0

0
0

文字

分享

0
0
0

防災2.0專題(二): 防災雲端 科技大突破

陳 慈忻
・2013/07/03 ・3313字 ・閱讀時間約 6 分鐘 ・SR值 547 ・八年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文由國科會補助,泛科學獨立製作

智慧城市展@維基
智慧城市展@維基

2012年政府推動防災雲端,但是你知道之前有哪些發展的演進歷史嗎?「防災的資料倉儲其實已經發展十幾年了,只是這個名詞最近才被提出來。」中興工程顧問社的陳俊愷博士說,中興工程顧問社承接過許多政府委託的計畫,在防災技術研發、相關產業推廣應用不遺餘力,在這篇專題中陳俊愷博士引導我們認識防災雲端的發展和突破。

防災雲端 十年來突破限制

防災的雲端技術其實已經發展十幾年了,早期內政部國土資訊中心就開始建置來進行地理「資料倉儲」,也就是將國土相關的地理資料蒐集起來,所以才說雲端是從以前就有了,但是早期的限制很多,最大的問題就是安全性、時效性和容量的問題。

機構對於資料安全性考量有3個層次,首先基於資料建置成本和所有權的考量,資料產製單位掌握資料就像是多了個籌碼在手裡,各級單位會設定收費標準來作為申請資料的門檻,或者作為資料產製單位的績效考評依據。第二,早期公務員普遍認為資料是有專業性、機密性的,如果公開資料造成一般民眾的誤用,除了造成社會的恐慌之外,將資料公開的單位也難免於究責。第三,有些特殊的資料會牽涉到個人隱私和國家安全的問題,像是在解析度較高的數值地形圖就會受到國防部的管控。

加上早期網路頻寬不大,提供端的運算技術、軟體技術也無法有效提供完善服務,時常造成使用者不便。而且同一筆資料會有不同的製作版次與年份,不同單位在不同時間下載,彼此流通時不知道哪一個才是最新版,使用資料的不確定性隨時空累積而加劇。

防災資料龐大的容量也是個麻煩問題,以航照圖為例,飛機在拍攝航空照片的時候,由於飛機不像衛星拍攝時的高度那麼高,可以拍到解析度比較清晰的影像,也因此每一張航照圖所能涵蓋的範圍有限。在台灣地區,飛機總共需要在五千多個空中不同的位置,拍攝約5,500張比例尺為五分之一的航照圖,才能使航照圖拼滿整個台灣地區。而這些珍貴的影像資料可以用來判識台灣的土石流、崩塌地、堰塞湖、活動斷層、保全對象與聚落等資訊,但是單單下載這些航照圖就佔用超過2.5TB(2,500GB)的硬碟容量,「各個單位中的不同處室可能都需要這些資料,但是同一批資料會重複建置,佔用大量硬體空間。」陳博士說。

對政府而言,這些問題隨著各方面的技術問題不斷克服與改善,加上防災雲端的迫切需求,因而造就了2012年推動防災雲端的時機。

防災雲端的3大精神

「你不需要知道服務提供者在哪,你不需要知道中間運作的方式,你可以藉由網路在任何地方使用到,是雲端的3大精神。」陳博士強調。過去,若要申請1筆資料需要去找資料來源的單位,須要親自到這些機構申請資料,但是現在有防災雲端平台作為統一查詢的管道,像內政部架設的國土資訊圖資服務平台(TaiwanGeospatialOne-Stop,TGOS)(如下圖)是台灣防災領域最大的雲端平台。

國土資訊圖資服務平台TGO
國土資訊圖資服務平台TGO

政府將全國的地理空間資料的查詢及網路服務媒介統合在TGOS,作為民眾、業界及研究單位接觸地理空間資料的入口;另外,如果業者要查詢都市計畫書圖和法定的土地使用分區等資料,一般在縣市政府管轄的都市發展局或城鄉發展局的網頁上,也都可以連結到這些資料的雲端平台。

雲端的第二個精神是:不需要了解運算技術的複雜過程,也不必自備超級電腦來進行複雜的演算,只要連上網路,就可以接觸到遠端超級電腦提供的服務;第三,雲端服務隨處可得,不管是電腦、平板、手機,只要有網路就可以使用,所以以前在辦公室才能查的資料,現在進行防災的野外工作,或是在災害現場,就可以直接用手機查詢圖資。

資料安全性的問題也隨著流通辦法、收費標準的標準化,有更明確的遊戲規則;容量問題也因為雲端可以隨取隨用而解決,如果我們使用TGOS平台查詢資料,我們就可以透過WMS (Web Mapping Service)這種網路服務,將傳統的地理空間資料(GIS data)轉換成能夠即時分享的網址連結,複製這個WMS的網址連結,就可以在Google Earth或其他地理資訊系統(GIS)的軟體看到這筆地理空間資料,「不用儲存、不用管理、更不用考慮資料版本問題,避免重複建置資料,而且在幾秒以內就可以完成。」陳研究員說。

