0

0
0

文字

分享

0
0
0

也談「電動汽車值得發展嗎?」

科學月刊_96
・2013/10/08 ・1183字 ・閱讀時間約 2 分鐘 ・SR值 486 ・五年級

4555163751_a675a93a10_z
圖片來源:The U.S. Army@flickr, CC.

文/曲建仲

拜讀科月七月號本欄目賴昭正教授大作〈電動汽車值得發展嗎?〉,筆者也想談談這個問題,就教於賴教授及廣大讀者。

賴教授以化學的關點,認為電動汽車在能源的利用上並無多大益處。電動汽車是使用純電池能源來推動汽車,電池的能源那裡來呢?當然必須充電,就像我們平常在替手機或平板電腦充電一樣。那麼,這個電又是從那裡來的呢?答案很簡單,它是由發電廠產生的,不論火力或核能發電,都必須使用內燃機或外燃機,它的能量轉換效率只有大約20%左右,而且都會產生污染,我們再用這種污染郊區產生的電來對電動汽車充電,那不就只是將空氣汙染由市區轉換到郊外而已嗎?以化學的觀點這是對的,是很棒的見解,但是這個觀點忽略了科技產業與工程電力系統的複雜性

目前我們電力系統的負載(電力消耗)在白天和晚上是不同的,以民國100年為例,白天的尖峰用電負載大約33000 MW(百萬瓦),但是晚上離峰用電負載大約24000 MW,換句話說,大部分的電力都是在白天大家上班或工廠上工時消耗掉的,而晚上大家都在睡覺,城市一片漆黑,用電量只有白天的70%而已。問題是,目前我們的發電系統,不論是火力或核能發電的輸出電力大約是固定的,因為發電廠沒辦法在晚上將蒸氣機或核子反應爐關閉。在工廠裡,要關閉蒸氣機或反應爐可是一件大事,一旦關閉再開啟,有一段時間輸出的能量無法利用,前後可能要數小時甚至數天的時間才能恢復正常運作,中間的能源與金錢損失是很鉅大的,這就是為什麼日本311大地震明明地震已經很嚴重,東京電力公司卻沒有立刻關閉核子反應爐檢修,才會被30分鐘後來的海嘯造成核子災難。

-----廣告,請繼續往下閱讀-----

前面說明的意思很簡單,目前我們電力系統在晚上有30%的電量是被「浪費掉」的,以目前的技術,仍然無法有效的將這30%的能量回收,與其浪費掉,為什麼不拿來替電動汽車充電呢?白天我們開車出門,晚上回家恰好用這30%浪費掉的能量來充電呀!所以電動汽車的使用,並不會造成發電廠必須產生更多的電,相反的,電動汽車可以回收晚上這30%浪費掉的電,還可以減少汽油燃燒與空氣污染,可是一舉兩得的呢!

問題是,目前電池技術還不成熟,充飽一次電池可以行駛的距離不夠遠,而且電池的能量密度太低,體積大又笨重,造成汽車行駛時浪費了許多能源在載這個電池前進,此外,目前的電力系統(變電箱)無法負荷每戶人家晚上在停車場充電時所需要的大電流,再加上電池充電時間太長,不符合我們在加油站可以快速加油的生活習慣,針對這個問題,雖然有廠商提出以「更換電池」取代「充電」,但是要在加油站更換400公斤的電池可不是一件容易的事呢!因此電動汽車產業目前仍然有許多困難有待克服,依照目前的技術,只有油電混合車能夠減少汽油消耗與空氣污染,又可以快速加油不必改變大家的生活習慣,因此油電混合車在未來的成長是可以預期的。

曲建仲:任職美商德州儀器公司

原文刊載於科學月刊第四十四卷第九期

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3694 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
0

文字

分享

0
1
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
205 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

6
2

文字

分享

0
6
2
綠能當道,敢不談發展電動車嗎?
賴昭正_96
・2024/02/09 ・7388字 ・閱讀時間約 15 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

在我看來,一位只讀報紙和當代作家書籍的人就像一個蔑視眼鏡的極度近視眼人:他完全依賴他那個時代的偏見和時尚,因為他永遠看不到或聽到任何其它東西。

——愛因斯坦(1879-1955)1921 年諾貝爾物理獎

2013 年 7 月,筆者在《科學月刊》之「大家談科學」專欄裡指出:電動車還是需要能量的,因此在考慮發展電動車時,必須同時考慮其能量來源的效率。如果發電廠的發電效率與直接燃燒汽油的汽車效率一樣(見「附錄-熱力學」),那麼發展電動車實質上的優勢只是將環境污染移到鄉下而已。該短文一出現後,立即有讀者分別在《科學月刊》及網際網路上反應,提出電動車的好處,應該發展;為此筆者又寫了兩篇有關發展電動車可能碰到的問題(詳情請參閱《我愛科學》)。

