0

0
0

文字

分享

0
0
0

快樂具有感染力嗎?從2010年冬季奧運的推特(Twitter)看起(上)

鄭國威 Portnoy_96
・2011/01/10 ・1135字 ・閱讀時間約 2 分鐘 ・SR值 569 ・九年級
相關標籤: 加拿大 (6)

-----廣告,請繼續往下閱讀-----

推特等社群網站上已經成為重要研究範疇

推特(Twitter)上什麼樣的訊息比較容易被轉推(retweet)呢?Anatoliy Gruzd(部落客),Sophie Dorion 與 Philip Mai 幾位研究者針對46,097則有關於2010年冬季奧運的推特訊息進行分析,發現正面積極的推比負面批評的推更容易被轉推

….我很想就這樣把這篇文章結束。但我不行;看完這篇論文(pdf)之後,我發現其實這篇論文除了研究結果以外,在研究方法上還有不少有趣的重點,值得我更詳細介紹。

快樂有感染力嗎?如果我們說的是所在位置很近,彼此之間有極強社會連結的人們,答案是「有」;但是如果我們現在談論的是位在天南地北,彼此之間可能根本不認識,也沒有見面過的一群人呢?這就是這三位研究者想知道的,他們選定推特作為研究場域,因為在推特上,每分每秒都有大量訊息噴發,用戶之間的連結也十分清楚(透過follow機制)。研究問題包括:

  • 如何自動化評估推訊的正面積極或負面消極程度?
  • 推特使用者傾向於發布正面訊息還是負面訊息?
  • 正面訊息是否比負面訊息來得更常被轉推?
  • 推特用戶在網絡中的位置是否可以用來判斷其發表正面或負面訊息的傾向?

有網路研究者將網路空間視為工作與家庭之外的「第三地」(the third place),取代了網路蓬勃發展之前的咖啡廳或是榕樹下;而網路也漸漸成為家庭價值轉變,工作環境原子化之後,一個讓人找到歸屬感,參與感,降低人際疏離焦慮的最直覺選擇。所以透過參與網路社群可以獲得「快樂」這件事基本上已獲得證實,但這種快樂能同樣具有感染力嗎?這就要看我們怎麼測量「快樂」了。過往測量網路上的快樂主要透過問卷調查,或是網路內容分析,兩種方式都對大量訊息沒轍(除非能請幾百幾千個研究助理…),於是能夠判斷意見跟情感的自動文本分析系統成為研究者首選,準確率可比人肉coder。

-----廣告,請繼續往下閱讀-----

以2010年冬季奧運作為案例是有原因的,首先,因為三位研究者都是加拿大人,如果你還記得,當時不少網路評論家都認為這場奧運是社會媒體跟公民記者全面取代主流媒體的一場大型運動賽事,而且比賽總是伴隨著許多豐沛的情緒(不管是替選手加油還是臭罵對手),所以推訊裡的感情也會比較容易判斷。研究者從去年2月12號,也就是冬奧開幕日起,收集推訊到冬奧結束後幾天的3月4號。透過Twitter的開放API,每小時擷取一百則提到奧運(Olympics)的訊息,總共收集了46097則訊息。

Gruzd等人用的自動文本分析系統是SentiStrength(v2.1),由Wolverhampton大學的教授跟學生共同開發,可免費下載使用,而且判斷效度高。透過SentiStrength,電腦可以根據訊息中的情感,給每則推訊正面(1到5)以及負面(-1到-5)的分數,這麼做的原因是因為一則推訊可能包含正面情緒跟負面情緒(例如,「冬季奧運開幕式好精彩!但是我們國家代表隊的服裝好遜!」),所以研究者把兩個數值相加,1到-1都被視為「中性」,2以上或-2以下才被視為正面訊息或負面訊息。

(待續)

文章難易度
鄭國威 Portnoy_96
247 篇文章 ・ 1256 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。現為泛科知識公司的知識長。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

2
0

文字

分享

1
2
0
環境 DNA 猛獁象現蹤,化石消失幾千年後才真正滅團?
寒波_96
・2023/01/13 ・3575字 ・閱讀時間約 7 分鐘

一萬多年前冰河時期結束後,許多地方的生態系明顯改變,例如歐亞大陸和美洲的猛獁象都滅絕了,僅有少少倖存者,殘存於北冰洋的小島一直到 4000 年前。

上述認知來自對化石遺骸的判斷,可是最近由環境沉積物中取樣古代 DNA 分析,卻指出猛獁象等幾種生物,在亞洲和美洲大陸其實又延續了好幾千年。這些證據可靠嗎,猛獁象到底什麼時候滅絕?

