0

0
0

文字

分享

0
0
0

薛丁格貓可以有多胖?

科學月刊_96
・2013/07/22 ・2828字 ・閱讀時間約 5 分鐘

文 / 曾耀寰

典範轉移

1900年,八國聯軍衝入北京城,除了燒殺擄掠,破壞了清朝的政治經濟中心,也摧毀了代表古代中國的象徵,當時的慈禧太后帶著光緒帝逃到西安,於是開始了近代中國的改革,西方的民主與科學開始進入中國。在西方世界,1900年也象徵著古典物理和近代物理的分野,1900年(二十世紀)之前,是由牛頓的力學定律引領風騷,接著是十九世紀的電磁年代,由馬克士威的電磁波理論帶入高峰,而熱力學三定律也在十九世紀完成,大自然的物理規律幾乎是由這三大領域所掌握。

就在十九世紀末,英國物理學家克耳文(Lord Kelvin)在一場大眾演說提到,斷言熱和光運動方式的動力學理論既美麗又清晰,但目前被兩朵烏雲所遮蔽。這兩朵雲分別是邁克生–莫立測量以太的實驗和黑體輻射的紫外災變。1900年,德國物理學家卜朗克(Max Planck)採用能量量子化的概念,解決了古典物理無法解釋的黑體輻射能量分布,順利解決了紫外災變,成為量子物理的開山祖師。

1905年,愛因斯坦的狹義相對論則是捨棄以太,徹底改變古典物理的時空觀念,量子物理和相對論成為近代物理的兩大支柱。

那麼近代物理又與古典物理有哪些不同?雖然這都牽涉複雜的學門知識和基礎背景,但我們嘗試用幾個簡單的概念來說明彼此的不同。首先是狹義相對論的孿生子實驗,藉由其中一位搭乘幾近光速的太空船往返太空,當他回到地球,發現留在地球上的孿生兄弟變老了。孿生子實驗說明了時空之間的關係是相互影響的,並不是像古典物理將時間當成獨立的變數。而廣義相對論則是進一步將質量、能量與時空緊密結合在一起,美國物理學家惠勒的名句:「時空決定物質如何運動,物質決定時空如何彎曲」,正是最佳說明。雖說相對論看似完全取代古典物理,但除了在運動速度接近光速,或者質量非常大(例如黑洞四周)的情況,日常生活遇上的現象用古典物理都是足夠的。

分立vs連續

量子物理又有哪些是古典物理所不容的,卜朗克的能量量子化便是一例,量子物理與古典物理最大的差異在於分立(discrete)與連續,物質可以切割成最小單位,但古典物理認為能量是連續的,就像人站在手扶電梯,隨著馬達帶動,人可以平順地、連續地上下樓梯,但行走一般樓梯就不是連續的,當中的最小單位就是一階一階的階梯,我們是無法站在9又4分之3梯,量子物理的觀點就是階梯,能量是分立的,不是連續。

又是物質又是波

另一個重要觀念是波粒二象性,簡單地說,物質有波的特性,波有物質的特性(根據哥本哈根詮釋,這個波動是用來說明物質未來的機率分佈,不可看成實在的波)。在古典物理中,物質是有最小單位,而波有連續性,並且有干涉繞射的特性。在量子物理中,物質有波的特性,有干涉效應(1989年首次在實驗室紀錄到電子的雙狹縫干涉),而波有物質的特性,如光電效應證明光子的存在。如果物質有波的特性,就不難想像,一個被關在監牢堅牢的犯人,在不斷撞牆的逃獄過程中,是有機會穿過水泥牆,這就是所謂的量子穿隧效應。

疊加態的薛丁格貓

另一個傳神的比喻是薛丁格貓,薛丁格貓來自奧地利物理學家薛丁格的想像實驗。在量子的世界,物質有波的疊加原理(superposition principle)。薛丁格設計了一個密閉黑箱子,裡頭裝了致命的毒藥機關,該機關的啟動全靠隨機,我們得打開黑箱子才能知道該毒藥機關是否被啟動。薛丁格將一隻倒楣的貓放在黑箱子內,這時外界無從得知薛丁格貓的死活,除非打開箱子。依照量子物理的疊加原理,這隻關在黑箱子的薛丁格貓處在活和死的兩個狀態的疊加,也就是又活又死的情況。在古典物理的架構下,這種匪夷所思的概念是無法想像的,但疊加態確實存於微觀的原子中。為什麼在巨觀世界看不到這種疊加狀態?主要因為在巨觀狀況下,外界太容易干擾系統,很快就離開疊加態。

因此一般狀況下,我們無須用量子物理處理日常生活的現象,唯有進入微觀的原子世界,這時所發生的現象是必須靠量子物理解決。問題來了,古典物理處理的巨觀世界和量子物理處理的微觀世界,二者之間的界線在哪裡?微觀的原子分子要到多大的尺度,便進入所謂的巨觀世界?或者說物質何時可以用波的方式描述?何時可以用波的疊加狀態描述?

