0

0
0

文字

分享

0
0
0

防災2.0專題(三):群眾外包 網民行動力

陳 慈忻
・2013/07/03 ・3646字 ・閱讀時間約 7 分鐘 ・SR值 521 ・七年級

本文由國科會補助,泛科學獨立製作


「2009年台灣發生莫拉克風災,我和幾個朋友希望可以透過資訊科技幫忙一些事情。」這是中央研究院資訊創新中心的蕭景燈博士架設台灣第一個「Sahana」系統的初衷。接著隔年的海地地震也促成他引入另一個系統「Ushahidi」,從此之後持續累積了經驗,應用在更多台灣的案例上,這些透過網路社群蒐集資訊的系統在世界各地如何協助救災與防災?我們來聽聽蕭景燈博士怎麼說。

社會?媒體?社會媒體?

絕大多數台灣網路使用者每天必上的Facebook,對社會有什麼革命性的影響呢?在社會媒體尚未出現前,資訊的傳播權力只有在少數人手上,出現在媒體上的議題是經過篩選的,握有權力者與市井小民是「由上而下(top-down)」的溝通關係;另一方面傳統媒體的承載量不足、傳遞不夠即時,即使是與大眾息息相關的議題出現在媒體上,民眾也只是被告知而無法協助訊息更新或親身參與。然而現在有了社會媒體,搭配行動裝置如手機、平板,即時訊息傳遞、集結與動員都變得非常簡單,使得「由下而上(Bottom-up)」的公民力量能夠發揮。

動員的過程中,社會媒體還可以將工作在網路平台上進行分割與指派,藉由群眾的力量在短時間完成特定的工作,這樣的「群眾外包(crowdsourcing)」功能經常與社會媒體搭配,達到對不特定群眾組織管理的效果。Ushahidi就是這樣的平台。

-----廣告,請繼續往下閱讀-----

每個人的證言:Ushahidi!

Ushahidi是非洲斯瓦希里(Swahili)語,誕生的危機與契機則是2008年肯亞的選後暴亂。就如同大規模天災發生一般,當時的資訊混亂不堪,主流媒體沒有辦法即時、系統地傳播,有能力的人也難以到場幫忙。因此當地的公民記者、程式設計師共同開發了這套訊息回報與彙整的視覺化系統,讓民眾只要發送手機簡訊就能夠通報,而事件的發生地點、類別、簡要描述等資訊都會集結在一個地圖平台上,手機對肯亞大多數人而言是負擔得起的科技產品,因此當時使用Ushahidi平台回報相當熱烈,幫助許多人避開衝突點、前往物資跟救援所在處。

Ushahidi的應用案例經常和弱勢者有所連結,因為掌權者本來就握有各種通訊管道,因此對於社會媒體較不重視,反觀社會弱勢者可以透過這種免費的、低科技門檻的工具來發聲。除了透過瀏覽器所看到的資訊收集和播報的功能外,由於Ushahidi使用標準的JSON格式 (JavaScript Object Notation,一種普遍且易讀的資料交換語言),幾乎所有網頁開發的相關語言都有JSON的函式庫,因此Ushahidi可以方便的交換資訊,舉個具體的例子,你可以下載Ushahidi的網站架構原始碼及網站資訊,混搭其他不同來源的內容,在自己的軟體或網頁上呈現。

Ushahidi的經典案例莫過於2010年的海地大地震,「有人說這是人類第1次將社會媒體應用在天災的救災工作。」蕭景燈說。當時最知名的救災行動是「4636」,地震發生後海地的兩家電信公司捐出電話簡碼,只要傳送簡訊給4636,就可以回報建築物倒塌、人命傷亡、等待救援等狀況。

拜網路科技之賜,讓當時很多不在海地現場的人也能幫上忙。所有回報到4636的事件,都經過語言與座標兩層的資訊轉譯工作,都是由線上志工負責。海地當地使用的語言混合了法文和非洲語言,這些簡訊轉到美國之後經過熟悉海地語的志工翻譯成為英文,讓國際救援團隊能夠了解訊息內容以進行救援;另一方面,救災工作的地點需要有精確的座標描述,國際救援組織雖不熟悉這個地區,但可以依照全球定位系統(GPS)定位抵達現場。由於回報訊息的人是ㄧ般海地民眾,對於地點的描述都是日常生活中的稱呼,有點像是:「中正路的百貨公司」、「重陽橋斜對面的加油站」這種不精準的敘述方式,志工們便負責將這種當地人的敘述轉換成一個可以跨組織溝通的絕對座標,同時也精準地將回報訊息標記在地圖上。

-----廣告,請繼續往下閱讀-----

管理資源的導演:Sahana!

