0

0
0

文字

分享

0
0
0

字母濃湯

科景_96
・2011/02/10 ・584字 ・閱讀時間約 1 分鐘 ・SR值 571 ・九年級

Original publish date:Mar 22, 2007

編輯 wakenstep 報導

 

UCLA的科學家用微影術 (lithography) 做出縮小版的二十六個字母,其寬度比 10μm 還要小,線條寬度僅1 μm,懸浮於水中成為膠體溶液; 字母形狀在光學顯微鏡下能看得一清二楚。

要做出這碗濃湯,首先在磨亮的五吋晶圓上鍍上一層水溶性的高分子,接著覆上一層光阻劑 (photoresist),此光阻劑受到紫外光照射後產生交聯反應 (cross-linking) 而無法被有機溶劑溶解,因此將紫外光過濾成為字母的形狀後照射在晶圓上,再用有機溶劑處理,便可洗掉未曝光的部分而留下字母的形狀。最後再將底層的高分子用水溶掉,字母就可以散佈在水中了。

-----廣告,請繼續往下閱讀-----

這項成果顯示科學家能在微米的尺度下設計出任意形狀的粒子。藉由重複鍍上光阻劑再曝光,更可以操縱第三維的形狀。這些不同形狀的粒子會根據某些規則組織成大的結構 (self-assembly) ,如同生物大分子組成細胞裡各種規則的排列一樣。Self-assembly的過程需要有足夠的布朗運動來促成,一旦科學家有能力製造夠小且不同形狀的粒子,便有希望進一步研究self assembly及細胞內的分子交互作用了。

在光阻劑中參雜螢光染料後,將不同形狀的標記放到細胞上或細胞內,利用螢光顯微鏡來觀察,也會是一個有趣的應用方向。這些膠體粒子可用光學鑷子 (laser tweezer)來移動。請參考 UCLA news圖片中展示的”UCLA”字樣。

原始論文:

“Colloidal Alphabet Soup: Monodisperse Dispersions of Shape-Designed LithoParticles,”
Hernandez, C. J.; Mason, T. G.
J. Phys. Chem. C.; (Letter); 2007; ASAP Article; DOI: 10.1021/jp0672095
Web Release Date: February 13, 2007

-----廣告,請繼續往下閱讀-----

參考來源:

相關連結:

 

文章難易度
科景_96
426 篇文章 ・ 7 位粉絲
Sciscape成立於1999年4月,為一非營利的專業科學新聞網站。

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
鬼月談鬼火(下):鬼火等於磷火?分析鬼火的真正成因
臺北地方異聞工作室_96
・2019/08/15 ・3564字 ・閱讀時間約 7 分鐘 ・SR值 524 ・七年級

文/楊海彥(小波)

上一集,我們回顧了臺灣的鬼火傳說,並歸納出鬼火的幾個特點,分別是:(1)通常在夜裡出沒,(2)在墓地、河畔或是海濱都可能見到,(3)顏色以淡藍色為主,但也有橘紅色的伯公火,(4)火焰的數量可能是一至多個,且(5)有會跟著人跑的紀錄。

可是這樣一來,「屍體骨頭中的磷因高溫自燃產生鬼火」這個說法,似乎就有些站不住腳了。

磷火的幾個疑點

磷質佔人體體重的 1%,一個大約 70 公斤的成年男子,體內大約會有 700 公克左右的磷。其中又以無機鹽類狀態與鈣結合者最多,佔 85%,形成骨骼,牙齒中不溶性的磷灰石。1

-----廣告,請繼續往下閱讀-----

骨骼中的磷的確不少,但鬼火=磷這個解釋這樣就可靠了嗎?Image by Eliane Meyer from Pixabay

一個人能提供 700 公克左右的磷作為鬼火的燃料,這樣的量看來並不少。而磷源自屍體中的骨頭和牙齒,也足以解釋鬼火為何通常在墓地出現,河畔與海濱也可以視為富含水生動物的骸骨。再加上磷的自燃溫度大約攝氏 34 度,越潮濕自燃溫度越低,只要夏天氣溫夠高就可能引發自燃。