距今 200 萬前的格陵蘭,生態想像圖。圖/Beth Zaikenjpg

古時候的環境 DNA,創下 200 萬年紀錄

DNA 原本位於生物的細胞之內,生態系中有很多生物,時時刻刻留下各自的 DNA,從土壤、水域等來源取樣分析所謂的「環境 DNA」(environmental DNA,可簡稱為 eDNA),能得知環境中包含哪些生物。

如果環境樣本能保存成千上萬年,那麼定序其中的 DNA 片段,再加上化石、花粉等不同線索,便有希望窺見古時候的生態系。

-----廣告,請繼續往下閱讀-----

威勒斯勒夫(Eske Willerslev)率領的一項研究,藉由此法重現來自格陵蘭沉積層,距今 200 萬年之久的 DNA 片段,2022 年底發表時成為年代最古早的 DNA 紀錄,也得知當年存在格陵蘭的眾多植物與動物。[參考資料 5]

最出乎意料的莫過於乳齒象(mastodon),由於缺乏化石,古生物學家一直認為那時候的乳齒象,並未棲息於這麼北的地帶,此一發現充分展示出古代環境 DNA 的價值。然而 DNA 的探索範圍也明顯有侷限,例如該地區出土超過 200 個物種的昆蟲化石,DNA 卻只能偵測到 2 種。

猛獁象化石無存後幾千年,依然有留下 DNA

當時間尺度是百萬年時,實際是 200 萬 3300 年或是 199 萬 8700 年,也就是 200.33 或 199.87 萬,幾千年的誤差範圍無關緊要。但是當探討對象是最近一萬年,猛獁象的 DNA 究竟存在於 9000 或 6000 年前,意義就差別很大。

這兒的「猛獁象」都是指真猛獁象(woolly mammoth,學名 Mammuthus primigenius)。由另一位古代 DNA 名家波因納(Hendrik Poinar)和威勒斯勒夫各自率隊,同在 2021 年底發表的論文獲得類似結論:猛獁象化石消失的幾千年後,沉積物中仍然能見到 DNA,可見還有個體又存續幾千年。[參考資料 1, 2]

-----廣告,請繼續往下閱讀-----
威勒斯勒夫主導論文的取材地點。以北極為中心,視角和台灣人習慣的地圖很不一樣。圖/參考資料 2

波因納率領的研究探討白令東部,也就是如今加拿大的育空地區,距今 4000 到 3 萬年前的沉積層;結論是原本認為早已消失的美洲馬、猛獁象,一直延續到 5700 年前。威勒斯勒夫戰隊取材的地理範圍廣得多,包括西伯利亞西北部、中部、東北部、北美洲、北大西洋,判斷猛獁象生存到 3900 年前。

更詳細看,威勒斯勒夫主導的論文指出,猛獁象在西伯利亞東北部最後現蹤於 7300 年前,西伯利亞中北部的泰梅爾半島(Taimyr Peninsula)為 3900 年前,此一年代和北冰洋的外島:弗蘭格爾島(Wrangel)之化石紀錄相去不遠。而北美洲則是 8600 年前,比波因納戰隊的 5700 年更早。

如果兩隊人馬的判斷都正確,意思是猛獁象(與某些大型動物)在北美洲延續到 5700 年前,在亞洲大陸與外島到 3900 年;比起當地出土最晚化石的時間,皆更晚數千年。

只有 DNA 不見化石,會不會是死掉好幾千年仍一直外流 DNA?