不同於Ushahidi管理的是資訊,Sahana 管理的則是資源。災難發生的期間,各式資源的需求與供給間的媒合,一直都是各救難團體的一大難題。救災資源的需求激增且難以估計,有效率的資源管理平台用來整合、分配救災人力與物資是迫切需要的,Sahana就是為了解決這個問題而誕生!

2004年南亞大海嘯發生後,世界各地救難物資湧入災區,斯里蘭卡等地的資訊志工於是建立了Sahana平台,調理這個巨型災害下的龐大的資源供給和需求;後來Sahana布建的地區從南亞擴散到世界各地,陸續在大型天災發生時擔任關鍵角色,也因此程式不斷更新,從最初南亞大海嘯時開發的Agasti,發展到現在已經有4套平台,其中紐約市政府使用的Mayon平台,是以區域性大規模災難情境為考量研發出來的。

Sahana也在海地地震的「4636」行動中負責醫療資源彙整的工作,透過標準的資料格式,將原本各家醫院相互獨立的資訊集合在一起,包括醫生專長、病床數、藥品量分布都可以即時統計出來,使醫療資源得到更妥善的運用。Sahana以資訊系統輔助複雜的救災流程,減少人為的失誤,使得整個過程更有效率。

台灣防災情境的社會媒體

2009年發生莫拉克風災後,中研院資創中心開始進行Sahana在地化的工作,之後在2011年也投入Ushahidi的在地化。蕭景燈說:「雖然88風災時Sahana沒派上用場,但是仍要先把它們做起來,真正需要用的時候才不會沒得用。」從他的觀點,這兩套中文版的系統就像保險一樣,最好不要用到,但一定要準備好。

-----廣告,請繼續往下閱讀-----

Ushahidi可以運用的範圍很廣,「4、5月油桐花開,哪裡可以欣賞?有特色的咖啡店在哪裡?這些都可以用Ushahidi的平台回報與傳播。」蕭景燈表示。而Sahana則是特定用於救災與災後重建的管理,因此Sahana在地化最優先的工作,就是使它適用於台灣的救災情境。

為了使源自國外的Sahana更適合台灣使用,蕭景燈與資創中心的同事花了半年的時間訪談許多參與救災的社福團體,得知大家對於資源的媒合與管理都感到相當頭痛,連列印捐贈者感謝狀與收據都成了繁重的工作,占用相當多的時間。因此,Sahana的在地化工作,也針對台灣的特殊需要做了調整,讓感謝狀與收據相關作業能在收到物資捐贈,進行登錄時就一併處理。

蕭景燈技師說:「現在的學生可以多想想,怎麼運用科技在社會最真實、最底層的事情上。」(圖片來源:作者)
蕭景燈技師說:「現在的學生可以多想想,怎麼運用科技在社會最真實、最底層的事情上。」(圖片來源:作者)

Ushahidi可以用來彙整災害訊息,也可以用來彙整非緊急的生活訊息,任何人都可以成運用它成為資訊服務的提供者。

如果自己有硬體,可以下載程式原始碼自行架設一套,或是利用Crowdmap雲端平台。「台灣農夫市集地圖」網站就是一個應用範例,目前這個網站已經蒐集到了60個由小農擺攤、販售在地食材的市集,如果大家有發現新的市集都可以隨時通報。而主婦聯盟也運用Ushahidi來監督政府原能會公布的輻射值,民間自發採購儀器、實地量測輻射值,公開展示於地圖上,讓全民有可以交叉比對的依據。

-----廣告,請繼續往下閱讀-----

瓶頸與展望

雖然,Sahana是針對救難團體資源管理所設計,但在經過多年的推廣後,實際使用的團體仍為少數。主要原因有三,一是Sahana的操作的確比較有技術性,要一個組織完全地採用,需要經過長期的訓練;其次,Sahana需要資訊人力處理系統整合方面的程式修改,使Sahana與個別組織的救災流程相配合,但是目前並沒有足夠的人力進行客製化工作。第三,災害情境無法預期,很難事先將系統準備妥當,待災害一發生立即運用於救災現場,這與許多救災團體對平台的期待有落差,因此沒有大力引進。