磷似乎完美解釋了鬼火如何產生,只是有個問題:磷燃燒的火焰不是淡藍色。

這是國外 Youtuber 拍攝的白磷燃燒的影片。影片中可以看見,白磷燃燒的反應相當激烈,焰色是橘黃色,並伴隨產生大量的濃煙(這也是為什麼白磷是煙霧彈的主要成分),這與目擊描述中幽幽飄盪的淡藍色鬼火一點也不相像。更重要的是,磷並不以純物質的狀態存在於自然界中,因此形成鬼火的不可能是純磷。

-----廣告,請繼續往下閱讀-----

另一個自燃的可能人選是磷化氫(PH3)。這是一種無色、可燃、劇毒的氣體,是屍體分解後的產物之一。一般來說磷化氫沒有味道,但伴隨產生的聯膦(P2H2)具有魚腥或大蒜的臭味,兩者混合時,在空氣中極度容易自燃。

即便如此,磷化氫與聯膦的燃燒一樣既快速又猛烈,與鬼火相去甚遠:

這樣一來,鬼火到底是如何形成的?

鬼火到底是什麼?從古至今都有人在研究

中國早在南宋時期,就有人提出磷與鬼火之間的關係。陸遊《老學庵筆記˙卷四》中提到:「予年十餘歲時,見郊野間鬼火至多,麥苗稻穗之杪往往出火,色正青,俄復不見。蓋是時去兵亂未久,所謂人血為磷者,信不妄也。今則絕不復見,見者輒以為怪矣。」到了清代,紀曉嵐的《閱微草堂筆記˙第九卷》更直接寫道:「磷為鬼火。」

-----廣告,請繼續往下閱讀-----

日治時期的臺灣,正處於日本明治維新後,破除迷信、科學至上的氛圍中,當時漢文臺灣日日新報上也出現了一篇〈捉燐辯惑〉,故事大概是這樣:作者在學校看見鬼火,日人校長便讓眾人一起抓鬼火,沒多久校長抓到了,眾人一看卻只是一片枯葉。正疑惑這怎麼會是鬼火,校長便要大家進到屋內,不一會,枯葉刷地一聲燃燒起來,就像有人摩擦燐石一樣,眾人非常詫異。校長於是趁機教育眾人,鬼火就是燐火,是磷素和水素和合而成。2

看到鬼火也要趁機教化學,這校長也不太容易。(誤)Image by HG-Fotografie from Pixabay

值得一提的是,即使早自宋朝,乃至清朝、日治時期,就已經有人知道鬼火與磷之間的關係,那也是少數知識分子的事,民間對於鬼火的忌諱並沒有減少多少,否則也不會有那麼多鬼火傳說了。

東方是如此,那西方又是如何呢?

-----廣告,請繼續往下閱讀-----

西方解釋鬼火的思路:天然氣?

與東方認為鬼火與磷有關的思路不同,西方人最開始認為鬼火與天然氣有關。

西元 1596 年,一名叫 Ludwig Lavater 的神學家,在其著作《Of Ghostes and Spirites, Walking by Night: And of Straunge Noyses, Crackes, and Sundrie forewarnings, which commonly happen before the death of men: Great Slaughters, and alterations of Kingdomes》(對,書名就是這麼長),書中〈That many naturall things are taken to be ghoasts〉的章節中,便認為鬼火是由富含硫磺的礦脈燃燒導致。3, 4

到了 1776 年,亞歷山德羅˙伏打在讀完一篇由班傑明‧富蘭克林所著,關於「可燃空氣」的論文後研究並發現甲烷。在研究甲烷期間,他提出可能由於自然界中的電,比如閃電,與沼氣中的甲烷反應,才導致鬼火的產生。這個論點被當時的學界廣泛接受。(值得一提的是,亞歷山德羅‧伏打後來發明了世界第一個電池,並且成為今天電勢的單位,伏特。)

世界各地的鬼火焰色跟溫度都有所不同。Image by Waldkunst from Pixabay

-----廣告,請繼續往下閱讀-----

目前為止都只是紙上談兵,要一直到1832年,Louis Blesson才算真正開始對自然界產生的鬼火進行研究。

他到世界各地發生鬼火的地方進行實驗,發覺不同地區的鬼火,焰色與溫度也會不同。此外當他第一次接觸鬼火,便意外發現鬼火會在他接近時後退,並且非常容易被他的呼吸吹動;他必須撇過頭、站定一會,鬼火才回到原位。不只如此,沼氣引發的鬼火在夜晚離地面比較高,越接近黎明就越低,最後消失無蹤3。這兩者很好地解釋了鬼火為何會移動,以及為何只有在夜晚才看得到鬼火。