防災雲端的重要性:把握救災黃金時間

災害發生時,最重要的兩個工作是災情彙整和資源調度,像是哪邊的路斷了、附近避難所可收容的人數,都是迫切需要更新的資訊。負責防災業務的幕僚單位「國家災害防救科技中心」會蒐集這些資料,協調國內的防災資源,並提供災害應變中心及政府決策者災情研判的輔助資訊。

大型災害發生後的72小時是「黃金救援時間」。過往國內災害相關單位在災害發生時,會先來從林務局農林航空測量所取得緊急拍攝的災區空照圖;接著進行影像處理、轉換格式和災情研判,這已耗費1至2天左右的時間,黃金救援時間也所剩無幾。不過,現在透過防災雲端,運算功能和資料傳輸時間都大幅改善,甚至可以線上看到3D模擬災況,讓操作者更容易理解災情,把握黃金救援的72小時。

防災雲端新趨勢:預警動態化、模式網路化、資訊行動化

根據過去經驗與監測數據來製作淹水的災害潛勢,能歸納出不同累積日雨量對應到的淹水高度多深。這種災害潛勢圖是平常就能夠準備好的資料,而現在由於有雲端,更進一步可做出即時的、動態的潛勢模擬。

「中興社協助經濟部地調所正在製作豪雨誘發崩塌的動態山崩潛勢資料,達到預警效果。」陳博士說,氣象局現在的雨量監測除了雨量測站之外還有雷達回波資料,雷達回波能夠預測短期的雨量,搭配坡地單元的地質資料,可以預測每一個斜坡單元在幾個小時內的崩塌風險高低,提前通知高潛勢地區的村里長,有更多的時間可以去通知居民疏散避難。

「我們近期要將更多災害類型,甚至是複合型災害的模式網路化,決策者可以直接在網路上使用模式來分析災情。」他表示,從山崩、地震、淹水、土石流,到土壤液化、複合型災害的模擬,每個不同領域都有自己的模式,透過開放式的元件,這些模式可以在網路上提供給網路使用者,有需求的單位不需要重新開發軟體。

「未來我們也希望能行動化,也就是大家用手機的App就能夠使用防災服務。」中興社已經協助台北市工務局的大地工程處製作了一些App,民眾可以在該處的網站上下載手機的應用程式,不過陳博士也提到蚊子App的問題,App大量的開發不一定對應到真實世界的需求。

中興社的陳俊愷研究員與鄭錦桐副理分享防災雲新知。(圖片來源:作者)
中興社的陳俊愷研究員與鄭錦桐副理分享防災雲新知。(圖片來源:作者)

政府投入大量的資源在防災雲端上,防救災的工作大都是由政府主導,但是防災涉及的產業領域相當廣泛,民間也有充分的能量參與防災,譬如保險業為例,如果要啟動「災害保險」,業者便需要各種災害的風險分布資料才能評估。今年「臺灣防災產業協會」正式成立,可見未來將有更明確的「防災產業鏈」,提供各式防災的技術與商品服務,而防災領域產業化的趨勢,就從能夠處理大量資料的防災雲開始。

延伸學習:中興社防災科技研究中心:防災雲端技術應用

本文原發表於行政院國家科學委員會-科技大觀園「科技新知」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!
文章難易度
陳 慈忻
55 篇文章 ・ 0 位粉絲
在丹麥的博士生,專長是用機器學習探索人類生活空間,正在研究都市環境變遷與人類健康的關係。曾擔任防災科普小組編輯、社會創新電子報主編。

0

1
0

文字

分享

0
1
0
準備出國啦!Surfshark VPN 快趁黑五買起來,上網購物最安心
鳥苷三磷酸 (PanSci Promo)_96
・2022/11/01 ・2113字 ・閱讀時間約 4 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文由 Surfshark VPN 贊助。

兩、三年以來的防疫生活,終於迎來全面 0+7 的這一天啦!返國之後不再需要隔離的一天來了,冰友們,你是不是已經收拾好心情、收拾好行李,在進行機+酒的比價了呢?除了規劃好出國行程、找好景點與美食店家,想要讓自己不可或缺的網路生活也更加安全,一定要趁即將到來了感恩節黑五期間,把超優惠的 Surfshark VPN 服務買起來,為自己的網路生活加買最平安的保險!

Surfshark 黑五限時 18 折折扣,額外加送兩個月
專屬連結:https://lihi2.cc/8XwRN

在疫情下,網購成為了更多人的日常。不僅各樣的在地購物節為網友帶來眾多優惠,全球化的購物活動,台灣當然也不會缺席!美國感恩節(Thanksgiving)都是 11 月第四個星期四,但是感恩節後的週五,便是聖誕節前的購物佳期啟動日,這一天通常都會業績超標(在收支表上呈現正向收入(顯示為黑色字體,而非赤字的紅色字體),各家的瘋狂優惠都會在黑五祭出!相信許多精打細算的朋友,對黑五購物節絕對不陌生(很可能還搶過很多優惠!!)