但是積極宣導與推廣Sahana仍持續在進行,目前慈濟與工研院資通所合作,將一部分的Sahana模組整合進慈濟既有的後端平台,讓慈濟利用Sahana的科技智慧來管理資源,儘管在慈濟的平台看不到Sahana的外貌,但它的元素已經包含在裡面了。

Ushahidi現在連智慧型手機的App都有了,任何的Ushahidi的布建透過手機通報都不是問題,平時可讓民眾先在非緊急案例上熟悉這套系統,到了災害來臨時,全民的力量才能真正發揮。有興趣的朋友,可以參觀Ushahidi全球網站來看看世界各地的應用案例,或是乾脆自己上Crowdmap創立個主題,來演練這免費的科技!

本文原發表於行政院國家科學委員會-科技大觀園「科技新知」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!

-----廣告,請繼續往下閱讀-----

 

防災2.0系列專題:

文章難易度
陳 慈忻
55 篇文章 ・ 1 位粉絲
在丹麥的博士生,專長是用機器學習探索人類生活空間,正在研究都市環境變遷與人類健康的關係。曾擔任防災科普小組編輯、社會創新電子報主編。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

5
0

文字

分享

0
5
0
命名與測繪自然帶來的力量——《磐石紀事:追蹤 46 億年的地球故事》
貓頭鷹出版社_96
・2021/04/04 ・2665字 ・閱讀時間約 5 分鐘 ・SR值 561 ・九年級

-----廣告,請繼續往下閱讀-----

命名與繪圖

  • 文 | 貝鳶業如

偉大的十八世紀瑞典生物學家林奈,將生物世界組織成有條不紊的階系,其間每種生物都有個名字,都在生命家譜中占有一席之地,由是確立了自然史各個分枝的課題。為事物命名是種近乎神聖的行為,是一種賦權且令人滿足的工作,而分類學(及大量的標本剝製)也在十八、十九世紀成為新興自然科學的主軸。維多利亞時代的自然史博物館體現了科學時代的精神;這些建築裡塞滿了填充過的鳥類、骨骼、化石、結晶等大自然奇珍,被命名、被馴服、埋葬在玻璃匣子裡。

地質領域中可資分類的東西(岩石、礦物、化石、地形、礦物沉積、褶皺、斷層等)之多,使這項工作一直持續到二十世紀。由於無法對這些特徵的形成,提出統一的起源模型,分類架構便使人對大自然的變化性,抱有一種有限且穩固的安心感。有些地質學實體(如礦物)很容易便落入定義明確的分類範疇,而十九世紀那些關於礦物的博學論文(如一八六九年耶魯大學教授戴納那卷帙浩繁的《礦物學手冊》)至今都還在使用,乃是史上同類概要書籍中最為完備者。

美國地質學、動物學和礦物學家詹姆斯 · 德懷特 · 戴納。圖/wikimedia

但其他的地質現象則拒絕被分類,連當時最聰明的人,也掙扎著要確立理想化的柏拉圖式分類範疇,好為難以駕馭的現實罩上結構。

由於經濟上的重要性,發展出一種普世的礦物命名法則在當時是第一要務,但後來證明了這實在是出了名的困難(某程度上而言,至今依然如此)。

-----廣告,請繼續往下閱讀-----

以發現於某一特定地區的礦物為基礎的礦石譜系理論都各有特色,而分類架構總是與這些理論夾纏不清。

十八世紀晚期的歐洲到處都是礦業學校,德國、瑞典、法國的學程更是格外蓬勃。許多學程都只由一名遠見思想家和學徒組成,由學徒協助宣揚大師的體系。德國佛萊堡的「水成」學派是由莊嚴的韋納(一七五○~一八一七)領軍,他提出所有岩石和礦石沉積都自海水沉降而成的概念。而在瑞典的烏普薩拉,華勒流斯(一七○九~一七八五)執著於古老冶金學的金屬質變信念,而提出了一個現代觀念,認為了解礦石礦物的關鍵,在於其化學特性(而非顏色等外在的屬性)。在巴黎,由藥材商轉行成為礦物學家的魯埃(一七○三~一七七○)和他更為知名的學生拉瓦榭(一七四三~一七九四),也發展出關於岩石和礦石本質與分布的早期理論。