兩年半後(2016 年 2 月 21 日),筆者又在第 1666 期《世界週刊》提出;中國為燃煤發電的大國,要產生同樣的能量,燃煤所排放的二氧化硫、重金屬(水銀、鉛、鎘、及砷等)及懸浮顆粒(現代汽油車的廢氣中已幾乎不再出現)對人體的健康有巨大的負面影響,因此在未改變整個發電結構之前,在中國大量使用電動車不僅不能「減少空氣污染」,反而會對整個環境造成更大的災害。加上可設置私人充電樁的私宅少,電動車不可能普及化,因此「中國不適合發展電動汽車」。同樣地,此短文一出,立即有讀者反駁,謂中國不能落後,必須跟其它國家一樣,積極發展電動車。

中國現在已成為全球最大的電動車製造商及市場;截至今年(2023年)9 月,純電動車佔中國汽車銷量 25%。在全世界到處均在高喊發展電動汽車的此時,顯然筆者是錯了!真的嗎?在回答這問題之前,因為可以幫助我們了解電動車的銷售,讓我們在這裡先來複習一下電動車發展的簡史吧。因本文涉及不少時間點(如今年、現在),請讀者注意本文完稿於 2023 年 12 月 19 日。

電動車的發展

1895年的電動汽車。圖/wikimedia

電動車當然不是一個新概念;事實上早在 1830 年代,第一輛電動車就已經被開發出來。而在台灣,筆者 1975 年暑「放棄高薪」從義大利回到清華化學系時,當時的工學院院長毛高文就已經積極在推動電動車的研發:1974 年首度發表自製電動車「清華一號」,從新竹走省道一路開到台北,開啟了國內電動車研發的先河。然而,由於各種原因,包括豐富的汽油和缺乏可靠的電池,電動車一直沒有商業化。電動車的真正復興發生於 21 世紀初鋰離子電池的發現與成熟 1。下面可以說是全世界電動車普化的兩個轉捩點:

-----廣告,請繼續往下閱讀-----

第一個轉捩點是日本豐田普銳斯(Priuse)的推出。普銳斯於 1997 年在日本發布,成為世界上第一款量產的混合動力電動車(同時使用電池與汽油,完全不用插電,內燃機提供電源;詳情請參考《我愛科學》之「混動車值得發展嗎」);2000 年,普銳斯在全球發布,一推出就獲得了名人的青睞,從而提高了該車的知名度。從那時起,不斷上漲的汽油價格和對碳污染的日益關注,使普銳斯成為全球最暢銷的混合動力車。

另一個幫助重矗電動車的事件是 2006 年矽谷一家小型新創公司。特斯拉(Tesla)汽車公司從美國能源部貸款計畫辦公室獲得了 4.65 億美元的貸款,在加州建立製造工廠;於 2010 年宣布將開始生產一款一次充電可行駛超過 200 英里的豪華電動跑車。此後不久,特斯拉就因其汽車贏得了廣泛讚譽,成為加州最大的汽車行業雇主。特斯拉的成功、日益受到關注的全球氣候溫度上升、加上政府政策的推動與大量金錢補助(特斯拉幾十億及購車者),電動車開始變得更主流,迫使許多大型汽車製造商加速開發自己的電動車,甚至決定放棄傳統汽車的製造!

特斯拉汽車公司的創立

現在一談到電動車,似乎不能不談特斯拉。而一談到特斯拉,似乎便不能不談充滿爭議性、全世界最富有的馬斯克(Elon Musk):相信很多讀者都以為他是特斯拉的創辦人,但事實上他只是提供創辦資金,不是創辦人!

馬斯克(Elon Musk)。圖/wikimedia

現在廣為人知的故事是 2003 年時,艾伯哈德(Martin Eberhard)和塔彭寧(Marc Tarpenning)為了要為他們剛剛成立的新公司收集消費者數據,開車在美國最富有之一郊區、史丹佛大學所在地的帕洛阿爾託(Palo Alto)街道上來回走動,觀察其居民擁有哪些類型的汽車。他們發現在價值 200 萬美元的房屋前,總是停著一輛豪華轎車和一輛當時環保寵兒的普銳斯。因此他們認為環保主義已經來到了富人家門口,可以開始向少數的富人出售電動車,希望最終會滲透到中產階級。他們以塞爾維亞裔美國發明家特斯拉(Nikola Tesla)命名,成立了特斯拉汽車公司。該公司的資金來源中最著名的就是貝寶(PayPal)控股公司聯合創始人馬斯克。馬斯克為這家新企業提供了超過 3000 萬美元的資金,從 2004 年開始擔任該公司董事長;2008 年艾伯哈德和塔彭寧兩人離職後,馬斯克接任執行長。

