0

0
0

文字

分享

0
0
0

防災2.0專題(三):群眾外包 網民行動力

陳 慈忻
・2013/07/03 ・3646字 ・閱讀時間約 7 分鐘 ・SR值 521 ・七年級

本文由國科會補助,泛科學獨立製作


「2009年台灣發生莫拉克風災,我和幾個朋友希望可以透過資訊科技幫忙一些事情。」這是中央研究院資訊創新中心的蕭景燈博士架設台灣第一個「Sahana」系統的初衷。接著隔年的海地地震也促成他引入另一個系統「Ushahidi」,從此之後持續累積了經驗,應用在更多台灣的案例上,這些透過網路社群蒐集資訊的系統在世界各地如何協助救災與防災?我們來聽聽蕭景燈博士怎麼說。

社會?媒體?社會媒體?

絕大多數台灣網路使用者每天必上的Facebook,對社會有什麼革命性的影響呢?在社會媒體尚未出現前,資訊的傳播權力只有在少數人手上,出現在媒體上的議題是經過篩選的,握有權力者與市井小民是「由上而下(top-down)」的溝通關係;另一方面傳統媒體的承載量不足、傳遞不夠即時,即使是與大眾息息相關的議題出現在媒體上,民眾也只是被告知而無法協助訊息更新或親身參與。然而現在有了社會媒體,搭配行動裝置如手機、平板,即時訊息傳遞、集結與動員都變得非常簡單,使得「由下而上(Bottom-up)」的公民力量能夠發揮。

動員的過程中,社會媒體還可以將工作在網路平台上進行分割與指派,藉由群眾的力量在短時間完成特定的工作,這樣的「群眾外包(crowdsourcing)」功能經常與社會媒體搭配,達到對不特定群眾組織管理的效果。Ushahidi就是這樣的平台。

-----廣告,請繼續往下閱讀-----

每個人的證言:Ushahidi!

Ushahidi是非洲斯瓦希里(Swahili)語,誕生的危機與契機則是2008年肯亞的選後暴亂。就如同大規模天災發生一般,當時的資訊混亂不堪,主流媒體沒有辦法即時、系統地傳播,有能力的人也難以到場幫忙。因此當地的公民記者、程式設計師共同開發了這套訊息回報與彙整的視覺化系統,讓民眾只要發送手機簡訊就能夠通報,而事件的發生地點、類別、簡要描述等資訊都會集結在一個地圖平台上,手機對肯亞大多數人而言是負擔得起的科技產品,因此當時使用Ushahidi平台回報相當熱烈,幫助許多人避開衝突點、前往物資跟救援所在處。

Ushahidi的應用案例經常和弱勢者有所連結,因為掌權者本來就握有各種通訊管道,因此對於社會媒體較不重視,反觀社會弱勢者可以透過這種免費的、低科技門檻的工具來發聲。除了透過瀏覽器所看到的資訊收集和播報的功能外,由於Ushahidi使用標準的JSON格式 (JavaScript Object Notation,一種普遍且易讀的資料交換語言),幾乎所有網頁開發的相關語言都有JSON的函式庫,因此Ushahidi可以方便的交換資訊,舉個具體的例子,你可以下載Ushahidi的網站架構原始碼及網站資訊,混搭其他不同來源的內容,在自己的軟體或網頁上呈現。

Ushahidi的經典案例莫過於2010年的海地大地震,「有人說這是人類第1次將社會媒體應用在天災的救災工作。」蕭景燈說。當時最知名的救災行動是「4636」,地震發生後海地的兩家電信公司捐出電話簡碼,只要傳送簡訊給4636,就可以回報建築物倒塌、人命傷亡、等待救援等狀況。

拜網路科技之賜,讓當時很多不在海地現場的人也能幫上忙。所有回報到4636的事件,都經過語言與座標兩層的資訊轉譯工作,都是由線上志工負責。海地當地使用的語言混合了法文和非洲語言,這些簡訊轉到美國之後經過熟悉海地語的志工翻譯成為英文,讓國際救援團隊能夠了解訊息內容以進行救援;另一方面,救災工作的地點需要有精確的座標描述,國際救援組織雖不熟悉這個地區,但可以依照全球定位系統(GPS)定位抵達現場。由於回報訊息的人是ㄧ般海地民眾,對於地點的描述都是日常生活中的稱呼,有點像是:「中正路的百貨公司」、「重陽橋斜對面的加油站」這種不精準的敘述方式,志工們便負責將這種當地人的敘述轉換成一個可以跨組織溝通的絕對座標,同時也精準地將回報訊息標記在地圖上。

-----廣告,請繼續往下閱讀-----

管理資源的導演:Sahana!