網購怎能漏掉「亞馬遜」!

雅虎奇摩之於台灣,就像是亞馬遜(Amazon.com)之於美國那麼的有名!絕對也是什麼都賣、什麼都不奇怪的最佳代表。

如果你平常就很喜愛一些美國品牌,趁著黑五的日子到亞馬遜清空購物車,覺對優惠不會讓你失望。這時候,透過 Surfshark 連線到亞馬遜美國站,絕對會顯示的價格絕對讓你眼睛為之一亮,這時候最新搭載 M2 晶片的 iPad Pro,獨家支援動態島顯示的 iPhone 14 Pro,絕對是最好入手的時機。除此之外,亞馬遜平台經典的 Kindle 閱讀器,也是超合適的禮物,送禮自用兩相宜啊!另外要特別留意,購買時可以確認商品有沒有幫忙送到台灣,如果還沒有,可以先跟美國的朋友確認一下,邀請他們回國時幫你一起帶回來!

跨國追劇最爽快

對於喜愛追劇的朋友,品味可能相當豐富且多元,畢竟欣賞優秀影視作品,不現語言,更是不限地區啊!只不過,若是你訂閱 Netflix 等跨國 OTT 服務,都會有各地不同的上架影視作品,可能會讓你無法在第一時間就能夠立即「追」到劇,讓你等得心癢癢!還好這一切只要連上 Surfshark VPN 都能解決,Surfshark 支援超過 100 國的 VPN 連線,無論你想看韓國、日本還是哪一國的最新戲劇,通通讓你一秒追到最新進度!

Surfshark 黑五限時 18 折折扣,額外加送兩個月

專屬連結:https://lihi2.cc/8XwRN

出差大陸翻牆超方便

在過往出國、返國都需要隔離的階段,肯定讓不少工作上需要經常往返多國之間的朋友,感到生活驟變。所幸,在防疫政策解封之後,一切都可逐漸恢復正常。對於經常有需要到中國大陸出差的朋友,肯定都會感受到網路斷聯的不方便,因為無論是 LINE、Facebook Messenger、YouTube、Gmail 等你可很能天天都在使用的網路服務,大陸都無法使用。這還不打緊,連跟家人、朋友報平安也很不便。這時候 Surfshark 連上,就可以幫助你輕鬆「翻牆」,跟台灣親人網路無距離!

 

上網不留痕跡,不被追蹤最自由

對於一個人來說,最私密的資料之一,除了你的個資,就屬我們每天耗費大量時間逗留的網路。我們所在網路上留下的痕跡,絕對是超真實的自己,當然你不會期待這樣的自己被「搜尋引擎」、「網路廣告」公司了解得太透徹,好像你在網路上的一言一行,都被監視著。

..0000000\0;也可隱藏IP位置,避免被廣告商追蹤;更可以為你我阻擋惡意程式、釣魚軟體等,讓你防止被攻擊,以及被網路充斥的廣告打擾,好處多又多!

如果對於 Surfshark 還覺得不夠熟悉的話,不得不告訴大家,今年 Surfshark 榮獲第六屆 CyberSecurity Breakthrough 頒發的「VPN 年度最佳解決方案」(VPN Solution of the Year),也就是成為今年最推薦的 VPN 方案。CyberSecurity Breakthrough 是全球領先的獨立市場情報組織,致力於表揚當今全球資訊安全市場上的頂尖企業、技術和產品。有了他們「掛保證」,代表 Surfshark 絕對是品質、信譽都讓你安心的VPN 服務。

講了這麼多,是不是讓你感到很心動了。如果你原本就是網路重度使用者,用來上網的設備是樣樣都有,Surfshark 一個帳號就能支援所有設備,CP 值超高!趁著年度超狂黑五購物節的到來,送給你自己兩年安心無虞的網路生活,肯定是送自己的最好禮物!

Surfshark 黑五限時 18 折折扣,額外加送兩個月
專屬連結:https://lihi2.cc/8XwRN

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
155 篇文章 ・ 268 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
2

文字

分享

0
1
2
超級電腦爭霸戰的新一頁開始了:Exascale(10 的 18 次方)之戰
Y.-S. Lu
・2022/09/10 ・5230字 ・閱讀時間約 10 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

2023 即將上線的超級電腦(Supercomputer)

歐洲最大的超級電腦(Supercomputer),將要在 2023 年上線啦!今年六月中時,德國于利希研究中心(Forschungszentrum Jülich GmbH)的超級計算中心(Jülich Supercomputing Centre, JSC)發佈新聞稿[1],表示歐盟的歐洲超級電腦中心聯合承辦組織(EuroHPC Joint Undertaking)選定該研究中心的超級計算中心,做為歐洲第一個設立 Exascale 超級電腦 Jupiter 的地點[2],歐盟出資一半,而另一半的資金將由德國教育部(BMBF)以及北萊茵威斯特法倫州(Nordrhein-Westfalen)文化部共同出資,其意昧著這台超級電腦也將優先提供給德國的科學家,以及北威州的研究單位使用[註一]。表示現今的超級電腦軍備競賽,已打到了 Exascale 了,Jupiter 將是繼美國設立世界第一台 Exascale[註二]的超級電腦 Frontier 後[3],即將出現的次世代超級電腦(如果德國的施工期有好好的踩點)