不過,這些理論只有少數對真正的採礦實務造成影響;礦工的經驗和直覺大體上還比較可靠些。但這些礦業學校卻標示著一種重要的新哲學:地球及其礦物資源是可以分析的,最終也是可以理解的。

被稱為「現代地質學之父」的詹姆斯 · 赫登。圖/wikimedia

赫登的均變說原理(參見第二章)是以他在愛丁堡和蘇格蘭邊界所觀察的岩石為基礎,之後再將地球「合理化」而成。他對西卡角非整合的解釋及其所「發現」的時間深處,顯示主宰地球過去的物理定律,也同樣主宰著現在(赫登的觀察也記錄下火成岩的存在,這是對韋納等水成論者的一記重擊)。

-----廣告,請繼續往下閱讀-----

赫登的著作似乎肯定了地球的行止有其邏輯而且可靠,或許不是一成不變,但卻能夠為人所理解:在這個球體的固態部分觀察到明顯無序和混亂的哲學家,現在導出一些結論:以前地球的組成裡,曾經存在過一種較有規律也較一致的狀態;過去曾發生過一些毀滅性的改變;地球的最初結構,已被不論是自然或超自然因素所導致的某些猛烈活動打斷和干擾。

此類結論都是由地形外觀推導而得,而現在,在我們努力要建立的理論當中,所有這些地貌都有了最完美的解釋⋯⋯在解釋實際存在之物時,根本就不需要訴諸任何非自然的邪惡假說、任何大自然裡的毀滅性意外事件,或超自然原因的介入。

我們很滿意地發現,大自然有其智慧、體系和一致性⋯⋯我們當前詢問的結果便是:我們並未發現開始的痕跡,也看不到結束的可能。

科學闡釋的時代與歐洲人在美洲、非洲和南太平洋殖民定居的時間相一致(也一向被用來當作這些行為的合理化藉口)。

-----廣告,請繼續往下閱讀-----

探險行動的目的,是要記載下邊土的動、植物和礦物寶藏。劉易斯與克拉克所帶領的一八○三至一八○六年北美考察行動,留下了一些細節豐富、有著細心插圖的筆記本,正是這些官方委託製作的報告當中最好的一批。在美國,為了評估並測繪全國的資源,聯邦和州都成立了地質調查處。這些機構負責進行普查,也就是從事計數和估價,對無限和模糊的有限做出推算。

領導多次重要地質調查的約翰 · 威斯利 · 鮑威爾與科羅拉多河的原住民領袖合照。圖/wikimedia

地質調查處主任鮑威爾(他本人曾領導過一次大規模的美西地質探查)於一八八八年向國會提出第七屆地質年度調查報告,他在其中提到,製作精確美國地形地質地圖的計畫,在戰略上所具有的重要性。

鮑威爾是第一個繪製科羅拉多河下游和大峽谷地圖的人,他對地圖的力量大感讚嘆。地圖就跟分類架構一樣,賦予使用者一種自己擁有所繪題材的感覺。地圖將荒野微型化到可以握在手中、可以用心眼去觀看。

地圖與調查對一八六二年的「美國公地放領法案」和一八七二年的「公眾採礦法」至為重要,兩者都以洛克的原則為基礎,認為任何耕耘一小片土地(且能界定其範圍)的人,便是該土地的合法擁有者。

-----廣告,請繼續往下閱讀-----

公地放領法案一直沿用到二十世紀(直到一九七七年才廢止!),公眾採礦法直到今天都還有效。公眾採礦法是駭人的過時立法,現在仍舊容許任何人能以低於每英畝五美元的費用,在公有土地上搜尋並萃取礦物,卻完全沒有考慮到此舉可能導致的環境損害。這些聯邦政策及其背後的哲學,也導致史上最嚴重的體制性社會不義——美國政府一再地違反與北美原住民族所簽署的條約。