-----廣告,請繼續往下閱讀-----

特斯拉公司於 2010 年上市;2020 年開始賺錢 2 時,其股票市值首次超過了通用汽車公司和福特汽車的總市值。

炫耀性保護

艾伯哈德和塔彭寧相信因為環保主義的抬頭, 富人會買電動車來展示其綠色美德的現象,經濟學家稱為「炫耀性保護」(conspicuous conservation);他們也相信這最終還是會滲透到中產階級的。果然不錯,富有的愛好者競相排隊購買特斯拉,使得其市值在 2021 年曾經一度超過 1.2 兆美元 3,成為世界上最有價值的公司之一。歲月匆匆,艾伯哈德和塔彭寧所盼望之慢慢普及的時候似乎應該到了,但卻沒有發生!顯然中產階級消費者就是不合作:他們似乎像筆者一樣,對於如何處理收入有自己的想法,他們需要汽車來上班、購物、帶小孩上學、度假、⋯⋯,他們沒有必要、也負擔不起購買一輛昂貴且不實用的電動車來炫耀。

注意電動車發展的讀者應該都已注意到:最近(2023 年 11 月)報章雜誌都開始報導電動車銷量在一年前就已經開始放緩,促使許多電動車製造商大幅降價,並在第一季引發價格戰。電動車的需求雖然還在擴張,但成長速度已大幅放緩。根據《華爾街日報》報道,繼去年上半年全球成長 63% 後,今年同期僅成長了 49%;而與此同时,2023 年混合動力車銷量卻大幅成長(前三季年增 48%)。

圖/envato

汽車製造商終於開始有點頭痛了:第一波富有的環保主義者買家已經購買了他們的電動車後,現在該如何推動到中產階級的手中呢?通用汽車、福特、賓士、日產,甚至特斯拉,都因最近需求放緩發出了危險信號:通用汽車縮減了 2024 年的計劃,並表示將推遲新電動卡車工廠的開幕;福特正在考慮削減其去年非常暢銷的電動卡車工廠的班次;日產正在將更多資源轉移到混合動力汽車而不是電動車;馬賽地-賓士將現在的電動車市場描述為「殘酷」;⋯⋯⋯。曾經自稱將是「特斯拉殺手」的美國豪華跑車和旅行車製造商 Lucid 現在看起來也只是「普通而已」,宣布將生產速度放緩 30%,許多人甚至擔心該公司能否在當前電動汽車行業的低迷中生存下來。

-----廣告,請繼續往下閱讀-----

電動車車主的自述

2023 年 4 月 26 日《洛杉磯時報》社論版的副主編加爾薩(Mariel Garza)在「我已準備好更換我的(純)電動車」一文寫道:

我喜歡我的電動車,我真的喜歡。我喜歡我永遠不需要加汽油;我喜歡它在街上安靜滑行的樣子;我喜歡它有那麼多馬力——如果我願意的話,我真的可以超越汽油動力的跑車;我喜歡貼上可以讓我在高載客量車道上單獨駕駛的貼紙;我喜歡日常維護只不過是旋轉輪胎而已 4。但三年後,我正在認真考慮將其換成插電式混動汽車(見後)。⋯⋯為什麼? 因為儘管我很喜歡我的車,但我討厭我不能在這個引領電動車革命、確信我可以(隨時)在需要時充電的加州旅行。

筆者不相信加爾薩的後悔僅是少數人的意見,例如 2022 年 8 月 19 日《世界日報》就報導:

川渝地區因高溫限電造成大量充電樁暫停營運,使電動車車主感受到前所未有的「充電」壓力 5。有網約車師傅連跑八台充電樁才找到電,也有女性車主半夜 12 時還在外排隊 2 小時以上。充電焦慮讓車主們怕「掛在路上」,大嘆「不是在充電,就是在找充電樁的路上」。⋯⋯公共安全部數據顯示,今年上半年全國新能源汽車保有量已突破 1000 萬大關。高溫限電也引發了新能源汽車充電焦慮,多位網友網上抱怨「還是油車香」、「未來買新能源車要三思了」。

但是在政府及時髦的推動下,有多少人能獨立地三思、不人云亦云呢?

綠色能源

贊成發展電動車的還有一個建立在沙灘上的願景,那就是將來的能源將是綠色的,而不是從發電廠燃燒煤(氣)出來的。為什麼這是建立在沙灘上的希望呢?因為根據台電公司的相關資料,我國在 2021 年的再生能源佔比只有 6% 左右,距離原本政府時程內設下的 20% 目標非常遠。又經濟部今年 6 月 21 日公布最新全國電力資源供需報告,揭露 2023 年至 2029 年用電及供電預估,顯示再生能源建置進度較預期延後:原先預估 2025 年綠電占比要達 20%,重新調整為 15.5%,並謂至少必須等到 2026 年 10 月再生能源才會達到 20% 的目標。讀者相信嗎?