位於阿貢國家實驗室的 IBM Blue Gene/P 超級計算機。圖/wikipedia

Exascale 的超級電腦具有「每秒百億億次(1018)」(也就是 100 京)的每秒浮點運算(FLOP)能力,實際規模也將具有國家高速運算中心台灣杉二號[4]的 111 倍以上的運算能力,也就是要建立超過百台規模的台灣杉二號才具有 Exascale 的規模,但也同時考驗硬體的處理能力、主機間節點的連線架構、資料讀寫能力,更甚者,則是軟體是否具有 Exascale 的使用能力,也就是硬體與軟體都必須要能夠良好的契合才行。

什麼是超級電腦?可以幫助都市成為超級都市嗎?

「這些顯示器太舊了」雷迪亞茲說。

「但它們後面是世界最強大的電腦,每秒可以進行五百萬億次浮點運算。」

~ 劉欣慈《三體:黑暗森林》

劉欣慈《三體:黑暗森林》(2007)提到人類「當時」最強的電腦,為五百萬億的運算能力「而已」,沒想到 15 年後的今天,地表最強的超級電腦 Frontier 是出現在美國的橡樹嶺國家實驗室(Oak Ridge National Laboratory),而不是小說裡說的,在洛斯阿拉莫斯國家實驗室(Los Alamos National Laboratory),而且 Frontier 的效能還是小說裡超級電腦的五千多倍,可說是現實終於有超過小說的時候了(但我們依就沒有飛天滑板可以借東京都的死神小學生)

超級電腦是科學家進行高速/高效計算(High Performance Computing)的主要設備。超級電腦的架構,可以說是非常的簡單:用網路線連結各台主機,讓主機間互相溝通,才能夠進行平行運算。

一般超級電腦的架構大致上如下:一機板上可能會有一個到數個 CPU,而一個或是數個機板會組成一個節點(Node),有時數個結點會組成一個機櫃(Rack/Cabinet)。節點與節點間的連結,就是依靠網路線在進行 CPU 之間的溝通,因此網路變成非常重要的元件。

節點與節點間的連結,就是依靠網路線在進行 CPU 之間的溝通,因此網路變成非常重要的元件。圖/pixabay

在此架構下,如何讓結點間有效溝通,也是一門學問了[5]。這些 CPU 可以想象是每個拿著工程計算機的研究生,正等著教授指派任務給他們算,而一個節點就是一個房間,在同一個房間內的溝通一定是比較快的,當不同房間需要溝通時,就會需要走出房間去給資料,如果所有的人一起拿資料回報給教授,那這教授可能就會崩潰,所以如何讓研究生(CPU)互相溝通,又不至於塞車,就是電腦工程專家們的專業了。

現在超級電腦的架構也與過往的超級電腦不同了。除了採用巨量 Arm 晶片的日本富岳(具 158,976 節點)、自主研發晶片的中國神威太湖之光(具 40,960 節點)外,前十大超級電腦[3]都是採用 CPU 加上 GPU 的混合架構(如在機板上插上 GPU 增加運算效率),才達到 100 Peta-Flop(1Peta = 1015) 以上的計算量,也意味著未來要在超級電腦上進行高效計算,GPU 運算也成為很重要的應用,因此也有許多計畫正在將軟體朝 GPU 運算的方向前進與推動。

軟體是否能配合平行化,也是非常是否能進行高效運算的重點之一。所謂的高效計算,也是利用許許多多的運算元件(CPU 或是 GPU),採平行運算的方法,將一個問題切成許多碎片,以螞蟻雄兵的方法一一解決,所以不要再怪為什麼你家的電腦 CPU 無論幾核心都只用了一核心,那是因為你的軟體沒有進行平行處理。早期土木界在進行坡面的圓弧破壞面計算時,據說就是用人力一人算一片圓弧的切片,也算是(人力)平行運算的先驅之一了。一般電腦中使用平行運算最多的,應該就是你手上那張 GPU 顯卡,在 GPU 的加持下,電腦螢幕中每個點、每個邊、每個平面上的顏色與光影,才能完美的呈現在使用者的眼前,所以與其用顯卡挖礦,還不如投身虛幻而真實的遊戲世界

不過有了地表最強的超級電腦,並不代表我們今天就能夠像小說形容的一樣,能幾秒內預測核子彈的破壞能力,或是在一天內算出地球百年後的氣候狀況,因為平行計算加快了計算的速度,但有其極限。

有了地表最強的超級電腦,並不代表我們能夠像小說一樣,在一天內算出地球百年後的氣候狀況,因為平行計算加快了計算的速度,但有其極限。圖/pixabay

資料的讀入或是寫出,也是瓶頸之一,電路板與網路速度,以及資料存取方式都會造成資料讀寫的延遲,更不用說,若是打算模擬地球,其將耗盡 80 exabyte 等級的儲存空間,其為 CERN 的 ATLAS 與 CMS 計畫所產生的資料量的十倍[6]

為什麼氣候模擬要用到 Exascale?