與鬼火性質最接近的答案:冷焰

1980 年,英國的地理學家 Alan A. Mills,第一次嘗試在實驗室裡複製鬼火。

他混合了油狀的磷化氫與天然氣,成功產生了綠色的火光,然而大量刺鼻煙霧也伴隨產生,與自然界中看到的鬼火實在相差甚遠。但他持續進行研究,直到 2000 年時,重新提出鬼火可能是一種「冷焰」。4

-----廣告,請繼續往下閱讀-----

所謂的冷焰是一種最高溫度低於攝氏 400 度的火焰,通常必須以特定的比例混合燃料與空氣才會產生。與一般火焰不同之處在於,冷焰的燃燒反應並不激烈,且只會釋放些許的光、熱和二氧化碳,這是因為一般的燃燒會將化合物完全分解與氧氣結合,但冷焰的燃燒互相反應的幾乎都是部份分解的化合物自身。冷焰在日常生活中不常見,但卻是引擎發生爆震的主要原因。5

冷焰不僅溫度低、燃燒不劇烈,導致必須在非常暗的地方才可看見,焰色光譜大多落在藍色與紫色之間,更重要的是,天然氣也符合產生冷焰的條件!屍體分解後不僅會產生磷化氫,更會產生大量甲烷,雖然沼氣與天然氣不盡相同,但成分接近的沼氣產生冷焰,是有可能的。

有興趣的話,上面影片就是在實驗室中製造了冷焰。

世界上的鬼火目擊事件眾多,我們無法確認每一起鬼火事件引發的真正原因。不過若是以臺灣來看,根據上一集蒐集的傳說,冷焰已經很好地解釋大部分鬼火的特性。

-----廣告,請繼續往下閱讀-----

總結來說,整個鬼火產生的故事應該是這樣的:墳場或河畔、海濱的屍體腐壞,產生磷化氫聯膦甲烷,因為種種原因,這些氣體逸散出來,甲烷與空氣恰好混合成能夠形成冷焰的比例,磷化氫和聯膦再自燃形成火源,便能產生淡藍色的、幽幽飄盪的鬼火。若是混合的比例不對,單純燃燒甲烷,那便會成為橘紅色的伯公火。

除了冷焰之外,還有其它的解釋

除了冷焰之外,科學家也提出其它鬼火的可能成因。2008 年,義大利的化學家 Luigi Garlaschelli和Paolo Boschetti 提出了「化學發光」的假說;他們將磷化氫與空氣和氮氣混合,製造出一種黯淡的綠色冷光,雖然伴隨著煙霧和臭味,但根據他們的說法,只要調整環境中的溫度、溼度等條件,煙霧和異味都可以消除,而且人眼在黑暗中難以辨別顏色,把綠色看成淡藍色是有可能的。6

此外,還有地質學家提出因地殼變動的「壓電效應」產生的「地電」,以及森林中的生物──比如某些蜜環菌屬的菇類、微生物、昆蟲──所發出的「生物螢光」兩種假說,不過礙於篇幅便不多作介紹。

螢光蕈經過長時間曝光的攝影作品。圖/wiki commons

近代,鬼火的目擊事件越來越少,這不僅是在臺灣,全世界都是一樣。除了因為火葬逐漸取代了土葬,也是因為沼澤與森林被大肆開發,就像失去棲地的動物,鬼火也失去了生成的源頭。過往的神祕傳說,在文明與科技的發展中逐漸消失,彷彿是某種詩意又悲劇的比喻,卻是實在發生的過程。

過去我們常說的「鬼火即磷火」看似科學,實際上卻是過度簡化的解釋,偏偏我們大多數人對此深信不疑。部份的人認為傳統迷信又落後,擁有科學至上的想像,但若是對事物的成因不求甚解,科學和迷信又有什麼不同呢?