-----廣告,請繼續往下閱讀-----

而上面所提之「川渝地區因高溫限電」正是發生在中國水電第一大城的四川:其水利發電量佔全省發電量的 81.6%!能將日常生活用的電動車能源建立在難以預測與控制的綠能上嗎?由於此一罕見的大旱,北京當局為確保電力供應,宣告擱置優先發展清潔能源計畫,全力擴大煤礦的開採以及增加外國煤炭進口——中國應該發展電動車嗎?美國有線電視(CNN)指出,中國目前對煤炭發電的依賴已超過去年(因為大量使用電動車?),今年 7 月中國煤炭發電環比增加 22%。同樣地,去年歐洲大旱也造成其水利發電量產減少 20%(義大利 40%,西班牙 44%);筆者好像還在報上看到過:為了達成綠色發電量比的目標,有些歐洲國家因之想將天然氣發電改歸屬於綠色發電!這不是「自欺欺人」嗎?

不再需基礎設施配合的混動汽車

現在智慧型手機找充電站已經非常容易,但是想一想:好不容易改道開到充電站,卻發現唯一的充電樁壞了 6,不知道讀者將有何反應,但筆者雖然早已過了兩次四十而不惑,一定還三字經罵個不停!再不然就是所有的充電樁全被佔用了、或有一佔著茅坑不拉屎(已經充電完畢)的車主不知道跑到哪裡去了、……只好五十而知天命了:等吧。

充電停車場。圖/wikimedia

相信有些人會辯稱那是因為充電站不夠多的關係,如果充電站像現在加油站一樣,這問題就不會出現。但簡單的計算告訴我們:這問題還是存在的,因為最快的充電大概也需要 30 分鐘 7,而一般加油的時間只要 5 分鐘左右!事實上這正是筆者在 2013 年 8 月之「混動汽車值得發展值嗎」所指出的:「即使充電站能像加油站一樣普及,除非你多的是時間,否則等充電大概會讓你急得像熱鍋中的螞蟻。因此筆者認為電動車不可能大量取代汽油車,它只能用於日常上、下班或購物用。」

反之,在「混動汽車值得發展嗎」裡,筆者也辯謂:完全不用插電之電池與汽油兩用的混動汽車不但無純電動的缺陷,它的(汽油)能量使用效率已高達汽油汽車的兩倍以上,也不需要大量建造充電站來配合,因此應是將來汽車發展方向的主流。

-----廣告,請繼續往下閱讀-----

在這段期間裡,市面上已經出現了一種可以完全使用汽油(不需要充電)、但是也可以充電的「插電式混動汽車(plug-in hybrid)」:以電池為主、汽油引擎為輔的混動汽車;前者可以在家中車房充電,用於日常上、下班或購物用,後者用於長途旅行(不需要找充電站)。事實上中國的插電式汽車市佔率已經突破 37%,高過純電動車的 25%,估計到今年底,將可能接近 40%。在美國,今年第二季混動汽車的 7.2% 輕型車輛市佔率也超過純電動車的 6.7%,插電式混動汽車則從 2021 年初的不到 1% 上升到 1.7%。

高處不勝寒

豐田汽車雖然在電動發展史上佔了一席非常重要的地位,但其第一款純電動的汽車卻遲滯到 2022 年 5 月才出現 8。在全世界一片發展電動車的時髦下,讀者應該不難想像到其執行長所受的壓力。今年元月,豐田汽車創始人的孫子豐田章男終因緩慢採用電動車,導致其領導能力受到質疑,而決定於 4 月 1 日辭去當了將近 14 年的執行長及總監職。 

在特斯拉 10 月中公佈了災難性的第三季收益,投資者意識到電動車並不是獲利的靈丹妙藥後,當時已改任豐田汽車公司董事長的豐田章男終於喘一口氣,表示銷售放緩事實上證明了他對電動車的抵制是正確的,並補充說:「人們終於看到了(電動車的)現實」。豐田北美業務銷售主管克里斯特(David Christ)11 月 26 日向《華爾街日報》表示:「這是一個異常火爆的市場」,豐田正在盡可能大量生產混合動力車。

豐田 bZ4X。圖/wikimedia

同樣地,平時很少得到讀者的直接反應,但筆者在 2013 年及 2016 發表不贊同發展純電動車的看法時(因為有更好的方案),立即受到一些批評;使得筆者在 2017 年出版之《我愛科學》的自序裡覺得「高處不勝寒」。10 年後的今天,看來或許已經不再那麼冷了?!