Exascale 的超級電腦除了可以提供更多的運算能力,給更多的使用者進行模擬與計算外,也是挑戰超大型計算的開始。不過為什麼要 Exascale?到底為什麼一個模擬要用到上千甚至是上萬顆的 CPU 在運算?氣象氣候模擬已經將 Exascale 喻為下一階段應使用的救星[7],在氣象上除了要能做到一小時內達成氣象預測外,也希望能夠進行叢集式運算(像是利用隨機方法產生上百個因亂度而有不同結果的預測),進而進行機率式預測分析,或是提高水平距離至 2.5 公里以下的網格精度,此精度也為可進行對流模擬 (Convection-Permit)[8] 的精度。氣候模擬也需要高效能的運算,除了高精度的全球模型外,也需要進行長程的氣候模擬,幾十年到幾百萬年的模擬時間,也將需要 Exascale 等級的超級電腦來加速模擬,縮短實驗時間。越多的計算核心以及有效的平行運算,才能讓最真實的模擬結果讓人類使用,畢竟,誰都希望出遊不要遇上下大雨,也會希望能夠提前幾天知道颱風的路徑。

地球系統模擬中,其中一個挑戰便是進行模擬時程:挑戰一日(24 小時)的超級電腦計算可以得到多少年的模擬結果(simulated years per wall-clock day, SYPD)[6]還真的是「度日如年」,而此地球系統的精度為水平方向僅一公里的超高解析度,用來進行最終極的地球系統模擬:數位攣生(Digital Twins)[9]。數位攣生計畫主要是要建立地球的複製體,以方便人們對地球進行各種「實驗」,了解到經濟或政策面對地球生態或是氣候的影響,因此要達成此目的,強大具 Exascale 能力的電腦,便成為了目標。

目前已經有部份超級電腦都在進行 SYPD 的挑戰,如中國的神威太湖之光,其已完成了每日 3.4 年的地球系統模擬[10],只不過其地面僅有 25 公里的水平精度,海面僅 10 公里的水平精度,還有非常多的進步空間。只可惜,這個實驗並沒有進行進行資料輸出,無法得到正確的效能結果(資料的寫入與輸出也是非常費時的),以及真正的運算結果:因為沒有資料,就沒有辦法分析。

從高速電腦看量子電腦:量子電腦會是傳統的救星嗎?

量子電腦目前也成為了熱門名詞,從 2019 年開始,IBM 與 MIT 共同開始了量子計算課程,各學術單位也在搶攻量子電腦領域,但對地球模擬領域而言,量子電腦還太遙遠,對「傳統物理」的地球科學來說,我們解偏微分、解多項式,用的是傳統的數值方法,跟量子電腦界在進行的運算,也差了十萬八千里。

編按:這邊所說的數值方法,簡單講就是「暴力解」。例如要求圓周率,就先設定一個半徑為 1 的圓面積公式,然後問電腦答案是多少,電腦的第一步會把所有正整數代入公式中從一個初始數字(nitial State)開始,先找到答案會在 3 到 4 之間,之後又把 3 到 4 之間的所有數,帶回一開始的公式,得知答案在 3.1 到 3.2 之間,之後又將這個區間的所有數帶回一開始的公式,如此重複很多次後,就會得到相對接近的正確答案。

量子電腦就比較詭異了,量子態的平行運算與邏輯閘,使得兩者的運算邏輯完全不同,以上面的圓周率問題為例,量子電腦會直接給出在 3.1415925 至 3.1415927 之間,存在正確答案的可能性是最高的,但是這個範圍也有可能是錯的,而且就算是錯的,以我們現在的能力也很難說明它錯在哪裡。

從表面上來看,傳統電腦用暴力解,以排除錯誤答案的方式逼近正確答案,而量子電腦不排除錯誤答案,直接找到最有可能的答案會在哪個區域,但不保證運算過程中的正確性。

因為這個區別,若將現在成熟的模擬方法直接導入量子電腦中,最有可能出現的就是不知道怎麼解讀得到的數據,這包含了答案的正確程度,以及改動特定變數後所產生的答案變動是從何而來?