不同於Ushahidi管理的是資訊,Sahana 管理的則是資源。災難發生的期間,各式資源的需求與供給間的媒合,一直都是各救難團體的一大難題。救災資源的需求激增且難以估計,有效率的資源管理平台用來整合、分配救災人力與物資是迫切需要的,Sahana就是為了解決這個問題而誕生!

2004年南亞大海嘯發生後,世界各地救難物資湧入災區,斯里蘭卡等地的資訊志工於是建立了Sahana平台,調理這個巨型災害下的龐大的資源供給和需求;後來Sahana布建的地區從南亞擴散到世界各地,陸續在大型天災發生時擔任關鍵角色,也因此程式不斷更新,從最初南亞大海嘯時開發的Agasti,發展到現在已經有4套平台,其中紐約市政府使用的Mayon平台,是以區域性大規模災難情境為考量研發出來的。

Sahana也在海地地震的「4636」行動中負責醫療資源彙整的工作,透過標準的資料格式,將原本各家醫院相互獨立的資訊集合在一起,包括醫生專長、病床數、藥品量分布都可以即時統計出來,使醫療資源得到更妥善的運用。Sahana以資訊系統輔助複雜的救災流程,減少人為的失誤,使得整個過程更有效率。

台灣防災情境的社會媒體

2009年發生莫拉克風災後,中研院資創中心開始進行Sahana在地化的工作,之後在2011年也投入Ushahidi的在地化。蕭景燈說:「雖然88風災時Sahana沒派上用場,但是仍要先把它們做起來,真正需要用的時候才不會沒得用。」從他的觀點,這兩套中文版的系統就像保險一樣,最好不要用到,但一定要準備好。

-----廣告,請繼續往下閱讀-----

Ushahidi可以運用的範圍很廣,「4、5月油桐花開,哪裡可以欣賞?有特色的咖啡店在哪裡?這些都可以用Ushahidi的平台回報與傳播。」蕭景燈表示。而Sahana則是特定用於救災與災後重建的管理,因此Sahana在地化最優先的工作,就是使它適用於台灣的救災情境。

為了使源自國外的Sahana更適合台灣使用,蕭景燈與資創中心的同事花了半年的時間訪談許多參與救災的社福團體,得知大家對於資源的媒合與管理都感到相當頭痛,連列印捐贈者感謝狀與收據都成了繁重的工作,占用相當多的時間。因此,Sahana的在地化工作,也針對台灣的特殊需要做了調整,讓感謝狀與收據相關作業能在收到物資捐贈,進行登錄時就一併處理。

蕭景燈技師說:「現在的學生可以多想想,怎麼運用科技在社會最真實、最底層的事情上。」(圖片來源:作者)
蕭景燈技師說:「現在的學生可以多想想,怎麼運用科技在社會最真實、最底層的事情上。」(圖片來源:作者)

Ushahidi可以用來彙整災害訊息,也可以用來彙整非緊急的生活訊息,任何人都可以成運用它成為資訊服務的提供者。

如果自己有硬體,可以下載程式原始碼自行架設一套,或是利用Crowdmap雲端平台。「台灣農夫市集地圖」網站就是一個應用範例,目前這個網站已經蒐集到了60個由小農擺攤、販售在地食材的市集,如果大家有發現新的市集都可以隨時通報。而主婦聯盟也運用Ushahidi來監督政府原能會公布的輻射值,民間自發採購儀器、實地量測輻射值,公開展示於地圖上,讓全民有可以交叉比對的依據。

-----廣告,請繼續往下閱讀-----

瓶頸與展望

雖然,Sahana是針對救難團體資源管理所設計,但在經過多年的推廣後,實際使用的團體仍為少數。主要原因有三,一是Sahana的操作的確比較有技術性,要一個組織完全地採用,需要經過長期的訓練;其次,Sahana需要資訊人力處理系統整合方面的程式修改,使Sahana與個別組織的救災流程相配合,但是目前並沒有足夠的人力進行客製化工作。第三,災害情境無法預期,很難事先將系統準備妥當,待災害一發生立即運用於救災現場,這與許多救災團體對平台的期待有落差,因此沒有大力引進。

