林業試驗所森林保護組

粗切葉蜂是什麼

切葉蜂(leaf-cutting bees)是膜翅目(Hymenoptera)蜜蜂總科(Apoidea)切葉蜂科(Megachilidae)切葉蜂屬(Megachile)蜂類的俗稱,主要是因為很多切葉蜂的雌蜂會利用內緣特化的大顎切取特定植物的葉片做為築巢的材料,並採集花粉當作子代的儲糧。

根據雌蜂腹部形狀及大顎的構造可以將切葉蜂大致分為三個類群(Michener 2007)。第 1 類群雌蜂的腹部較扁平,從基部逐漸向末端縮窄,大顎第 2 或者第 2 和第 3 齒間縫具有切緣(cutting edge),主要利用植物葉片築巢;第 2 類群雌蜂的腹部圓厚,兩側平直,大顎齒間縫沒有切緣,主要利用樹脂築巢;第 3 類群雌蜂的腹部形狀類似第 2 類群,但大顎齒間縫具有切緣,並會混合葉片、泥土及樹脂築巢。

臺灣已確認紀錄的切葉蜂共有 20 種(Yasumatsu 1965),涵蓋了上述三個類群,但以第 1 類群種類較多。本文的觀察紀錄對象粗切葉蜂(Megachile sculpturalis)則屬於第 2 類群。

觀察地點位於桃園市郊區的虎頭山,是一處以次生林樹種為主的淺山森林,海拔 200 多公尺。虎頭山每年 7~8 月是各種蜂類活躍的季節,山頂停機坪一處菜園裡各種瓜果的花朵,以及周邊荒地綻放色彩繽紛的野花,總會吸引各類訪花的蜂類。

菜園棚子以枯竹、木柱和木板搭建。

2019 年 8 月筆者發現菜園旁的竹棚架上,有一隻銅翼眥木蜂(Xylocopa tranquebarorum)雌蜂在竹管內築巢,並以腹部末端擋住直徑 1cm 的巢孔。該處同時觀察到一隻切葉蜂也從同一個巢孔出入,比對 Yasumatsu 1965 年的資料鑑定後,確認為粗切葉蜂。這兩種大型的獨居授粉蜂能共處一室的行為引起筆者的好奇與興趣,因而展開進一步的觀察與記錄。

粗切葉蜂的外形特徵

粗切葉蜂雌蜂體長 2.0~2.3 cm,身體黑色,胸部背面及第 1 腹節密生紅褐色長毛,側面及前足腿節則為黃褐色長毛。頭部近球形,密布明顯凹刻,唇基橫條形;大顎長而直,長約臉寬 2/3,咀嚼緣長約大顎的 1/3,靠近末端有一個大齒。腹部第 2、3 節背面具明顯粗大凹刻,腹部腹面有黑色細直長毛形成的花粉梳(scopa)。雄蜂臉部有濃密的黃色長毛簇,體型及大顎長度均小於雌蜂,腹部無花粉梳。

本種外形與丘切葉蜂(Megachile monticola)最相近,但後者體型較大,身體黃褐色毛不明顯,胸部長毛更濃密;丘切葉蜂的大顎比粗切葉蜂更長,約接近臉寬,咀嚼緣較短,長約大顎的 1/4;腹部第 2、3 節背面的凹刻小而不明顯。

另一種可能與粗切葉蜂混淆的種類為擬丘切葉蜂(Megachile pseudomonticola),但該種頭部扁而窄,大顎明顯較短,腹部第 2 節有一圈紅褐色毛,第 2、3 腹節背面的凹刻小而不明顯。

A. 丘切葉蜂雌蜂頭部正面。B. 粗切葉蜂雌蜂頭部正面。C. 丘切葉蜂雌蜂。D. 粗切葉蜂雌蜂。E. 擬丘切葉蜂雌蜂。(葉文琪 攝)

粗切葉蜂的築巢習性

鳩占鵲巢

銅翼眥木蜂是淺山農地常見的大型授粉蜂,雌蜂喜歡在為了耕作而架設的枯竹管上築巢,利用強有力的大顎直接咬破竹管鑽入內部,然後以寬大而堅硬的腹部擋住巢孔防止入侵者進入。