根據化石紀錄,冰河時期結束後,仍有少少生還的猛獁象在弗蘭格爾島一直延續到 4000 年前。由此想來,當大多數同類已經滅團時,某些地點還有孤立的小團體延續,並不意外。只是我們不見得能見到化石。

-----廣告,請繼續往下閱讀-----

然而,威勒斯勒夫主導的論文受到挑戰。質疑者提出,猛獁象這類動物住在寒冷的環境,去世後遺體如果被冷凍保存,又持續緩慢解凍,在接下來的幾千年便有可能不斷釋出新鮮的 DNA,讓我們誤以為仍有活體。[參考資料 3]

舉個極端狀況。假如 2 萬年前死亡的猛獁象,去世後一直冷凍在冰層中,現在被我們取出解凍,也許其中仍保有不少生猛 DNA,可是實際上牠已經去世很久了。

上述質疑,應該是這類研究手法共通的潛在問題。發生在一百萬年前無關緊要,一萬年內卻會導致不小的誤判。

喔~~喔喔~~喔喔~~喔喔~爪爪

-----廣告,請繼續往下閱讀-----
距今 1 萬多年前的育空,生態想像圖。圖/Julius Csotonyi

化石消失的時刻,往往比生物滅團更早

威勒斯勒夫戰隊則回應表示:論文結論沒有問題,沈積層中取得的古代 DNA 確實來自那時在世的動物。我覺得不論觀點是否正確,回應的思路都值得瞧瞧。[參考資料 4]

為什麼動物依然存在時,見不到當時的化石紀錄?主因是動物去世後,只有極低比例的個體會變成化石。一種動物在滅團以前,通常個體數目持續降低,少到一個程度後,還能留下化石的機率已逼近 0 。所以化石紀錄最後的時間點,早於動物實際消失的年代。

和化石相比,動物遺留 DNA 的機率遠高於化石。活生生的動物就會持續排放 DNA,死亡身體分解後又會釋出不少; DNA 未必會留在原本生活的地點,不過如今的偵測技術足夠敏銳,即使只有幾段也有機會抓到。

猛獁象,活的!

是否有可能,猛獁象去世幾千年仍持續釋出 DNA 片段?的確無法排除可能性。不過這項研究中有 4 個方向,支持沉積層之 DNA 源於族群規模大減,卻依然活跳跳的猛獁象。

-----廣告,請繼續往下閱讀-----
不同時間,各地猛獁象的粒線體 DNA 型號。可以看出趨勢是,猛獁象分佈的範圍愈來愈窄,遺傳型號也愈來愈少。圖/參考資料 2

第一,如果環境中的 DNA 來自死亡多時的動物,那麼各地區應該都會見到類似現象。實際上只在少部分取樣地點偵測到。

第二,假如猛獁象遺骸緩慢分解,DNA 持續進入沉積層,同一地點的不同取樣應該都能見到。可是同一處地點,只有少數樣本能抓到猛獁象 DNA。

第三,不同沉積層取得的環境樣本,包含當時生態系中很多生物的 DNA。存在猛獁象 DNA 的樣本,也能見到適合猛獁象生態系的其他植物;表示猛獁象的命運,很可能與適合牠們生活的環境同進退。

第四,倘若較晚沉積層的猛獁象 DNA,直接源自較早去世的個體,遺傳多樣性應該不會變化。然而較晚出現的粒線體型號明顯變少,後來只剩下一款。

-----廣告,請繼續往下閱讀-----

實際狀況沒人可以肯定。我覺得前三點,都涉及樣本保存的潛在問題,干擾因素較多。第四點大概是最有力的證據,支持環境沉積物中留下的 DNA 並非源於死象遺骸,而是活體猛獁象。

研究日新月異,腦袋也要趕上

科學研究日新月異,不少人見到論文寫什麼就信以為真,卻不了解做研究其實有很多限制,即使是結論「正確」的論文,也會處處碰到解釋的侷限。

持續搜集證據,反覆思考才能進步。腦袋要靈活運用,但是也不要胡亂腦補!