資料來源

  1. 維基百科-磷質
  2. 〈捉燐辯惑〉。1907年7月6日,漢文臺灣日日新報。
  3. 《Of Ghostes and Spirites, Walking by Night: And of Straunge Noyses, Crackes, and Sundrie forewarnings, which commonly happen before the death of men: Great Slaughters, and alterations of Kingdomes》,〈That many naturall things are taken to be ghoasts
  4. Wikipedia-Will-o’-the-wisp
  5. Wikipedia-Cool flame
  6. Wikipedia- Chemiluminescence


【作者簡介】楊海彥/
轉換多次跑道,最終決定與朋友們一起開妖怪工作室。目前專注於台灣怪談研究,擅長將台灣文史和民俗轉化為故事,也設計實境遊戲和桌遊。嗜讀奇幻文學,熱愛電影,喜歡咖啡也喜歡茶,養一隻以拿鐵為名的貓。

臺北地方異聞工作室_96
23 篇文章 ・ 256 位粉絲
妖怪就是文化!北地異工作室長期從事臺灣怪談、民俗、文史的考據和研究,並將之轉化成吸引人的故事和遊戲。成員來自政大與臺大奇幻社,從大學時期就開始一起玩實境遊戲和寫小說,熱愛書本、電影和實地考察。 歡迎來我們的臉書專頁追蹤我們的近況~https://www.facebook.com/TPE.Legend

0

0
0

文字

分享

0
0
0
耳朵太差聽不見求偶蛙鳴?南瓜蟾蜍用愛發光找伴侶
彥寧
・2019/07/25 ・2353字 ・閱讀時間約 4 分鐘 ・SR值 466 ・五年級

有時經過河邊或是水溝,仔細靜下來,就能聽見一陣一陣的蛙鳴聲。可是,你知道有些青蛙,是無法用蛙鳴進行溝通的嗎?

通體橘黃,南瓜一樣的小青蛙

世界上的蛙類百百種,有不斷想要侵略藍星的、也有每天都一直跑出門旅行的,不過,我們今天的主角是——鞍背短頭蟾 (Brachycephalus ephippium)。

牠就是本文的主角,鞍背短頭蟾 (Brachycephalus ephippium)。 圖/EurekAlert!

鞍背短頭蟾分布在巴西東南部的山地沿海森林,是一種小型青蛙,具體一點來說,牠真的超級小,成體只有 12.5 到 19.7 毫米,跟我們的手指甲差不多大而已。

-----廣告,請繼續往下閱讀-----

而牠的俗名則是「Pumpkin toadlets」(直翻就是南瓜蟾蜍),顧名思義,牠的體色跟南瓜一樣,全身都是橘黃的喔!而且虹膜也是黑色的,看起來就像裝了一對假的圓滾滾黑色大眼睛,很可愛的樣子。

大家都知道狐狸怎麼叫,那青蛙呢?

大部分的蛙類高度仰賴聲音來進行溝通,有些蛙類在不同的狀況下,還會發出不一樣的叫聲。比如說,當雄蛙或其他種蛙類嘗試找對象進行假交配,卻不小心抱錯蛙時,被抱錯的蛙會發出釋放叫聲 (Release call),而當牠們被敵人抓住時,則會緊急發出求救叫聲 (Distress call)。順帶一提,去網路上搜尋「screaming frog」就能找到大量的青蛙求救叫聲影片合輯,一開始看覺得滿好笑的,不過後來知道那是求救叫聲後,就越看越難過了。

當被敵人抓住時,也些青蛙會發出求救叫聲。那關於這隻青蛙克明, 泛科學也有做過詳細的介紹喔! 圖/uludagsozlukgaleri

不過今天主要要說的是求偶叫聲 (mating call)。有些青蛙在求偶時會發出特定頻率的叫聲,且蛙類能聽到的聲音頻率範圍很窄,對同種類叫聲頻率特別敏感,尤其雌性常利用叫聲來確定雄性的位置,並選擇適當的交配對象。

-----廣告,請繼續往下閱讀-----

那青蛙是怎麼聽到聲音的呢?鼓膜就像是蛙類的耳朵,而鼓膜內面連著耳柱骨 (columella),耳柱骨是兩爬類與鳥類的聽小骨,能將聲音傳入內耳的感覺細胞,再刺激大腦產生聽覺。

聽不見彼此,蟾蜍的愛情也可以很安靜

令人震驚的是,根據一篇 2017 年的解剖結果顯示,鞍背短頭蟾和另一種同一屬的青蛙並沒有中耳骨可以將聲波傳進內耳。所以其實鞍背短頭蟾對同種之間的求偶叫聲非常不靈敏,甚至接近聽不見!