1980年代,萊格特(A. J. Leggett)等人建議,如果一個巨觀系統能有效地與外界環境隔絕,這個巨觀系統就有量子現象,當時常被研究和討論的系統是超導量子干涉儀(superconducting quantum interference device,SQID)。SQID是一個超導環,有數十億顆成對的電子在當中移動,由於高靈敏度,可用作微小磁化率的測量。

在超導環內,電子不受到阻力,形成的電流沒有衰減,但這些電子若有量子穿隧效應,逃離超導環,便會造成電流衰減。如果系統獨立於外界環境,逃出去的電子沒有能量的損失。一旦受到外界環境影響,逃出去的電子就會損失能量,外界環境影響越大,損失能量越多(如右頁圖)。這就可以作為是否與外界隔絕的指標,進而判別古典物理和量子物理應用範圍的邊界。

電子發生量子穿隧效應時,若系統獨立於外界,電子能量不會損失;但當系統受外界干擾,電子的能量損失量受干擾程度影響。

此外,疊加態是量子物理的重要特性,我們可以測量多大的原子或分子能保有疊加態。1999年,維也納大學研究團隊發現C60分子在多狹縫實驗出現量子干涉。2011年奧地利、德國、美國和瑞士的研究團隊則是發現由430顆原子所組成的分子也有量子干涉,看來實驗室裡的薛丁格貓逐漸長大。

但是若用分子的大小作為標示界線的標準,那該是以分子內的原子數多寡,還是所有次原子數總和(質子、中子和電子)作為指標。在今年初,奧地利和德國的物理學家團隊嘗試設計一系列參數作為指標,他們的想法來自於一組量子方程式可以經過修改,而使得一個物體的狀態更接近古典物理,如果實驗可以移除這些修改,則可以描述較大的量子疊加態,也就是更大的巨觀物體,因此實驗能移除越多修改,物體就越大。某些參數有助於移除,當中包括同調(coherence)時間的長短、物質的質量和疊加態的尺度,最後綜合這些參數後,得到描述這個物體的單一指標數µ,用作評比處在疊加態的物體的巨觀程度,這相當於單一電子處在量子疊加態長達10µ秒。而尋找胖薛丁格貓的研究仍在繼續。

上帝是最大的莊家

量子世界的現象令人瞠目結舌,讓人不禁懷疑,這真的是物理世界的本性?因為許多量子現象是與決定論和因果論相違背,例如海森堡的測不準原理和包立不相容原理。即便是寫下量子波動方程的薛丁格,仍是遵循古典的脈絡,相信物理世界的本質是一種波動,他剛開始還將波函數解釋成電磁場中的一種振動,電子的粒子性是純粹波動性的表現,像是一系列波疊加而成的波包,但波動方程出現的複數(complex),以及波的色散(代表電子的體積會隨時間而擴散開來),讓他感到不自在。

但其他的物理學家採取完全不同的看法,例如海森堡、波耳和包立。根據哥本哈根詮釋,這個波函數的振幅平方代表的是發現粒子的機率,這種反實在論和人類長久以來的經驗格格不入。從近代物理發展的過程來看,量子物理不僅是人類瞭解微觀世界的工具,也徹底改變人類看待物理世界的態度,無怪乎,愛因斯坦一直難以相信上帝會擲骰子。

原刊載於科學月刊 第四十四卷第七期

文章難易度
科學月刊_96
214 篇文章 ・ 1152 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

0
0

文字

分享

0
0
0

看過「水熊蟲」走路嗎?——牠的步態與 50 萬倍大的昆蟲很相似!

Riley Tu_96
・2021/09/17 ・2195字 ・閱讀時間約 4 分鐘

不到一毫米身長的水熊蟲,是一種多細胞微小的生物,在 18 世紀被科學家發現,歸類於緩步動物門,目前全球被發現大約有 1000 種,棲息地在淡水沉積物、苔鮮類的水膜以及少數種類棲息於海水的潮間帶,在喜馬拉雅山脈或深海都可以發現牠們的身影。

聽起來毫不起眼…嗎?那你就錯了,牠可是目前是第一種被認證可在太空中生存的動物,堪稱地表上最強的生物!

水熊蟲在顯微鏡下的樣子。圖/flicker, CC BY 2.0。

環境不太舒適? 那就「假死」一下吧

水熊蟲體長通常在 0.3-0.5mm 左右,擁有頭部和四個體節,身體的表面含有幾丁質(節肢動物外殼的成分),擁有 8 隻腳,末端有爪子、吸盤跟腳趾,在顯微鏡下觀察,看到牠們身形飽滿、動作又笨重,所以被科學家稱為「水熊蟲」。

在 2019 年年 2 月 21 日,以色列的太空船創世紀號墜毀在月球,卻意外發現有大量的水熊蟲在 DVD 大小的鎳片,其實在 2007 年 FOTON-M3 任務,水熊蟲在太空待了十天,隨後回到地球,發現約 70% 的水熊蟲存活,並成功繁衍後代。

水熊蟲可以在乾燥、高溫(約為150 °C)、絕對零度(-272℃),面對輻射以及真空下的環境存活,因為具有四種隱生狀態,低濕隱生、低溫隱生、變滲隱生跟缺氧隱生,面對不利於生存的環境下,牠們會捲縮起來,讓水分排出、暫停身體代謝,處於「假死」的狀態!