延伸閱讀

參考資料

  1. Murchie, T. J., Monteath, A. J., Mahony, M. E., Long, G. S., Cocker, S., Sadoway, T., … & Poinar, H. N. (2021). Collapse of the mammoth-steppe in central Yukon as revealed by ancient environmental DNA. Nature Communications, 12(1), 1-18.
  2. Wang, Y., Pedersen, M. W., Alsos, I. G., De Sanctis, B., Racimo, F., Prohaska, A., … & Willerslev, E. (2021). Late Quaternary dynamics of Arctic biota from ancient environmental genomics. Nature, 600(7887), 86-92.
  3. When did mammoths go extinct?
  4. Reply to: When did mammoths go extinct?
  5. Kjær, K. H., Winther Pedersen, M., De Sanctis, B., De Cahsan, B., Korneliussen, T. S., Michelsen, C. S., … & Willerslev, E. (2022). A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA. Nature, 612(7939), 283-291.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
所有討論 1
寒波_96
193 篇文章 ・ 1066 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

3
1

文字

分享

0
3
1
陳建仁和6國專家的COVID-19經驗與展望
寒波_96
・2020/12/26 ・1885字 ・閱讀時間約 3 分鐘 ・SR值 552 ・八年級

-----廣告,請繼續往下閱讀-----

科學媒體 Nature 刊出文章《2020年世界各地的科學顧問 (Science advisers around the world on 2020) 》,請到 7 個國家的科學顧問,各自介紹該國 COVID-19(武漢肺炎、新冠肺炎)的防疫經驗與展望。陳建仁也代表台灣在列。

台灣代表陳建仁。圖/胡佛研究所

陳建仁:隔離犧牲14天自由,換來2300萬人如常生活

陳建仁文章標題叫作《台灣:我們由 SARS 學習 (TAIWAN: We learnt from SARS) 》,開頭就提到台灣 1 月時試圖促使 WHO 和中國採取行動,阻止疫情擴大,卻無功而返。還特別提及 WHO 太遲宣告而廣受批評的「國際公共衛生緊急事件 (PHEIC) 」,陳建仁顯然有意提醒世界:別遺忘這回事。

陳建仁接下來介紹台灣防疫的作法與成功經驗,也就是各位都很熟悉的那些事。他特別提到台灣無需大尺度的封城與普篩,依然在 4 月 13 日以後根絕本土感染(直到 12 月才破功)。最後強調專業精神和政治中立,能贏得公眾信任,讓防疫得以順利運作。

資源短缺,決策混亂,各國在逆境中摸索前進

其餘 6 國是迦納(非洲西部)、比利時、立陶宛(歐洲)、哥斯大黎加、玻利維亞(南美洲)、加拿大(北美洲)的代表。他們和陳建仁一樣,都是該國政府的高級顧問,所有人都提到國際或國內政治面的議題,反映各國有別的國情。

-----廣告,請繼續往下閱讀-----
立陶宛代表 Ligita Jancoriene。圖/Delfi

立陶宛代表 Ligita Jancoriene 寫得很動人,將自己國家過去、現在、未來將面臨的困境,很生動地呈現給世界知曉。

她第一句就表示,瘟疫帶來的影響,令他們有戰爭的感覺,就像過去蘇聯帶來的苦難(類似陳建仁第一句就直接批評 WHO 和中國)。疫情擴大後,立陶宛有限的資源很快耗盡,必需盡快重整旗鼓,補充與調度資源,否則將輸掉戰爭。

比利時代表是 7 位中,唯一完全沒有提及外國的。他主要抱怨比利時的醫療資源不足,決策與政治層面混亂,不過明年應該會更好。

迦納代表則散發正能量,提到迦納很快建立檢驗體系,疫情也不嚴重,不過仍有初期決策混亂等問題可以改善。這次還不錯,之後要更好!

-----廣告,請繼續往下閱讀-----

加拿大代表散發的正能量有些過度,他強調加拿大決策非常科學,還批判「美洲其他地區」跟我國有明顯差異……美洲其他地區肯定包括美國和巴西。

玻利維亞代表 Mohammed A. Mostajo-Radji。圖/boliviaemprende

哥斯大黎加代表沒有寫外國壞話,她行文主要呈現自己個人的功績,也花不少篇幅批評國內的對手,順便提到決策圈中的女生太少。

我認為玻利維亞代表 Mohammed A. Mostajo-Radji 和陳建仁寫得最具體,也特別值得一讀。

這位只有 31 歲的專家擺出苦旦姿態,強調玻利維亞的醫療體系與公衛狀況都極為糟糕,資源短缺,登革熱與麻疹仍在橫行之下,國內政治面的應對卻十分差勁 ,地方政府不回報,鄰居巴西、秘魯、阿根廷、智利疫情還非常嚴重。玻利維亞只能採取十分嚴格的封城管制,結果感染率非常低……我們不是魯蛇!