但是積極宣導與推廣Sahana仍持續在進行,目前慈濟與工研院資通所合作,將一部分的Sahana模組整合進慈濟既有的後端平台,讓慈濟利用Sahana的科技智慧來管理資源,儘管在慈濟的平台看不到Sahana的外貌,但它的元素已經包含在裡面了。

Ushahidi現在連智慧型手機的App都有了,任何的Ushahidi的布建透過手機通報都不是問題,平時可讓民眾先在非緊急案例上熟悉這套系統,到了災害來臨時,全民的力量才能真正發揮。有興趣的朋友,可以參觀Ushahidi全球網站來看看世界各地的應用案例,或是乾脆自己上Crowdmap創立個主題,來演練這免費的科技!

本文原發表於行政院國家科學委員會-科技大觀園「科技新知」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!

-----廣告,請繼續往下閱讀-----

 

防災2.0系列專題:

-----廣告,請繼續往下閱讀-----
文章難易度
陳 慈忻
55 篇文章 ・ 1 位粉絲
在丹麥的博士生,專長是用機器學習探索人類生活空間,正在研究都市環境變遷與人類健康的關係。曾擔任防災科普小組編輯、社會創新電子報主編。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

5
0

文字

分享

0
5
0
命名與測繪自然帶來的力量——《磐石紀事:追蹤 46 億年的地球故事》
貓頭鷹出版社_96
・2021/04/04 ・2665字 ・閱讀時間約 5 分鐘 ・SR值 561 ・九年級

命名與繪圖

  • 文 | 貝鳶業如

偉大的十八世紀瑞典生物學家林奈,將生物世界組織成有條不紊的階系,其間每種生物都有個名字,都在生命家譜中占有一席之地,由是確立了自然史各個分枝的課題。為事物命名是種近乎神聖的行為,是一種賦權且令人滿足的工作,而分類學(及大量的標本剝製)也在十八、十九世紀成為新興自然科學的主軸。維多利亞時代的自然史博物館體現了科學時代的精神;這些建築裡塞滿了填充過的鳥類、骨骼、化石、結晶等大自然奇珍,被命名、被馴服、埋葬在玻璃匣子裡。

地質領域中可資分類的東西(岩石、礦物、化石、地形、礦物沉積、褶皺、斷層等)之多,使這項工作一直持續到二十世紀。由於無法對這些特徵的形成,提出統一的起源模型,分類架構便使人對大自然的變化性,抱有一種有限且穩固的安心感。有些地質學實體(如礦物)很容易便落入定義明確的分類範疇,而十九世紀那些關於礦物的博學論文(如一八六九年耶魯大學教授戴納那卷帙浩繁的《礦物學手冊》)至今都還在使用,乃是史上同類概要書籍中最為完備者。

美國地質學、動物學和礦物學家詹姆斯 · 德懷特 · 戴納。圖/wikimedia

但其他的地質現象則拒絕被分類,連當時最聰明的人,也掙扎著要確立理想化的柏拉圖式分類範疇,好為難以駕馭的現實罩上結構。

由於經濟上的重要性,發展出一種普世的礦物命名法則在當時是第一要務,但後來證明了這實在是出了名的困難(某程度上而言,至今依然如此)。

-----廣告,請繼續往下閱讀-----

以發現於某一特定地區的礦物為基礎的礦石譜系理論都各有特色,而分類架構總是與這些理論夾纏不清。

十八世紀晚期的歐洲到處都是礦業學校,德國、瑞典、法國的學程更是格外蓬勃。許多學程都只由一名遠見思想家和學徒組成,由學徒協助宣揚大師的體系。德國佛萊堡的「水成」學派是由莊嚴的韋納(一七五○~一八一七)領軍,他提出所有岩石和礦石沉積都自海水沉降而成的概念。而在瑞典的烏普薩拉,華勒流斯(一七○九~一七八五)執著於古老冶金學的金屬質變信念,而提出了一個現代觀念,認為了解礦石礦物的關鍵,在於其化學特性(而非顏色等外在的屬性)。在巴黎,由藥材商轉行成為礦物學家的魯埃(一七○三~一七七○)和他更為知名的學生拉瓦榭(一七四三~一七九四),也發展出關於岩石和礦石本質與分布的早期理論。