銅翼眥木蜂喜好枯竹管上築巢。

觀察的竹管在巢孔右側至少有 2 隻銅翼眥木蜂雌蜂共住,只要一隻從巢孔飛出,另一隻立即以腹部末端堵住巢孔。不過此時的銅翼眥木蜂雌蜂似乎沒有育幼,因為返巢時後腳花粉籃並未攜帶花粉。共用竹管的粗切葉蜂雌蜂初期只在巢孔左側築巢,返巢時腹部和腳布滿黃色花粉,出巢時花粉已卸除乾淨,表示正在收集儲糧育幼。

粗切葉蜂返巢時腹部和腳布滿黃色花粉。

粗切葉蜂進出巢時會擠開守護巢孔的銅翼眥木蜂,但是後者在前者離開後會馬上將巢孔堵住。過了一段時間(約莫 13 天),粗切葉蜂築巢的位置逐漸往巢孔右側推進;此時,銅翼眥木蜂會遭受驅趕,無法再進入竹管,經過幾次嘗試失敗後便未再出現。

國外文獻曾報導入侵美國的粗切葉蜂雌蜂會利用樹脂塗抹在東部木蜂(Xylocopa virginica)身上,使其無法行動,甚至會攻擊或殺死木蜂侵占其巢穴(Rusty 2018);然而,筆者並未觀察到類似行為。

巢位選擇

觀察地點的竹棚距地面 1~2 m;於 2019~2021 年間共計發現 8 個巢位,巢位的選擇有竹管、橫擺或直立的木頭、木柱。

巢孔直徑 1~3 cm,有的位於竹管前端,有的則在側邊;有一個在木柱上的巢位只有一個巢室,深度 5cm。8 個巢位中有 3 個是銅翼眥木蜂挖鑿的竹管,其中一個是共用巢位;其他還有 2 個巢位是利用黃斑前喙蜾蠃(Anterhynchium flavopunctatum)和條切葉蜂(Megachile faceta)的舊巢。

粗切葉蜂對巢位高低、巢體材質、巢管長度、巢孔方向和孔徑的大小選擇彈性很大;也會利用舊巢,能夠就地選擇善加利用。

樹脂巢室

雌蜂採集樹脂回巢建構巢室。

雌蜂採集樹脂建構巢室,步驟是先鋪下層,再鋪右側,最後是左側。過程中,雌蜂也會咬著纖維回巢摻雜在樹脂間整修巢室。雌蜂通常在下午採脂,大約持續 1~2.5 小時,每趟來回 2~4 分鐘,卸下樹脂再出巢約需 1 分鐘。

雌蜂大顎咬著纖維回巢。

許多植物都會分泌樹脂,尤其針葉樹最為常見。根據樹脂味道與採集飛行的方位判斷,雌蜂所採集的樹脂很可能是松脂。雌蜂所採集的樹脂可能具有類似蜜蜂蜂膠防潮、抗病、避免掠食者的功能(Bankova et al .2000)。

花粉儲糧

雌蜂建構巢室到一定大小後,便開始採集花粉做為子代的儲糧。採粉一趟花費的時間約 4~30 分鐘不等,推測會因採粉點的遠近而有差異;雌蜂入巢後約 3 分鐘即完成卸粉。

採粉行為主要集中在上午,通常連續花費 2~3 小時。雌蜂卸粉時通常是頭進頭出,如果巢位空間狹窄沒有轉身餘地,會在巢孔外轉身,尾部朝內倒退入巢卸粉。

觀察期間發現粗切葉蜂數十趟採回的花粉千篇一律都是鮮黃色,推測可能是菜園周圍開花數量最多的大花咸豐草(Bidens pilosa)。如果空間足夠,雌蜂在花粉補充完畢後會採集樹脂和纖維製作巢室隔間,繼續建構下一個巢室的工作。

封巢

天候不佳時,雌蜂會停止築巢的工作,待在巢管內休息。當所有巢室完成後,築巢工作便進入封巢的最後階段;雌蜂先採集樹脂封閉巢孔,接著利用大顎在附近地面收集泥土,然後將泥團均勻塗抹在樹脂層外面。