IBM 與 GOOGLE 正在爭奪追逐量子霸權(Quantum Supremacy)的同時[11],(不過 Google 號稱的量子霸權,也就是一萬倍的計算速度,在 2021 年被中國科學院理論物理所的 Feng 等人用了 15 個 NVIDIA V100 GPU 給追上[12][註五]),其離傳統電腦計算的距離,也有十萬八千里遠,離應用於地球科學計算上還有一定的距離,但只要哪一天能夠應用在普通的大氣循環模式(GCM),就可以算是第一步吧。但是在量子力學進入大氣科學前,我們氣候與氣象模擬還是只能使用傳統的電腦主機,靠著 2 位元的方法進行大氣模擬,所以目前傳統超級電腦還沒有被取代的機會。

結語:超大主機與超大計算

依摩爾定律,每十八個月,CPU 晶片的製成就會進步一倍,同時,超級電腦中心卻是一直受益於摩爾定律帶來的好處,也就是 CPU 的能力越來越強,而價格也越來越親民,也讓氣候氣象模擬的空間精度也隨之升高。

Neumann 等人也預計在 2030 年代後,進行 1 公里等級的超高精度計算也將不是夢想[7],而在 Exascale 主機降臨前的這個年代,有些超級計算中心已經以節點(Node)做為計算資源耗費的單位(Node per hour),而非 CPU per hour,顯示出大型主機對計算資源消耗的想法以從 CPU 規模上升到了 Node 規模。

一方面使用者受益於更多的 CPU 資源,但同時這些主機也要求更新更大量的計算能力,如瑞士的 Piz Daint 與瑞典的 LUMI,皆要求使用者的計算必須是含有 GPU 運算能力,而純粹靠 CPU 運算的軟體,將無法享受到同等的巨量資源。

IBM為橡樹嶺國家實驗室開發的Summit超級計算機(或 OLCF-4)。圖/flickr

而相應的挑戰也隨之而生,除了硬體將進入 Exascale 的時代,軟體也將一同進入這場大戰,才能享受同等的資源。另外一個挑戰則是綠色挑戰,1 公里精度的氣象模擬,每一模擬年將耗盡 191.7 百萬瓦時[6],相當於台灣一個家庭可以用上 43 年的電量[註三],也可以讓特斯拉的 Model 3LR 從地球開到月球來回開 1.5 次[註四],其耗能之巨,也是我們計算或是模擬界科學家應該要注意到的問題,也是為何除了 HPC Top500 外,亦有 Green 500[13]的原因吧,而具有超高效能的 Frontier,也同時奪下了 Green 500 之冠,也算是 Exascale 的好處吧。

註解與文獻

  • [註一] 若需使用 JSC 的超級電腦,必須透過不同的計畫項目進行申請,其計畫主持人(PI)為歐洲或是德國的研究者[14]
  • [註二] 日本的富岳其實也可以進行到 Exscale 的運算,只是要超頻而已,想當然爾是非常規設定。
  • [註三] 根據台電 2021 年新聞稿中,家庭離峰平均用電為 339 度以及 6-9 月為 434 度推估。
  • [註四] 根據 Tesla M3 LR 為 25kWh per 100 Miles,月球至地球為 384400 公里推估
  • [註五] Feng 也公開了他的程式碼
  • [1] Forschungszentrum Jülich 新聞稿
  • [2] EUROPE HPC 新聞稿
  • [3] 2022 年六月 HPC Top 500 名單
  • [4] 國家高速網路中心台灣杉二號介紹
  • [5] 司徒加特超級電腦中心:HAWK 主機之連線架構
  • [6] T. C. Schulthess, P. Bauer, N. Wedi, O. Fuhrer, T. Hoefler and C. Schär, “Reflecting on the Goal and Baseline for Exascale Computing: A Roadmap Based on Weather and Climate Simulations,” in Computing in Science & Engineering, vol. 21, no. 1, pp. 30-41, 1 Jan.-Feb. 2019, doi: 10.1109/MCSE.2018.2888788.
  • [7] Neumann P et al. 2019, Assessing the scales in numerical weather and climate predictions: will exascale be the rescue?. Phil. Trans. R. Soc. A 377: 20180148. http://dx.doi.org/10.1098/rsta.2018.0148
  • [8] Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., Evans, J. P., Fosser, G., & Wilkinson, J. M. (2017). Do Convection-Permitting Regional Climate Models Improve Projections of Future Precipitation Change?, Bulletin of the American Meteorological Society, 98(1), 79-93
  • [9] Bauer, P., Dueben, P.D., Hoefler, T. et al. The digital revolution of Earth-system science. Nat Comput Sci 1, 104–113 (2021). https://doi.org/10.1038/s43588-021-00023-0
  • [10] Zhang, S., Fu, H., Wu, L., Li, Y., Wang, H., Zeng, Y., Duan, X., Wan, W., Wang, L., Zhuang, Y., Meng, H., Xu, K., Xu, P., Gan, L., Liu, Z., Wu, S., Chen, Y., Yu, H., Shi, S., Wang, L., Xu, S., Xue, W., Liu, W., Guo, Q., Zhang, J., Zhu, G., Tu, Y., Edwards, J., Baker, A., Yong, J., Yuan, M., Yu, Y., Zhang, Q., Liu, Z., Li, M., Jia, D., Yang, G., Wei, Z., Pan, J., Chang, P., Danabasoglu, G., Yeager, S., Rosenbloom, N., and Guo, Y.: Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform, Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, 2020. https://gmd.copernicus.org/articles/13/4809/2020/
  • [11] 「嗨量子世界!」~ Nature Newsletter
  • [12] Feng Pan, Keyang Chen, and Pan Zhang, Solving the sampling problem of the Sycamore quantum circuits, accepted by Phys. Rev. Lett.
  • [13] 2022 年六月 HPC Green 500 名單
  • [14] JSC 系統申請辦法

