Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

【記錄】M.I.C. XI 之「原力」:俠侶論劍──看粒線體犧牲奉獻、真核生物演化對決

Peggy Lo
・2013/07/04 ・8446字 ・閱讀時間約 17 分鐘 ・SR值 577 ・九年級

-----廣告,請繼續往下閱讀-----

文 / 羅佩琪、廖英凱

精子粒線體:「只要DNA能留下來,我,什麼都不在乎……」

甲烷菌:「變形菌別怕,吃了你,我們,就永遠不會分離了……」

以上有點病態美的設計對白可不是嘴砲喔,當今現世確實存在一對科學界的神鵰俠侶,在微生物界、形態學界各擁一方,發表對粒線體獨到之高見。六月夏初的涼夜,這對神仙眷侶浩浩蕩蕩地率領門下弟子,兵臨PanSci城下,到 M.I.C. XI 下戰帖啦!

-----廣告,請繼續往下閱讀-----

拜這對賢伉儷之賜,本次M.I.C.XI創下了幾個意義非凡的記錄:參與者平均交通距離最長(過半數是跟著兩位老師「集體包車」從花蓮北上的慈濟大學同學們)、第一次按表操課準時開場(因為包車團不到六點半就到了XD),以及讓大家驚覺「原來講者簡介也可以當成偷渡閃光的方法」……

這讓多少夥伴一直按F5以為是網頁載入錯誤 / 以為Z編不小心照片重複上傳啊XD

好,再被閃光襲擊可能很多人要不支倒地、按左鍵退出了……還是趕快進入兩位神鵰俠侶帶來的粒線體故事吧!


何翰蓁-形態學家看「精子」與「精子粒線體」


http://www.youtube.com/watch?v=5qJRMHcPfws

說到精子與粒線體,大家都可以清晰喚起生物課本上的形象:精子,長的像蝌蚪,大頭長尾巴;而在精子的鞭毛中段,有著數個橢球狀的粒線體,他們以螺旋狀緊密排列,這些粒線體的外膜平滑,而多皺褶的內膜上有負責產生ATP[1]、與電子傳遞鏈有關等承擔更複雜生化反應的的蛋白質,因此,粒線體也被稱為細胞的發電廠。

-----廣告,請繼續往下閱讀-----

……但,真的是這樣嗎?(謎之音:這樣問顯然其中有詐啊XD)其實,在精子成熟的過程中,並不是一開始就呈流線型、蝌蚪狀,精子的粒線體也並非自始就以螺旋狀排列;要參透其中的奧秘,我們可以從「精子的智慧」與「精子粒線體的美德」一窺究竟。

精子的智慧

有時候,成熟,不是拿更多的東西,而是拋掉不必要的包袱。

~Inspired by sperm(精子)

在精子生成的過程中,精母細胞會經由減數分裂形成四個配子精細胞(精子),剛分裂出來的精子其實是「圓球狀」的,隨著精子趨於成熟,細胞核裡的DNA被高度濃縮,形成緻密的細胞核;高基氏體修飾包裝後的許多酵素則圍繞在細胞核的前端形成了頂體(acrosome,精子細胞頭上像浴帽的構造[2]);原本散布在細胞質裡的粒線體也開始規律地以螺旋狀纏繞在中片(mid-piece,尾巴前端的構造);中心粒延長形成的軸絲組成了精子尾巴的主要部分。

-----廣告,請繼續往下閱讀-----

至於多餘的細胞質、沒有被排進來的粒線體、不會用到的高基氏體(Golgi complex)、內質網(endoplasmic reticulum)與核糖體(ribosome)等,則被打包起來移至尾巴的前端,終而被塞托利細胞(Sertoli cell)給吞噬掉。──最終,成熟的精子細胞呈現了一個非常簡單、流線而有效率的形態。

「成熟不是拿更多東西,而是拋掉不必要的包袱」──這是趙俊彥醫師對精子的註解,是隱藏在分子之間的智慧,也是生命的出路。

精子粒線體的美德

有時候,真的不是你不夠好、不夠溫柔體貼,只是你沒有在對的時間、對的地點,以對的方式出現。

~Inspired by sperm mitochondria(精子粒線體)

-----廣告,請繼續往下閱讀-----

自然界中存在著許多奧妙的秩序,例如在精子成熟的過程中,精子粒線體緊密地以螺旋狀排列,為什麼精子粒線體會呈現這樣的排列?螺旋狀排列有什麼優勢或隱含的「美德」?與上面這句愛情啟示錄又有何干呢?