這就奇怪了,既然聽不見,那為甚麼南瓜蟾蜍還要白做工,繼續發出求偶叫聲呢?

聽不見彼此聲音的鞍背短頭蟾,只好轉而仰賴視覺來溝通了。因此,研究團隊推斷,發出求偶叫聲這個行為,之所以沒有隨著演化消失的原因,可能是由於發出叫聲時,蟾蜍的鳴囊也會跟著震動,異性就可以藉由看見鳴囊的震動來判斷「噢!原來牠正在求偶。」

另一方面,南瓜蟾蜍求偶的季節正是沿海森林的雨季!這下子,牠們真的只能聽見下雨的聲音,還用唇語(鳴囊語?)說愛情了呢XD

-----廣告,請繼續往下閱讀-----

在雨季期間求偶的南瓜蟾蜍真的只能聽見下雨的聲音,還用唇語說愛情,幸福也可以很安靜。 圖/Darius Krause@Pexels

你可能會想,在一整座下雨的森林中,單單只靠鳴囊震動,是絕對不夠讓南瓜蟾蜍在茫茫落葉海中,找到彼此的身影的!許多科學家及生物學家在發現牠們聽不見彼此的求偶叫聲後,也是這樣想的:「究竟他們是靠甚麼來溝通的呢?」

直到研究團隊用紫外線照了鞍背短頭蟾,一切的謎終於被解開了:發光的骨頭

深埋在骨頭裡的光芒

骨頭、發光……聽起來好像是有那麼一點,中二?

-----廣告,請繼續往下閱讀-----

不過這可是大發現!研究團隊發現,鞍背短頭蟾的頭部、背部、關節處、手指和腳趾在紫外線的照射下,都發出了螢光!大部分生物發光的原因都是由於化學變化,不過,南瓜蟾蜍骨頭發光的原理可不一樣,是因為骨頭的分子能將光反射,且反射光的波長更長。

同時,鞍背短頭蟾的皮膚也非常非常薄,成體的皮膚厚度大約只有 7 微米而已!如此薄的皮膚,才能讓骨頭的螢光順利透出來。

鞍背短頭蟾的頭部、背部、關節處、手指和腳趾在紫外線的照射下,都發出了螢光。 圖/The National

至於另一種我們常常想到的「發光生物」──螢火蟲,牠們的發光原理,就是典型的化學反應喔!螢火蟲的發光原理和發光蕈類大同小異,泛科學也有介紹過喔!

-----廣告,請繼續往下閱讀-----

發光的骨頭除了能求偶,還能做什麼啊?

關於鞍背短頭蟾的發光現象,還有一點很有趣,那就是年紀比較小的蛙發出來的螢光是偏藍色的,隨著年齡增長與皮膚增厚,螢光會漸漸變黃。研究團隊推斷,發出不同顏色螢光的原因,可能就是骨頭的膠原蛋白含量不同。(作者 OS:搞不好能透過螢光就能看出南瓜蟾蜍的年紀呢!)

另一方面,發光的骨頭不只有求偶作用。

對一些鞍背短頭蟾的掠食者(鳥類和蜘蛛)來說,紫外線都是可見光,意思就是南瓜蟾蜍平常骨頭的螢光,能對掠食者造成警示的效果喔!

原來,蛙兒們就算聽不見彼此的聲音,也能靠著發光找到對方,聽起來是不是有點浪漫呢?

-----廣告,請繼續往下閱讀-----

鞍背短頭蟾骨頭的螢光能對掠食者造成警示的效果。 圖/NYU Abu Dhabi Postdoctoral Associate Sandra Goutte

參考資料

  1. The National – Abu Dhabi researchers discover toad’s ability to glow in the dark
  1. Amphibia Web – Brachycephalus ephippium
  1. 維基百科 – Pumpkin toadlet
  1. 楊懿如的青蛙學堂 – 鳴叫
  1. Types of frog calls
  1. 維基百科 – 耳柱骨
  1. Scientific Reports – Evidence of auditory insensitivity to vocalization frequencies in two frogs
  2. Science News – Tiny pumpkin toadlets have glowing bony plates on their backs
彥寧
7 篇文章 ・ 1 位粉絲
比起鯛魚燒,我更喜歡章魚燒。