-----廣告,請繼續往下閱讀-----

結論

美國環保署今年發布了令人非常沮喪的《2022 年汽車趨勢報告》,謂 2021 年的最終數據顯示,美國在汽車減少二氧化碳排放方面仍然進展甚微,他們說是因為消費者(富人)雖買了電動車,但車房裡停的卻是更浪費汽油、更豪華的大車子。但更可能的解釋不正是筆者所說的「發展電動車未必能減少空氣污染」嗎?

即使在汽車大國的美國,私人汽車所造成的空氣污染佔不到 20%,因此筆者認為發展什麼樣的車子都只是表面的裝飾而已,因為全球加速暖化與空氣污染背後的主要原因是:人類永無止境的慾望。只要人的慾望不降、鼓勵消費的經濟理論不改,世界能量的使用將只會有增無減,否則將被識為「經濟衰退」或「落後國家」!而如「附錄-熱力學」所言,能量大部分都是透過效率最差的熱來產生的,在產生的同時,一定要製造出大量的廢熱,這些廢熱通常消散到大氣、河流、湖泊、甚至海洋等大型水體中,導致水的內部熱量增加。根據 2022 年年底美國太空總署的估計,自 1955 年有記錄以來,百分之九十的全球暖化都發生在海洋中。筆者不知道為什麼我們不談這一更嚴重的問題:掩耳盜鈴?眼不見為淨?不願意面對必須節慾的事實?⋯⋯或正是愛因斯坦所說的「時代的偏見和時尚」?

麥肯錫(McKinsey)2022 年 4 月報告謂;「如果到 2030 年,所有銷售車輛中有一半是零排放車輛(符合美國聯邦目標),我們估計美國到那一年將需要 120 萬個公共電動車充電樁和 2,800 萬個私人電動車充電樁。⋯⋯消耗資本超過 350 億美元。」這巨額開支(台灣 2023 年總生產額的 3% 左右)用來改進現有的基礎設施(如發電效率、增加其二氧化碳的排放回收等)不是更實際有用嗎?

附錄-熱力學

熱也是一種能量,但熱力學告訴我們它是品質最差的一種,我們一旦將其它能量變成熱,就再也不能 100% 地將它改回或改為其它能量形式,所以透過熱來發電是一種非常沒有效率的方法。例如高山上的水,對地面而言具有位能,我們原則上可以將它 100% 的改成電能,這正是水利發電的原理(其效率可以高達 90%);但如果我們讓它掉到地面變成熱,再用這些熱來發電或做功,那麼其效率就受到熱力學的限制,原則上再也不可能 100% 了(實用上均難以達到 50%):在改回其它能量形式的同時,一定要製造出一些廢熱(見圖)。不幸地,這正是內燃機(包括汽車引擎)和發電廠(包括核電廠)的操作方式,因此它們的效率都不高:燃煤電廠與核電廠的平均效率約為 33%,天然氣發電廠大約在 33% 至 43% 之間,內燃機的效率因類型和引擎的不同而變化很大(15%-45%),汽油引擎的效率只有 30% 到 35% 左右。

-----廣告,請繼續往下閱讀-----
圖/作者提供

註解

  1. 吉野彰(Akira Yoshino)、惠廷漢姆(Stanley Whittingham)、和古迪納夫(John Goodenough) 因發展鋰離子電池獲得 2019 年諾貝爾化學獎
  2. 特斯拉在 2020 年公佈了首個全年淨利潤,但這並不是因為向客戶銷售電動車的結果,而是美國有 11 個州要求汽車製造商在 2025 年之前銷售一定比例的零排放汽車,如果達不到,汽車製造商就必須從另一家滿足這些要求的汽車製造商購買「碳信用額(carbon credit)」——只銷售電動車的特斯拉成了這項政府規定的最大贏家。
  3. 現在約為 0.8 兆美元,市盈率高達 80 以上,通用汽車、福特則在 10 以下。
  4. 美國權威《消費者報告》的最新調查顯示,電動車的平均可靠性遠低於汽油動力車、卡車、和運動型多用途車。該調查發現 2021 年至 2023 年車型中的電動車遇到的問題比普通汽車多近 80%。
  5. 在政府大力支持下,中國已擁有地球上最廣泛的電動車充電基礎設施。
  6. 加油站因為有大量的易燃及爆炸的汽油,不能像充電站一樣沒有人守著,因此壞了不知道或不修理的機會應該不多。美國權威數據分析、軟體和消費者情報公司 J.D. Power 今年 5 月的一份報告謂:「截至 2023 年第一季末,使用公共充電樁的電動車駕駛員中有 20.8% 遇到過充電故障或設備故障,導致他們無法為車輛充電。」今年 12 月 3 日《華爾街日報》報導謂:「根據美國處理汽車維修保險索賠的 CCC 智慧解決方案公司的數據,去年發生事故後維修電動車的平均費用為 6,587 美元,而所有車輛的維修費用為 4,215 美元。」
  7. 但大多數需要 1 到 2 小時。充電速度快,將會縮短電池的壽命。
  8. 2023 年豐田 bZ4X 是該汽車製造商的首款量產電動車,也是目前該品牌提供的唯一的一款電動車。