雌蜂啣泥團返巢,塗抹巢孔樹脂外層。

每次採集跟塗抹泥團的時間只花 2~3 分鐘,最後將巢孔外層修飾平整,築巢工作就完成了!雌蜂取用封巢的材料不一定,有時只有泥土,並無樹脂。

探巢行為

完成封巢後雌,蜂會在原巢位附近尋找其他適當地點繼續築巢。

有趣的是,在建構下一個巢位的過程中,無論採到樹脂、纖維或花粉,雌蜂幾乎每趟都會先飛回原巢位探視,持續時間約 3~10 秒;有時會停在巢位上觀望,有時只在巢位旁盤旋徘徊就立刻飛離。

巢位爭奪

也許是適合的巢位有限,兩隻雌蜂間會為了爭奪巢位大打出手。入侵者會以大顎咬住原巢主的腹部末端,試圖將後者拉出巢外。

雌蜂為爭奪巢位,試圖將對方從巢裡拉出。

曾觀察到這樣的行為僵持近 10 分鐘,原巢主終於退出巢孔,但是並不退讓;接著兩蜂以大顎互相箝制,鬥得難分難捨,纏鬥將近 20 幾分鐘;最後終於有一方獲得勝利,順利進入巢內,只是難以分辨是哪一方。

爭奪巢位的雌蜂以大顎互相纏鬥。

巢室構造

雌蜂築巢工作完畢後,筆者將封巢的竹管帶回室內觀察,以便記錄巢室的構造及幼蟲的發育狀態。兩根帶回觀察的竹管原為同一根竹桿,離地約 2 m;第一根竹管在 2019 年 9 月雌蜂封巢後鋸斷帶回,第二根竹管則可能是同一隻雌蜂利用剩餘的竹桿後段繼續築巢。

第一根竹管是與銅翼眥木蜂共用的巢管,巢孔在兩個竹節間。8 月首次發現時,雌蜂已築巢一些時日,約 14 日後封巢。此竹管巢孔的右側因有銅翼眥木蜂進駐,所以雌蜂是先在巢孔的左側築巢;雌蜂將銅翼眥木蜂驅趕離巢後,才利用右側繼續築巢,因此巢孔左右兩側都有巢室。竹管內徑 1.5 cm,裡面所有巢室並非前後相接連成一直線,而是上下錯落緊密排列,可能為了節省空間和巢材。巢室呈長筒狀,由樹脂混合植物纖維築成,花粉團儲糧約占巢室一半的空間。

第一根竹管左側 6 個巢室內不同齡的幼蟲。

9 月 11 日打開竹管觀察,巢孔左側由左到右共有 6 個巢室,總長約 11cm,每個巢室有一隻不同齡期的幼蟲;第 1 室幼蟲似乎已達終齡,9 月 19 日吐絲結繭,10 月 10 日撕開繭皮觀察時內側已是前蛹。巢孔右側由右至左共有 3 個巢室,總長 5.5 cm;第 1 室只有花粉團儲糧,並未發現卵或幼蟲,第 2 室幼蟲似 1~2 齡,第 3 室的蜂糧上則只有 1 顆卵,並於 9 月 13 日孵化為 1 齡幼蟲。

第一巢室的繭。

第二根竹管一端是封閉的竹節,竹節至管口長 26cm。雌蜂在 9 月 12 日開始築巢,9 月 24 日封巢;當日觀察發現竹管由右至左共有 4 個巢室,總長 8cm,封巢處離管口尚有 18cm。

第二根竹管 4 個巢室內的幼蟲。

前 3 室各有不同齡期的幼蟲,第 2 室幼蟲於 11 月 1 日進入前蛹期;第 4 室有一顆長橢圓形稍彎曲的白色卵粒,因不明原因並未順利孵化。

第四巢室的卵。

可惜竹管內的許多幼蟲無法順利成長至前蛹階段,因此從有限的資料只能得知卵約 2~3日孵化,終齡幼蟲至吐絲結繭約需 2 週,且前蛹期很長,因此推測粗切葉蜂是以前蛹越冬,一年只有一個世代。

粗切葉蜂的寄生性天敵

雌蜂築巢期間除了發現尖腹蜂(Coelioxys sp.)曾進出其巢位,寄生性的星蜂虻(Anthrax aygulus)應該是最常出現的寄生性天敵,在不同巢位都能觀察到牠們在巢位前盤旋駐足,有時甚至 2 隻會同時朝同一個巢孔進行投彈產卵。