美德#1  列隊緊密、排隊整齊

約莫二十年前,何老師的實驗室利用高解像電子顯微鏡[3],拍到這張小鼠精子的照片:

除了可以看到已裂開的細胞膜、呈鐮刀狀的精子頭,也可以發現:粒線體如玉米般粒粒分明的圓球形,與教科書上螺旋狀排列的橢球形描述截然不同!

進一步觀察,才發現小鼠精子的發育可分為十六個變形步驟,粒線體會從圓球形往兩端水平延伸成半月形,最後再變成橢球形長管狀。而十年前,透過更先進的3D影像重組軟體,將精細胞做連續切片追蹤,以此建構出更精確的三維粒線體樣貌,也終於了解粒線體在精子上的排列規則:

-----廣告,請繼續往下閱讀-----

Step 1. 最初,粒線體為圓球狀,呈「四股螺旋」繞在精子尾巴的中片,如A圖。
Step 2. 相對的粒線體(如綠、紫色),互相延長為甜甜圈狀,互呈90度排列,如B圖。
Step 3. 由於已互相頂到,要繼續延長勢必要錯開,此時粒線體會兩兩相對、彼此交錯,如C圖。
Step 4. 上下粒線體相接,最終形成「雙股螺旋」,如D圖。

介紹到這裡,何老師給了大家一個絕佳的搭訕鄰座的機會(?),把自己的雙手當成兩個相對的粒線體,再疊到隔壁朋友的雙手(粒線體)上,就會清楚發現你右手的粒線體將繞到鄰座右手的粒線體上,反之亦然,形成緊密排列的雙股螺旋。

形成雙股螺旋的過程中,粒線體延長且變細,下方空出的空間剛好容許旁邊的粒線體延長後填充,最後,一百多個粒線體非常整齊、漂亮的纏繞在精子尾巴的前段;而多餘的細胞質逐漸被移除,精子細胞的直徑也變細,形成能容納較多粒線體的流線型,可產生相對多的能量ATP。

美德#2:辛勤工作、團隊合作

精子的運動機制、運動模式與鈣離子的濃度和分布息息相關,而粒線體的排列秩序,更是調控精子運動的關鍵。

-----廣告,請繼續往下閱讀-----

在精子形成的初期,粒線體呈圓球狀,此形態使粒線體較容易移動到精子細胞的尾巴;但當精子粒線體轉變成緊密地螺旋狀排列後,會在鞭毛外面形成外鞘,這將可以精密調控內部鞭毛的運動。

而調控不同運動方式的關鍵是控制鈣離子的濃度。何老師在細胞中放入標記鈣離子的螢光染劑,藉由染劑的螢光強弱來觀察鈣離子的濃度,發現當精子的鞭毛不對稱大振幅擺動時,由於粒線體緊密排列,鈣離子可以非常快速地從最前端的粒線體往最遠端的粒線體傳遞,並以螺旋狀纏繞下去。

但精子也會規則地因「環境改變」而選擇不同運動方式,當精子在剛進入黏稠度較低的子宮時,會將鞭毛左右對稱擺動,才能快速移動到輸卵管小小的開口;但當精子進入黏稠度較高的輸卵管而接收到輸卵管上皮的訊號,或是當接收到靠近的卵所釋放的訊號時,精子細胞內鈣離子濃度增加,以不對稱大振幅擺動鞭毛的方式(就像單手划船)來取得較大的扭力,在充滿黏液的輸卵管中有效前進,使卵子受精。

何老師的實驗室也曾以藥物干擾精子的細胞骨架,造成精子粒線體凌亂地排列,便發現精子運動的確產生了相當大的問題。而比較不同的物種,從果蠅的兩個粒線體、人類的三十個到小鼠的上百個,精子粒線體的緊密排列,使他們工作起來就像一個粒線體一般,讓訊號快速且精準的傳達,堪稱具有非常優良的團隊合作精神哪!

-----廣告,請繼續往下閱讀-----

以上概念恰好可解答「明明一個卵子、一個精子就可以受精,為什麼卵子周圍卻有那麼多精子?」──因為精子常在錯誤的時間、錯誤的地點、使用錯誤的運動方式,使其無法抵達受精地點。(何老師也藉此勉勵告白失敗的朋友們,有時真的不是你不夠好,只是你沒有在對的時間地點、用對的方式出現啊……)

美德#3:燃燒自己、照亮別人

可能很多人聽說過:「粒線體是母系遺傳的胞器,我們身上的粒線體全部來自媽媽、不來自爸爸」……這又是怎麼回事呢?