-----廣告,請繼續往下閱讀-----

延伸閱讀

參考資料

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
193 篇文章 ・ 1066 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

0
0

文字

分享

0
0
0
快樂具有感染力嗎?從2010年冬季奧運的推特(Twitter)看起(上)
鄭國威 Portnoy_96
・2011/01/10 ・1135字 ・閱讀時間約 2 分鐘 ・SR值 569 ・九年級
相關標籤: 加拿大 (6)

-----廣告,請繼續往下閱讀-----

推特等社群網站上已經成為重要研究範疇

推特(Twitter)上什麼樣的訊息比較容易被轉推(retweet)呢?Anatoliy Gruzd(部落客),Sophie Dorion 與 Philip Mai 幾位研究者針對46,097則有關於2010年冬季奧運的推特訊息進行分析,發現正面積極的推比負面批評的推更容易被轉推

….我很想就這樣把這篇文章結束。但我不行;看完這篇論文(pdf)之後,我發現其實這篇論文除了研究結果以外,在研究方法上還有不少有趣的重點,值得我更詳細介紹。

快樂有感染力嗎?如果我們說的是所在位置很近,彼此之間有極強社會連結的人們,答案是「有」;但是如果我們現在談論的是位在天南地北,彼此之間可能根本不認識,也沒有見面過的一群人呢?這就是這三位研究者想知道的,他們選定推特作為研究場域,因為在推特上,每分每秒都有大量訊息噴發,用戶之間的連結也十分清楚(透過follow機制)。研究問題包括:

-----廣告,請繼續往下閱讀-----
  • 如何自動化評估推訊的正面積極或負面消極程度?
  • 推特使用者傾向於發布正面訊息還是負面訊息?
  • 正面訊息是否比負面訊息來得更常被轉推?
  • 推特用戶在網絡中的位置是否可以用來判斷其發表正面或負面訊息的傾向?

有網路研究者將網路空間視為工作與家庭之外的「第三地」(the third place),取代了網路蓬勃發展之前的咖啡廳或是榕樹下;而網路也漸漸成為家庭價值轉變,工作環境原子化之後,一個讓人找到歸屬感,參與感,降低人際疏離焦慮的最直覺選擇。所以透過參與網路社群可以獲得「快樂」這件事基本上已獲得證實,但這種快樂能同樣具有感染力嗎?這就要看我們怎麼測量「快樂」了。過往測量網路上的快樂主要透過問卷調查,或是網路內容分析,兩種方式都對大量訊息沒轍(除非能請幾百幾千個研究助理…),於是能夠判斷意見跟情感的自動文本分析系統成為研究者首選,準確率可比人肉coder。

以2010年冬季奧運作為案例是有原因的,首先,因為三位研究者都是加拿大人,如果你還記得,當時不少網路評論家都認為這場奧運是社會媒體跟公民記者全面取代主流媒體的一場大型運動賽事,而且比賽總是伴隨著許多豐沛的情緒(不管是替選手加油還是臭罵對手),所以推訊裡的感情也會比較容易判斷。研究者從去年2月12號,也就是冬奧開幕日起,收集推訊到冬奧結束後幾天的3月4號。透過Twitter的開放API,每小時擷取一百則提到奧運(Olympics)的訊息,總共收集了46097則訊息。

Gruzd等人用的自動文本分析系統是SentiStrength(v2.1),由Wolverhampton大學的教授跟學生共同開發,可免費下載使用,而且判斷效度高。透過SentiStrength,電腦可以根據訊息中的情感,給每則推訊正面(1到5)以及負面(-1到-5)的分數,這麼做的原因是因為一則推訊可能包含正面情緒跟負面情緒(例如,「冬季奧運開幕式好精彩!但是我們國家代表隊的服裝好遜!」),所以研究者把兩個數值相加,1到-1都被視為「中性」,2以上或-2以下才被視為正面訊息或負面訊息。

(待續)

-----廣告,請繼續往下閱讀-----
文章難易度
鄭國威 Portnoy_96
247 篇文章 ・ 1256 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。現為泛科知識公司的知識長。