天敵星蜂虻朝向巢孔進行飛行產卵。

然而,星蜂虻雖然頻繁騷擾,但是並未發現巢室內有被其寄生的跡象,反而比較常見寄生蜂。筆者在 3 個帶回的前蛹蛹體上發現滿是體長約 1 mm 的寄生蜂幼蟲,經陳仁杰醫師協助辨識羽化後的成蜂,應該是屬於釉小蜂科(Eulophidae)的擬孔蜂巨柄嚙小蜂(Melittobia acasta)。本種寄生蜂體型很小,雌雄異型,雌蟲體色暗黑,雄蟲則呈黃褐色,翅膀透明短小,觸角基部明顯膨大。這種寄生蜂雄蟲數量很少,雌雄數量比例差異懸殊。

前蛹被擬孔蜂巨柄嚙小蜂寄生。

筆者曾觀察到 3 次擬孔蜂巨柄嚙小蜂雌雄的交配行為,通常是雄蜂自後方爬上雌蜂背部,頭部整個向前傾,似乎是抓住或咬住雌蟲的頸部。起初,雄蜂除了觸角偶爾輕微抖動之外,幾乎沒有什麼動作,待時機成熟便突然快速往後移動,將腹部前彎與雌蟲腹部末端結合。整個求偶過程在 10~14 分鐘內完成,真正交尾的時間卻很短暫,其中兩次在 1~3 秒內完成,另一次可能因為雌蟲配合度較差,花了 10 幾秒。

前蛹被擬孔蜂巨柄嚙小蜂寄生。

有關於幼蟲的部分,我們持續觀察中

筆者連續 3 年在虎頭山的野外觀察發現粗切葉蜂雌蜂最早於 8 月下旬開始築巢活動,10 月過後就不再出現,生活史應該是一年一世代;成蟲發生期短,僅持續兩個多月,並以前蛹狀態越冬。

雌蜂主要以樹脂、植物纖維及少量泥土為巢材,在竹管或木頭的孔隙中築巢;巢室長筒狀,頭尾與相鄰的巢室交錯排列互相重疊,數量多寡則因選擇的巢位空間而定。巢室內會儲存約半個巢室空間的花粉團作為幼蟲儲糧,且在每個巢室僅產下一粒卵。

由於觀察機會及個人時間有限,本次的觀察對於粗切葉蜂的幼蟲發育過程並沒有太多紀錄;期待日後持續的努力,以及更多愛好者一起加入切葉蜂生態觀察的行列,能夠解開這部分的謎題。

自然保育季刊_96
14 篇文章 ・ 11 位粉絲
自然保育季刊為推廣性刊物,以推廣自然教育為宗旨,收錄相關之資源調查研究、保育政策、經營管理及生態教育等成果,希望傳達自然科普知識並和大家一起關注自然!

0

29
7

文字

分享

0
29
7
極目遠眺的意義:天文學家為何追尋第一代星系
Tiger Hsiao_96
・2022/05/15 ・3764字 ・閱讀時間約 7 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 文/蕭予揚 清大天文所碩士生,將於約翰・霍普金斯大學攻讀天文博士
      林彥興 清大天文所碩士生,EASY 天文地科團隊總編

近日,來自東京大學和倫敦大學學院的科學家 播金優一(Yuichi Harikane) 在天文物理期刊《The Astrophysical Journal》發表了一篇論文,宣稱他們可能找到目前最遠的星系(名為 HD-1,紅移值 z 約為13),打破了原本最遠(GNz-11,z 約為 11)的紀錄。

天文學家為什麼執著要找最遠的星系呢?
是單純為了破紀錄而破、抑或是蘊藏了什麼科學涵義?
天文學家們又是怎麼尋找、並且推論這些星系多遠的呢?

HD1 的影像。圖/Harikane et al.