延伸閱讀

我愛科學》(華騰文化有限公司,2017 年 12 月出版):收集筆者自 1970 年元月至 2017 年 8 月在《科學月刊》及少數其它雜誌所發表之文章。內含熱力學與能源利用、電動車值得發展嗎、混動汽車值得發展嗎、再談電動車值得發展嗎、如何有效地儲存電力、台灣應該發展電動車嗎、中國不適合發展電動車等等與本文有關的文章。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 57 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
為何電子元件已經做了塗膠防護處理,仍會發生腐蝕甚至導致產品失效?
宜特科技_96
・2023/12/22 ・5635字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

電子元件發生腐蝕
圖/宜特科技

像電動車、充電樁使用於車用、工業用與戶外級別的電子產品,因應使用環境電子元件都需要採用三防膠塗佈保護,才能防止污染、腐蝕等問題。但為什麼,產品即便已經做了塗膠防護處理,仍會發生硫化腐蝕最終導致故障呢?原因可能就出在「膠」選得不對!

本文轉載自宜特小學堂〈為何已採用三防膠塗佈的電子產品,仍然發生硫化腐蝕失效〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

選對三防膠材材有效 影片
點擊圖片收看影片版

近年來,伴隨環保概念提升與綠能意識抬頭,燃油類設備機具減少、電子產品數量增加,生活中最常見的就是電動車和充電樁變得越來越多。由於這類電子硬體設備會長期待在室外環境,加上日趨嚴重的空氣污染威脅,腐蝕性氣體、水分、污染物、懸浮微粒會直接或間接地造成產品中的元件生鏽或腐蝕,就會發生故障影響產品的使用壽命。而三防膠就是為了加強保護電子元件、延長設備壽命、確保安全性與可靠性所誕生的一種塗料。

一、 什麼是三防膠(Conformal Coating)?哪些產品特別需要使用三防膠?

有三防膠塗佈的電路板。圖/百度百科

三防膠又稱三防漆,跟大家概念中的膠或是漆有點像,它是常用於電路板上的一種特殊塗料。三防膠具有良好的耐高低溫特性,經由三防膠塗佈的電路板會產生一層「透明聚合物薄膜」,就能維持電路板外形並保護好電子元件,達到「防濕氣」、「防污」、「防腐蝕」的效果,因此才被稱為「三防」膠。

前面有談到,因應全球環境變化,電子產品卻越來越多元、越來越精密的條件下,現代電子硬體設備不僅擁有高性能,還需要具備抵抗惡劣環境的能力,像是應用在工業、車用、航太、戶外級別的電子產品,例如:資料中心、工業電腦、電動車、儲能站與低軌衛星等等……。

-----廣告,請繼續往下閱讀-----

這些產品比起一般家電的使用環境更加嚴苛,尤其在面對含硫化氣體污染高的環境,特別容易造成「硫化腐蝕現象」,因此在製程中,電子元件必須做好三防膠塗佈處理、提升產品可靠度是非常重要的事。

什麼是「硫化腐蝕」跟「爬行腐蝕」?

硫化腐蝕(Sulfur Corrosion):當空氣污染物中含有豐富的硫化合物,會導致許多工業器件上各種金屬與合金材料的表面產生嚴重的腐蝕現象,若伴隨其他氣體污染物的存在,會導致氣體協同效應進而產生不同硫化腐蝕的特徵與機理。富含硫的氣體,如硫化氫(H2S)、環八硫(S8)與二氧化硫(SO2)就是一般常見造成電子設備發生硫化腐蝕的氣體。

爬行腐蝕(Creep corrosion):爬行腐蝕是屬於硫化腐蝕其中一種的失效機理,典型的案例在印刷電路板與導線架封裝元件最為常見。由於裸露的金屬銅接觸到環境中硫化物的腐蝕性氣體,會進行反應生成硫化亞銅(Cu2S)的腐蝕產物,一旦電子產品表面清潔度不佳或環境有氯氣存在時,其固體腐蝕物將會沿著電路與阻焊層/封裝材料表面遷移生長的過程,導致相鄰焊盤和電路間的電氣短路失效現象,我們稱之為爬行腐蝕的失效模式。