這些原則都是洛克財產權加值原則的思想外延,亦即能夠理解、命名和測繪自然的人,就有權剝削自然,但原住民的命名和認知體系卻不被承認為合法。

這張圖片的 alt 屬性值為空,它的檔案名稱為 8694806_R-628x628.jpg
——本文摘自《磐石紀事:追蹤 46 億年的地球故事》,2020 年 12 月,貓頭鷹出版社
貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。

1

0
2

文字

分享

1
0
2
當大腦找不到地標參照,荒山野徑就能迷路迷到致命——《錯把自己當老虎的人》下
azothbooks_96
・2020/01/21 ・1364字 ・閱讀時間約 2 分鐘 ・SR值 486 ・五年級

你若是發現我的遺體,請聯絡我的先生喬治和女兒凱麗。讓他們知道我死了,以及你在哪裡發現我的,這會是天大的恩賜,無論是距今多少年後。

六十六歲的喬拉汀.拉蓋(Geraldine Largay)稍微偏離阿帕拉契山徑(Appalachian Trail)去小解時,並未料到自己會找不到重返山徑的路。人稱喬莉(Gerry)的喬拉汀是退休的空軍護士,曾在家鄉田納西州附近走過其他的山徑,也上過如何走完阿帕拉契山徑的課程。阿帕拉契山徑全長逾兩千兩百英里,橫跨十四個州。喬莉在長達六個月的旅程中,已走了一千多英里。

阿帕拉契小徑。圖/wikimedia

2013 年 7 月 22 日,喬莉試圖傳簡訊給在附近檢查站等候她的先生。她先生已經在那裡等著為她遞送下一段旅程所需的新鮮物資。她在簡訊中寫道:「有麻煩了,偏離山徑去小解,現在迷路了。你可否打電話給 AMC(阿帕拉契山脈俱樂部),看他們能不能派山徑維護人員來幫我? 我在森林路徑北方的某處。親親抱抱。」

由於山間沒有訊號,那則簡訊始終沒寄出,所以喬莉直接在那裡過夜。翌日,官方啟動搜尋, 在濃密的林區裡尋找她的蹤影。搜尋行動持續了數週。

-----廣告,請繼續往下閱讀-----

2015 年 10 月,一位為美國海軍效勞的護林員發現一顆人類的顱骨,旁邊還有睡袋。根據《紐約時報》的報導,不遠處還有一個扁平的帳篷和一個綠色背包,背包裡有喬莉的東西,整整齊齊地裝在拉鍊袋裡。旁邊有一本佈滿苔蘚的筆記本,上面寫著「喬治,請讀,親親抱抱」。喬莉在筆記本裡寫道,她找不到回山徑的路後,已經走了兩天。她依循訓練課程的指示,搭起帳棚,希望有人可以找到她。筆記本上最後一次註記的日期是 2013 年 8 月 18 日。

圖/GIPHY

雖然我們無法說,喬莉要是當初做了什麼,就可以避免這個厄運。但她在最崎嶇的路段上偏離山徑,無疑使她迷路的情況變得更加嚴重。在那種崎嶇的路段上,她不需要走多遠,就會被濃密的灌木叢和長相相同的冷杉樹所包圍。那些樹木緊緊地簇擁在一起,你一鑽進去,很快就無法分辨路徑了。你在裡面根本搞不清楚方向,簡言之,那裡毫無地標

你可能覺得,記住街道盡頭有個郵筒,或辦公室外有個公車站牌,沒什麼大不了的。但事實上,能夠識別一些永久的地標,並把它們納入腦海中的地圖非常重要。我們不斷地為腦海中的地圖增添對我們有意義的東西。

-----廣告,請繼續往下閱讀-----

想想,如果你需要指引某人從最近的車站到你家。你會用路上的哪些特點來幫他們認路?以我為例,我會指出附近一家裝飾藝術風格的酒吧,一家裡面有超胖海象的展覽館,還有一座埋葬瘟疫受害者的三角形小山。

我們辨識地標的能力如此的重要,所以大腦裡有一個部位專司這項任務,那個部位名叫「後壓部皮質」(retrosplenial cortex)。那裡受損時,就會出現嚴重的導航問題。

——本文摘自《錯把自己當老虎的人》,2019 年 7 月,漫遊者文化

所有討論 1
azothbooks_96
53 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。