時間推回到二十世紀初,當時的科學家們對宇宙大小到底是恆定或是膨脹爭論不休,其中,愛因斯坦(Albert Einstein)便是支持「宇宙穩恆態理論」的知名科學家。而支持膨脹宇宙的科學家們,一直到西元 1929 年,愛德溫.哈伯(Edwin Hubble)透過測量其他星系,發現了宇宙在膨脹,才為膨脹宇宙(也就是日後人們所說的「大爆炸理論 The Big Bang Theory」)注入了一劑強心針。

接下來的各種證據,如宇宙微波背景輻射、宇宙中元素的比例等,讓天文學家們越來越確信宇宙的年齡是有限的,並開始利用紙筆與超級電腦,來推測最早、也就是第一代星系及恆星的樣貌,並嘗試用望遠鏡,來尋找早期星系是否和我們預測的相符。

科學家是如何知道距離的呢?

天文學家並沒有一把長達「一百多萬光年」的尺,那他們是如何尋找,並且知道這些早期星系距離我們有多遠呢?讓我們把兩個問題分開,先來探討在宇宙學尺度下的距離是怎麼得到的。

由於我們知道宇宙在膨脹,而這些遠離我們的星系所發出的光,也會因為類似都卜勒效應的影響,有著紅移的現象。而越遠的星系遠離我們的速度越快,它們紅移值也就越大;而從實驗室中,我們知道每種元素都會發出特定的譜線,藉由測量到星系光譜中特定譜線的實際位置,並與那條譜線所該在的位置比較,就能夠計算這些星系的紅移值了。

而結合紅移值和其他測量到的宇宙學參數(例如哈伯常數),就可以從星系的紅移值計算出物理上的距離,比如大家常會看到的「光年」。

星系的紅移(Redshift)與它跟地球的距離(Distance)可以互相換算。圖/林彥興

那既然這樣,我們只要測量所有星系的光譜,不就能知道最遠的星系是哪一個了嗎?可惜事情並沒有這麼簡單。

一來,很多星系(尤其是越遠的星系)都很黯淡,難以測量光譜,二來,測量光譜實際上是又貴又耗時的。所以,以「尋找」的為目的,做單一波段的搜索通常是比較實際的作法。但若是使用單一波段,不就代表我們沒有光譜,這樣不就又不知道距離了?

Well yes, but actually no。大家應該都聽過盲人摸象的故事,透過觀測越多的波段,我們就越能描繪出實際上的光譜,再根據現有的理論模型,我們就可以利用光譜擬合來推論出這些星系的紅移值。

那要如何鎖定這些早期的星系?

天文學家總不可能對每個能測量到的星系都做很多波段的觀測,並且大費周章的利用理論模型去擬合他們。很多特定的望遠鏡(例如 ALMA、JWST)是要寫觀測計畫書和其他天文學家競爭觀測時間的,總要給出一個有力的理由,才能讓你的觀測計劃脫穎而出。

但還沒有資料之前,天文學家要怎麼知道哪個星系是最遠的?這便產生了一個「沒有工作要怎麼有工作經驗」的迴圈。怎麼辦呢?天文學家就是要想辦法,在已經觀測的深空資料庫中去尋找最遠的星系。

哈伯太空望遠鏡拍攝的「哈伯極深空 Hubble Extreme Deep Field」影像。藉由比較圖片中不同紅移的星系的性質,天文學家就能重建出過去百億年來星系的形成與演化歷史。圖/NASA; ESA; G. Illingworth, D. Magee, and P. Oesch, University of California, Santa Cruz; R. Bouwens, Leiden University; and the HUDF09 Team

而要怎麼在龐大的資料庫中尋找遙遠的星系呢?讓我們再次簡單回顧歷史。量子物理在十九世紀末至二十世紀初逐漸開始發展時,瑞士物理學家約翰.巴耳末(Johann Balmer)研究激發態的氫原子所放出的光譜,發現在可見光波段,氫原子只會發射一系列特定波長的譜線。隨後美國物理學家西奧多.萊曼(Theodore Lyman)也接著發現,氫原子從受激態回到基態時,會放出一系列位於紫外線波段的譜線,這些特定的譜線也被稱為萊曼系。