不過,這些理論只有少數對真正的採礦實務造成影響;礦工的經驗和直覺大體上還比較可靠些。但這些礦業學校卻標示著一種重要的新哲學:地球及其礦物資源是可以分析的,最終也是可以理解的。

被稱為「現代地質學之父」的詹姆斯 · 赫登。圖/wikimedia

赫登的均變說原理(參見第二章)是以他在愛丁堡和蘇格蘭邊界所觀察的岩石為基礎,之後再將地球「合理化」而成。他對西卡角非整合的解釋及其所「發現」的時間深處,顯示主宰地球過去的物理定律,也同樣主宰著現在(赫登的觀察也記錄下火成岩的存在,這是對韋納等水成論者的一記重擊)。

-----廣告,請繼續往下閱讀-----

赫登的著作似乎肯定了地球的行止有其邏輯而且可靠,或許不是一成不變,但卻能夠為人所理解:在這個球體的固態部分觀察到明顯無序和混亂的哲學家,現在導出一些結論:以前地球的組成裡,曾經存在過一種較有規律也較一致的狀態;過去曾發生過一些毀滅性的改變;地球的最初結構,已被不論是自然或超自然因素所導致的某些猛烈活動打斷和干擾。

此類結論都是由地形外觀推導而得,而現在,在我們努力要建立的理論當中,所有這些地貌都有了最完美的解釋⋯⋯在解釋實際存在之物時,根本就不需要訴諸任何非自然的邪惡假說、任何大自然裡的毀滅性意外事件,或超自然原因的介入。

我們很滿意地發現,大自然有其智慧、體系和一致性⋯⋯我們當前詢問的結果便是:我們並未發現開始的痕跡,也看不到結束的可能。

科學闡釋的時代與歐洲人在美洲、非洲和南太平洋殖民定居的時間相一致(也一向被用來當作這些行為的合理化藉口)。

-----廣告,請繼續往下閱讀-----

探險行動的目的,是要記載下邊土的動、植物和礦物寶藏。劉易斯與克拉克所帶領的一八○三至一八○六年北美考察行動,留下了一些細節豐富、有著細心插圖的筆記本,正是這些官方委託製作的報告當中最好的一批。在美國,為了評估並測繪全國的資源,聯邦和州都成立了地質調查處。這些機構負責進行普查,也就是從事計數和估價,對無限和模糊的有限做出推算。

領導多次重要地質調查的約翰 · 威斯利 · 鮑威爾與科羅拉多河的原住民領袖合照。圖/wikimedia

地質調查處主任鮑威爾(他本人曾領導過一次大規模的美西地質探查)於一八八八年向國會提出第七屆地質年度調查報告,他在其中提到,製作精確美國地形地質地圖的計畫,在戰略上所具有的重要性。

鮑威爾是第一個繪製科羅拉多河下游和大峽谷地圖的人,他對地圖的力量大感讚嘆。地圖就跟分類架構一樣,賦予使用者一種自己擁有所繪題材的感覺。地圖將荒野微型化到可以握在手中、可以用心眼去觀看。

地圖與調查對一八六二年的「美國公地放領法案」和一八七二年的「公眾採礦法」至為重要,兩者都以洛克的原則為基礎,認為任何耕耘一小片土地(且能界定其範圍)的人,便是該土地的合法擁有者。

-----廣告,請繼續往下閱讀-----

公地放領法案一直沿用到二十世紀(直到一九七七年才廢止!),公眾採礦法直到今天都還有效。公眾採礦法是駭人的過時立法,現在仍舊容許任何人能以低於每英畝五美元的費用,在公有土地上搜尋並萃取礦物,卻完全沒有考慮到此舉可能導致的環境損害。這些聯邦政策及其背後的哲學,也導致史上最嚴重的體制性社會不義——美國政府一再地違反與北美原住民族所簽署的條約。

這些原則都是洛克財產權加值原則的思想外延,亦即能夠理解、命名和測繪自然的人,就有權剝削自然,但原住民的命名和認知體系卻不被承認為合法。

這張圖片的 alt 屬性值為空,它的檔案名稱為 8694806_R-628x628.jpg
——本文摘自《磐石紀事:追蹤 46 億年的地球故事》,2020 年 12 月,貓頭鷹出版社
-----廣告,請繼續往下閱讀-----
貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。