科學家們表示微重力和宇宙輻射,對水熊蟲影響不大,未來有望在太空研究中扮演重要的角色!

水熊蟲可以上山下海,不禁讓人心想,那些因太空船墜毀而登上月球的水熊蟲,至今是否還能行動? 

名子有「熊」、長了八隻腳,步態卻像蟲?

最近刊登在「美國國家科學院院刊」(Proceedings of National Academy of Sciences, PNAS)的一項新研究,透過用高速攝影記錄了水熊蟲的移動,意外發現水熊蟲的爬行方式跟比自己大 50 萬倍的昆蟲相似。

通常尺寸像緩步動物門一樣小的生物很少有腳,牠們不走路而只會四處滑動亂竄;水熊蟲卻擁有 8 隻腳,是一種很特別的生物,讓科學家不禁好奇,這麼微小的生物是利用什麼方式移動,於是對牠們進行了研究。

圖/GIPHY

洛克菲勒大學的研究團隊,在顯微鏡下長時間持續觀察水熊蟲,並記錄其行走的步態(走路時身體各部位週期性的動態表現)。研究人員 Jasmine Nirody 表示,水熊蟲在沒有外力干擾下,有時牠們會很冷靜,以每秒半個身長的速度悠閒地漫步;當牠們看到對自己有吸引力的事物,這時會像踩了油門般,加快速度往目標物前進,可以達到每秒兩個身長。

研究團隊從水熊蟲移動的步態,以科學角度來解釋,我們平常走路,腳跟後蹬,此時會產生靜摩擦力,所以水熊蟲的爬行是靠著腳與地面接觸獲得動力,然而當我們行走在不同環境 ( 光滑或粗糙地面 ) ,會受到不同壓力、產生靜摩擦力不同,不過牠們的肢體協調很靈活,不管在大海或沙漠,牠們都會去應變不同環境!

水熊蟲跟昆蟲、甲殼類動物很相似,牠們都是在不同速度下步態相同,而脊椎動物會依據不同的速度改變其步態。

對此,研究團隊有兩種解釋,第一種是緩步動物可能跟螞蟻或是果蠅這類昆蟲或其他節肢動物有演化上的共同祖先,甚至有相似的神經迴路;第二種可能性是緩步動物和節肢動物並沒有共同的祖先,這兩類不同群體的生物為了生存,而進化出相同的行走。

但這只是兩種假設性說法,到底答案是什麼,還需要科學家們進一步研究。

水熊蟲的一小步,是科技上的一大步

水熊蟲的研究除了對動物運動學有很大的進展,科學們之後有望研究出,微小尺度行動的機器人!

某種水熊蟲的雌蟲。圖/WIKIPEDIA, by Gąsiorek P, Vončina K。

例如 2020 年美國康乃爾大學跟賓夕法尼亞大學的研究團隊,設計出小於 0.1 毫米的微小機器人,一塊晶片上就可以製造出約一百萬個機器人。

從 4 吋晶圓切下的一塊晶片上,表面約有 100 萬個微型機器人。圖/參考資料 4

這個微小型機器人由矽太陽能光電材料製作的簡單電路,跟四個電化學執行器製成的腳組成。研究團隊把機器人放在 200 微伏電壓、10 奈瓦功率的雷射光照射,從顯微鏡下觀察,會發現這些機器人在液體中游動。

這些機器人目前只能移動,其他功能還需要開發,水熊蟲的研究對微小型機器人的設計有很大的幫助,如果機器人再經過改良,在醫學上也有幫助,例如:運送藥物、人工受精、執行組織切片或微型手術等,雖然當中也有風險,需要經過跨領域的專家協助,找出適合臨床的使用。

除了微小型機器人,也對仿生機器人有幫助,其中昆蟲機器人考量到複雜機構學、運動學、動力學、昆蟲步態等研究,未來昆蟲機器人朝向以微小尺度、可進入角落或縫隙、環境監測等目標前進!

參考資料

  1. Creature Survives Naked in Space, SPACE.com
  2. ‘Water bears’ are first animal to survive space vacuum, New Scientist.
  3. The physics behind a tardigrade’s lumbering gait, Science Daily.
  4. Electronically integrated, mass-manufactured, microscopic robots, Nature.

Riley Tu_96
4 篇文章 ・ 7 位粉絲
一個喜歡涉略很多事物,卻被物理耽誤的女子。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策