Y.-S. Lu
4 篇文章 ・ 6 位粉絲
自從來到學界後,便展開了一段從土木人到氣象人的水文之旅。主要專業是地球系統數值模擬,地下水與地表模式的耦合系統,以及大氣氣象模擬。目前是于利希研究中心(Forschungszentrum Jülich GmbH)超級電腦中心的博士後研究員。

0

2
1

文字

分享

0
2
1
時時刻刻監測您的「飛行安全」——智慧型手機有潛力作為「大麻檢測器」
帕德波耶特 Pas de poète_96
・2021/10/30 ・3146字 ・閱讀時間約 6 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

智慧型手機的功能日趨全面,幾乎就要包辦日常生活大小事,當然也包含我們的健康。有些人拿它來記錄每天的運動狀況,也有人搭配應用程式,監測自己的心肺功能。

但這還不夠,科學家總是能想到更奇葩的需求:未來,你的手機也有機會變身「大麻檢測器」了!羅格斯大學健康暨健康政策與高齡研究所(Rutgers Institute for Health, Health Care Policy and Aging Research)研究團隊,調查大麻使用者的「嗨度」,並將其與機器學習技術做結合,試圖打造能準確判斷大麻中毒程度的日常小工具。

研究發表於《藥物與酒精依賴》(Drug and Alcohol Dependence)期刊[1]

大麻何以讓人愉悅?

法國喜劇劇集《大麻咖啡館》(Family Business)中,年輕企業家喬瑟夫.亞贊(Joseph Hazan)乘著法國大麻合法化的順風車,決定將老父親傑哈德.亞贊(Gérard Hazan)的肉鋪改造成大麻咖啡館。雖說父親一開始很反對,但在偶像安瑞可.馬西亞斯(Enrico Macias)的循循善誘下,父親最終也體驗了呼麻的快感,並開始積極面對他們的咖啡館事業。

大麻為何能讓人快樂到放棄執著?一個叫四氫大麻酚(Tetrahydrocannabinol, THC)的傢伙扮演著關鍵角色。由於 THC 的化學結構與人體的內源性大麻「花生四烯乙醇胺」(anandamide)十分相似,它能與大麻素受體(cannabinoid receptors)結合,並啟動大腦的獎勵系統,讓我們感到身心愉悅[2]

這不免讓人感到好奇:究竟,人們是如何攝入大麻的呢?

一般來說,大麻被攝取的途徑有二:吸食,或直接拿起來嗑(沒啦,是摻在食物裡面服用)。當人們吸食大麻時,裡頭的化學物質會從肺部進入血液,進而將它們運送到身體各處,包括大腦。但如果是用吃的,由於是透過消化系統吸受,因此大麻所帶來的影響通常會晚個 30 分鐘到 1 小時出現。

製作中的大麻奶油。圖/WIKIPEDIA

大麻中毒將導致「定向感」降低

對大麻使用者來說,它最迷人的地方大概就是使用後欣快的放鬆感受。此外,有些人也會體驗到感官放大的飄忽景象,但也有部分人認為,大麻會讓他們感到焦慮、恐懼、不信任和恐慌。雖然目前較少有因純粹吸食大麻而死亡的案例,然而,若是使用過量,便會引發大麻中毒(cannabis intoxication)[3]

大麻中毒的人,輕則產生飢餓與嗜睡等症狀,嚴重的話,會導致認知與對人事時地物的定向感降低,甚至會出現急性精神病(acute psychosis)[4]。其他典型、可預測的症狀,還包括口乾舌燥、紅眼、短期記憶受損,以及知覺和動作的影響等5

部分大麻中毒者,會因為大麻在精神上的影響,對外界反應時間過慢,造成工作或學校表現低落,甚至在開車、駕駛時形成干擾,最終導致交通事故與傷亡等憾事。

雖說如今有血液、尿液或唾液等測試,能針對大麻中毒進行檢測,但若要實現日常生活中的時刻監測,恐怕還是有些限制的。

過去曾有研究,以現代人形影不離的「智慧型手機」裡的感測器,來探測高風險的飲酒者,準確率高達 90%[6]。有鑑於此,羅格斯大學健康暨健康政策與高齡研究所團隊開始研究,想知道在機器學習模型的協助下,手機是否能發揮檢測「大麻中毒」的作用,即時探測那些可能因大麻中毒引發的危機。

智慧型手機,有潛力作為「大麻中毒」的檢測器。圖/Pexels

如何檢測嗨不嗨?關鍵是「使用後的行為」

團隊首先從美國賓州匹茲堡(Pittsburgh, PA)找來 57 位年齡介在 18~25 歲的年輕人,透過自我報告,得知他們每週至少使用大麻兩次。之後,團隊透過「手機回傳調查」搭配「手機內感測器數據」等方法,每日收集受試者使用大麻的相關數據持續至多 30 天,以掌握他們在大麻中毒後的狀況。