氫原子的各個譜線家族,由上而下分別是位於紫外線的萊曼系,位於可見光的巴耳末系,以及位於紅外線的帕森系。圖/Szdori, OrangeDog

而用來尋找早期星系的第一種方法,也是最主要的搜索方法,就與萊曼系關係密切。天文學家發現,宇宙中有一種名為「萊曼斷裂星系(Lyman-break galaxies; LBGs)」的星系,這種星系的光譜有一個很明顯的特徵,便是在特定的波長以下就幾乎觀測不到,原因是波長更短的光(更高的能量)都被星際物質(Interstellar medium; ISM)和星系際物質(Intergalactic medium; IGM)的中性氫的萊曼線系給吸收了。

而萊曼線系中波長最短的譜線(常稱為萊曼極限)約在 91.2 奈米,最長的萊曼 α 譜線則約在 121.6 奈米。只要透過兩個波長足夠接近的波段去尋找「在長波長有觀測到、但在短波段沒觀測到的天體」(稱為 drop-out),就可以粗略的估計星系的紅移。

舉例來說,如果我們要找紅移值為 9 的萊曼斷裂星系,只需要稍微長於和短於 1216 奈米的兩個波段,看看有沒有星系出現在長波段的影像中,但在短波段的影像中卻沒有出現,就有可能是在紅移值為 9 的萊曼斷裂星系。如果要找越遠的萊曼斷裂星系,只需要換波長較長的波段即可。

近日打破紀錄的最遠星系,也是透過 H-band drop-out(在波長 H 波段沒有觀測到,而較長的波段有)所找出的。

光譜drop-out的例子。圖/Harikane et al (2022)

上圖為近日打破紀錄的最遠星系 HD1 的 H-band drop-out,可以看到長波段:4.5、3.6 微米以及 Ks 波段都有偵測到,但在 H 波段(以及更短波長)的影像就消失不見了。藍色的光譜 z 值為 13.3 的萊曼斷裂模型,灰色的光譜則為可能的低紅移汙染,z=3.9 的巴耳末斷裂模型。

當然,這只能幫助科學家初步的篩選,而且此種方法會受到一些其他非早期星系的汙染。

舉例來說,上文提到氫原子除了萊曼系以外,還有回到第一激發態的巴耳末系。若只是單純地透過 drop-out,因為巴耳末系本身的譜線就比萊曼系來得紅,所以也有可能找到的是紅移值較小的巴耳末斷裂;此外,非常紅且充滿塵埃的星系也會在光譜上出現類似「驟降」的特徵。

當然,更多波段以及光譜的觀測,都有助於釐清這些可能的汙染。而除了上述的方法以外,萊曼 α 發射體(Lyman-alpha emitters; LAEs)、伽瑪射線暴的宿主星系、重力透鏡效應等,也是尋找遙遠星系的重要方法哦!

那麼,找出這些早期星系有什麼科學意義?

現代宇宙學理論認為,宇宙在早期曾經經歷過兩次相變。第一次是宇宙從炙熱的游離態降溫回到中性的氣態,被稱為宇宙的復合時期(Epoch of Recombination),也是大家熟悉的宇宙微波背景的起源;第二次(也是最後一次)的相變,宇宙中的中性氫變成了游離化的氫離子,這個相變的過程被稱為再電離時期(Epoch of Reionization; EoR)。

而目前認為,第二次這個電離的原因,是第一代恆星和第一代星系所發出的強紫外線光,把周圍的中性氫游離成氫離子。藉由尋找越來越多的早期星系,我們就能透過這些早期星系來描繪宇宙再電離時期的歷史,而這又能夠進一步驗證現代宇宙學理論是否正確。不僅如此,研究這些早期星系,可以讓我們對於星系演化的歷史更往前推,或是研究早期星系的超大質量黑洞,是如何長到這麼大等等的議題。

未來展望

在 2021 年底順利升空的詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope; JWST),其中一個主要的科學目標就是研究早期宇宙。如這篇文章一開始提到的「新的最遠的星系(HD-1)」,又如前一陣子發現的「最遠恆星 Earendel」,以及同一團隊的另一個紅移約 11 的星系,都在第一輪 JWST 的觀測計畫之中。

期待幾個月後 JWST 公布的第一批科學照片,能大幅革新我們對早期宇宙的認識。

參考資料(論文們)

延伸閱讀(科普文章)

Tiger Hsiao_96
2 篇文章 ・ 13 位粉絲
現於約翰霍普金斯大學攻讀天文博士。