印刷電路的爬行腐蝕
印刷電路的爬行腐蝕。圖/Barry Hindin, Ph.D, Battelle Columbus Operations
導線架封裝元件的爬行腐蝕
導線架封裝元件的爬行腐蝕。圖/Dr. P. Zhao, University of Maryland

當電子產品發生硫化腐蝕,會導致設備發生短路或開路的故障風險,像發生在印刷電路板或導線架封裝的爬行腐蝕(下圖一、圖二、圖三),或是表面貼裝被動元件的硫化腐蝕(下圖四),都是十分常見的案例。

電路板發生爬行腐蝕及硫化腐蝕失效的照片
(1)與(2)為印刷電路板的爬行腐蝕失效,(3)為導線架封裝的爬行腐蝕失效,(4)為表面貼裝晶片電阻的硫化腐蝕特徵照片。圖/宜特科技

二、 電子產品該選擇哪種方式做防護處理?

為了有效地隔絕惡劣環境對電子設備的影響,除了前面提過三防膠(Conformal Coating)的處理手法,一般也會採用灌封(Potting)來處理。下表是灌封與三防膠的差異比較。

方法灌封三防膠
保護性中-優
加工與
重工性
劣(氣泡殘留、重工困難)
品管檢驗劣(外觀不可視)優(外觀可視)
應用性劣(侷限)優(輕薄)
環保
範例
圖/Epoxyset Inc.
圖/Charged EVs
灌封與三防膠處理方法之比較。表/宜特科技

雖然灌封比三防膠保護性更好,但並非所有電子元件都能用灌封處理,灌封在作業前必須考量電子元件,會因為加工的熱應力、固化收縮應力、氣泡殘留等等產生影響,也要評估較多的產品設計條件,包括:尺寸、外殼、重量、熱管理、加工、重工、檢驗、成本與環保等因素,才能確認該產品是否適合做灌封處理。

-----廣告,請繼續往下閱讀-----

而三防膠的加工快速、重工容易與成本較低的優點,既可以提升產品抗腐蝕的能力,又可維持印刷電路板的外形而不影響後續的組裝作業,可以說三防膠的泛用性會比灌封來得更高。

所以當電子設備需要在惡劣的環境運作,或是終端電子設備發生腐蝕失效時,三防膠通常是組裝、系統廠商針對電子產品腐蝕的問題會優先採用的方案,廠商可以直接管控三防膠塗佈製程的品質,能夠針對終端客戶退回產品時進行立即性的改善作業。

三、 原來三防膠有很多種?

目前三防膠的種類主要可分為八大類,包含:Silicone Resin(SR)、Acrylic(AR)、Polyurethane(UR)、Epoxy(ER)、Paraxylylene(XY)、Fluorine-carbon resin(FC)、Ultra-Thin Coatings(UT)與 Styrene Block Co-Polymer(SC)。一般三防膠的種類可依照材質區分種類,然而混合型的三防膠材則是以重量百分比佔高的材質為主,如果三防膠的厚度 ≤12.5um ,膠材將不受材料種類的拘限都被歸類於 UT 型。每一種三防膠都有不同的特性,常見的評估項目有厚度、黏著性、耐溫性、抗化學性、防潮性、加工與重工性、普遍性、疏孔性、耐鹽霧腐蝕性、表面絕緣電阻程度與成本高低等。

四、 為何已經採用三防膠塗佈的電子產品仍發生了硫化腐蝕失效,原因竟是國際規範不足?

一般業界針對三防膠的國際規範,大多是參照國際電子工業聯接協會(Association Connecting Electronics Industries;IPC) 所制定的試驗標準 – IPC-HDBK-830A、IPC-CC-830C 與 IPC-J-STD-001F。這幾項標準都是一般常見於三防膠相關的國際規範,它們定義了三防膠的設計、選擇與應用的準則,用於焊接電氣和電子組件要求,以及用於印製線路組件用電氣絕緣化合物的鑑定及性能。

-----廣告,請繼續往下閱讀-----
常見三防膠相關的國際規範
一般常見三防膠相關的國際規範。圖/IPC-HDBK-830A, IPC-CC830C and IPC-J-STD-001F

而針對三防膠的驗證項目,包括了:種類、厚度、均勻性、缺陷、重工、應用、耐溫溼度環境、耐鹽霧、表面絕緣電阻等。其它與三防膠有關的標準還有 IPC-A-610H、IEC-1086-2、MIL-I-46058C、MIL-STD-202H、Method 106、NASA-STD-8739.1、BS5917、UL94、UL746F 與 SJ 20671……許多的國際規範。