其中,回傳調查每日三次,包含開始與結束使用大麻的時間、用量,以及主觀感受的自我評分——依據「嗨」的程度,評分標準為 1~10分,其中 10 分為「敲級嗨」。後來回傳的 451 起大麻使用事件中,平均「嗨度」為 3.77 分。

而手機則搭配應用程式,收集了 102 種手機感測器的數據,如 GPS、加速度計(accelerometer)、撥出的電話數量以及平均移動距離等。有些人聽到這裡可能坐不住了。等等⋯⋯GPS 這類定位工具與加速度計,到底能做什麼?是這樣的,GPS 可用來偵測大麻使用者陷入「自我陶醉」時的行進範圍(travel boundary),而加速度計則是用來監測他們的步態與身體活動量。

在對照受試者的回傳調查及手機數據後發現,當使用者回報他們「正嗨」時,透過 GPS 的數據分析可知,他們的移動範圍並不遠。另外,此時加速度計的資料也顯示,主觀報告大麻中毒者,雖然活動多樣性下降,但身體的活動程度卻比較劇烈。

考慮時間點的監測,精確度大提升!

最後,他們在演算法的幫助下[7][註1],盼能瞭解上述方法,是否能區別無中毒和中毒(輕度或中度)的情形。透過各種中毒時的行為特徵,加上機器學習技術的檢核,智慧型手機就可以變成如假包換的「大麻使用監測器」啦!

為了探究這個組合的準確性,團隊企圖在不同的時間點(例如:一周中的某一天,或是某一天的幾點幾分)下做排查,找出與大麻使用行為與特定時間點的關係,以進一步確認大麻中毒的具體指標。

結果顯示,僅出動手機內的感測器偵測這群人是否使用大麻,準確度為 67 %;但若結合「個人呼麻時間點」與 GPS 和加速度計等資料,則準確度高達 90%

經乾燥過後的大麻示意圖。圖/Pexels

用手機偵測大麻使用?得再等等⋯⋯

面對如此結果,研究團隊認為,以手機結合機器學習預測大麻中毒程度,是相當可行的。不過,未來還需要加入更多資料,以完備這項工具。

首先,由於該研究對大麻中毒的判定,主要建立在「受試者主觀判斷和自我(ㄕㄡˇ)報告」的基礎上,因此在物質使用和生理反應的識別上,不如執法部門的檢驗工具那般客觀。此外,像是大麻使用者的使用史、攝入身體的途徑、劑量,以及使用者對大麻的耐受性,都會影響他們報告身體狀況的結果。

不僅如此,像是不常使用大麻者在中毒時,他們的行為與身體反應和那些「老司機」們相比,是否有明顯差異?該研究受試者多為白人,其他人種在同劑量的條件下,會不會產生相應的數據?這裡不是要戰種族,但光是「喝酒」這件事,每個人種的反應也多少帶有一些差異,像亞洲人普遍就很難代謝酒精[8]

以上種種,都是這個工具可能被泛用的關鍵。最後,假設這個大麻偵測小工具,有朝一日被推到應用程式的市場上,你會想下載嗎?又,我們是否能因為大麻使用者的敏感身份與風險,而逕自對他們搜集資料、加以監控?作為一旁拍手叫好等待好用產品問世的小老百姓,在引頸期盼的同時,也必須深思這樣的問題。

註解

  • 註 1:該研究所使用的技術為「Light Gradient Boosting Machine」,是微軟公司以「決策數演算法」(decision tree algorithms)為基礎,於二〇一七年釋出 LightGBM 演算法,用於排序、分類和其它機器學習的任務。

參考文獻

  1.  Sang Won Bae et al. (2021) Mobile phone sensor-based detection of subjective cannabis intoxication in young adults: A feasibility study in real-world settings. Drug and Alcohol Dependence
  2.  How does marijuana produce its effects? National Institute on Drug Abuse, 2020.
  3.  What are marijuana’s effects? National Institute on Drug Abuse, 2020.
  4.  Helen Okoye. Cannabis Intoxication DSM-5 292.89 (F12.12). Theravive.
  5.  Marijuana intoxication. U.S. National Library of Medicine.
  6.  Bae et al. (2018) Mobile phone sensors and supervised machine learning to identify alcohol use events in young adults: Implications for just-in-time adaptive interventions. Addictive Behaviors
  7.   LightGBM. Wikipedia.
  8.  Hui Li et al. (2009) Refined Geographic Distribution of the Oriental ALDH2*504Lys (nee 487Lys) Variant. Annals of Human Genetics.
帕德波耶特 Pas de poète_96
4 篇文章 ・ 3 位粉絲
嗜酒如命的平靜份子,逃離醫療工作後,在一連串荒謬的經歷下,成了文字與音樂工作者。