然而在眾多三防膠國際規範的耐腐蝕性項目評估中,卻獨缺了「腐蝕性氣體的試驗」,尤其是在含硫與其化合物相關的腐蝕性氣體。因此,一旦產品的使用環境含有硫或硫化合物相關的腐蝕性氣體,即使電子設備已採用三防膠塗佈,仍會發生硫化腐蝕失效的問題。

此外,電子設備中也不是所有組件皆可以採用三防膠的塗佈,由於膠材具備絕緣的特性,一般均無法塗佈於電性連接、電器接點處,例如:金手指、插槽與連結器等。下圖是有採用與未採用三防膠塗佈的導線架封裝晶片發生與未發生硫化腐蝕的照片。

未採用三防膠塗佈採用三防膠塗佈採用三防膠塗佈
導線架發生嚴重的硫化腐蝕膠材的抗硫化腐蝕能力不足製程的缺陷(氣泡)導致保護不足
導線架發生嚴重的硫化腐蝕膠材的抗硫化腐蝕能力不足製程的缺陷(氣泡)導致保護不足
導線架發生嚴重的硫化腐蝕膠材的抗硫化腐蝕能力優異膠材的抗硫化腐蝕能力優異
導線架發生嚴重的硫化腐蝕膠材的抗硫化腐蝕能力優異未採用三防膠塗佈
採用與未採用三防膠塗佈的導線架封裝晶片發生與未發生硫化腐蝕的照片。圖/宜特科技

五、 不是有塗或是夠厚就好,透過驗證平台選擇出正確的三防膠材才有效!

透過上述的說明可以了解,如果只是按照規範去選擇三防膠材後進行塗佈,可能會遺漏腐蝕性氣體或是其他因素的影響,無法讓產品獲得最完善的保護。為了解決窘境,宜特科技所提供的硫化腐蝕驗證平台,可以協助廠商選擇正確的三防膠材,並針對各種採用三防膠塗佈的電子產品,評估產品抗硫化腐蝕的能力並進行壽命驗證。

-----廣告,請繼續往下閱讀-----
透過宜特實驗室的硫化腐蝕驗證平台評估各種三防膠材搭配不同厚度在硫化腐蝕試驗的耐受性
透過宜特實驗室的硫化腐蝕驗證平台評估各種三防膠材搭配不同厚度在硫化腐蝕試驗的耐受性。
圖/Source: Dem Lee…Et al.,“Evaluation of the Anti-Sulfur Corrosion Capacity for Chip Resistor and Conformal Coating by Way of Flower-of-Sulfur(FoS)Methodology”, International Microsystems, Packaging Assembly and Circuits Technology Conference 2018, Section 28, 2018.

上圖為透過宜特實驗室的硫化腐蝕驗證平台,評估各種三防膠材搭配不同厚度條件在硫化腐蝕試驗的耐受性。其中未經三防膠塗佈的抗硫化晶片電阻樣本(黑色),經歷 25 天的試驗後發生失效,但塗佈膠材 C(綠色)與膠材 D(藍色)的樣本,僅僅經歷 5 到 10 天的試驗就發生了失效。

由此可證,並非所有三防膠材都有具備抗硫化腐蝕的能力,抗腐蝕能力主要取決於膠材本身的材料特性,某些特定膠材非常容易吸附含硫與其化合物相關的腐蝕性氣體,即使提高厚度,也無法有效降低硫化腐蝕的發生,即便電子零件本身有做抗硫化腐蝕的設計,一旦選擇不合適的膠材,反而會加速電子產品發生硫化腐蝕失效的風險。

下表是採用相同樣本搭配不同的三防膠材,經硫化腐蝕試驗後,進行橫切面的掃描式電子顯微鏡分析之比較。可以看到,雖然膠材 B 的塗佈厚度比膠材 A 更厚,但是膠材 B 抗硫化腐蝕的能力卻更差。

三防膠膠材 A膠材 B
厚度<30um>100um
電子顯微鏡照片三防膠材A三防膠材B
抗硫化腐蝕的能力
採用相同樣本搭配不同三防膠材料塗佈經硫化腐蝕試驗後進行橫切面的掃描式電子顯微鏡分析之比較。圖/宜特科技

藉由宜特實驗室的硫化腐蝕驗證平台,不但可以協助選擇正確的膠材,亦可針對採用各種三防膠塗佈的電子產品,依照國際規範標準,並以實際終端環境的腐蝕程度搭配模擬使用年限,透過上述客製化的實驗設計,能夠協助廠商評估產品抵抗硫化腐蝕的壽命驗證。

-----廣告,請繼續往下閱讀-----

本文出自 www.istgroup.com。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

宜特科技_96
6 篇文章 ・ 3 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室