依受精方式大抵可分兩種情形,第一種是在與卵癒合時,精子就只把細胞核送入,如黃金鼠。第二種則如人類等大多數哺乳類動物,受精時精子的細胞核和粒線體都會進入卵中,但因為精子粒線體上帶有泛素(ubiquitin)標記[4](何老師給了個有趣的註解:就想成精子粒線體被標上「臭男生」三個字吧XD),會啟動卵細胞內可瓦解蛋白質的一整套酵素包圍住精子粒線體,並將之殲滅[5];使得受精卵中,只有來自母親的粒線體。

上圖正是精子粒線體被綠色酵素殲滅中的受精卵修羅場。試著回想一下:精子粒線體透過整齊緊密的列隊以提高精子運動的效率、團隊合作讓鈣離子可以有效傳遞的精神,千辛萬苦的把精子帶到卵的身邊,但進入卵之後自己就從容就義被殲滅了,這種「犧牲小我、完成大我」的美德足堪為胞器之表率啊。

「在座的男士們,請以你們的精子粒線體為榮;在座的女士們,雖然我們沒有精子粒線體……」何老師頓了一下,微笑著收尾:「但是,我們才是贏家」。


陳俊堯-細菌人看「真核霸業的原力──粒線體」


http://www.youtube.com/watch?v=qm8le8FmJpM

關於「真核生物是怎麼出現在地球上的?」這個大哉問,目前主流的生物學以「內共生假說(Endosymbiotic Theory)」來解釋:一個原核生物(小細菌)侵入另一個原核生物(大細菌)體內,小細菌產生的廢物成為宿主大細菌的食物,這種彼此分享的結果成為永久緊密的關係,真核細胞就此誕生,並且快樂的征服地球。

……但,真的是這樣嗎?(謎之音:這個問題OP囉XD 我們都知道案情一定沒那麼單純……)上面的每一步看起來似乎合理,但它真的會發生嗎?又是怎麼發生的呢?

這些問題的關鍵點,又跟今天的主角「粒線體」有關。不論是真核生物的出現,乃至成就真核生物宰制世界霸業的重要特質(取得能量方式、體型大小、性與性別),我們的祖先能取得這些重要的「原力」都與粒線體緊密相關。

原力#1:其實「十萬伏特」不算什麼──能量的取得

來看看「細菌」這個地球上第一個出現的生物是怎麼取得能量的?

陳老師首先放了這支<del>悅耳但令人困惑的</del>影片,(筆者當時心中的OS:「呃,森林中的木琴跟粒線體的關係是…..?難不成旋律中暗藏了什麼蛛絲馬跡?!」)(筆者二表示:「難道是跟EVA一樣用巴哈當背景音樂嗎(抖)」)從能量的觀點來看,一開始在木琴頂端的球具有最大的「位能」,在一階階下降時,位能被轉化為動能,使木琴振動釋出聲音。

細菌其實也是運用同樣的原理:

為了取得能量,細菌會將環境中的物質氧化,氧化的過程如同燃燒般,會將化學能釋放出來。但為防氧化過程產生的能量過大、把自己也化為灰燼,細菌在細胞膜上會有一串蛋白質叫「電子傳遞鏈(electron transfer chain)」,讓物質氧化所產生的電子,如下樓梯般在蛋白質間傳遞而釋放能量,細胞膜上的質子幫浦(proton pump)運用這些能量將細胞內的氫離子打到細胞外,此時,濃度不同的氫離子造成細胞內外的電位差。根據擴散作用,細胞外的氫離子濃度較高時,氫離子將透過細胞膜上的ATP合成酶再次流回細胞內,這個力量如同帶動發電機般恰好可合成ATP,使細菌取得所需的能量。

以上這套細胞膜的機制也出現在粒線體,粒線體內外因氫離子濃度差異產生的電位差在5nm的膜上約0.2伏特,而粒線體正是利用這微小的能量驅動氫離子移動,但如果換算成一公尺,電位差將高達3000萬伏特;這樣看來,只有十萬伏特的皮卡丘真的是小咖囉!

原力#2:從「原核生物」到「真核生物」

研究真核細胞的DNA時,Nass MM和Nass S.在1960年代發現真核細胞中「粒線體的DNA」與「細胞核的DNA」是不同的[6],兩者的DNA序列分別與變形菌(proteobacteria)、甲烷菌(methanogen)相似;這個神奇的巧合可以讓我們進一步推測,原核生物演化為真核生物的情境可能起始於:體型較大的甲烷菌將體積較小的變形菌拉進體內共生。

從演化競爭的角度來看,如果吸收到的能量少一點,時間拉長到上萬年後就可能是演化上的輸家而消失絕種;所以我們現在看到的,已經是無數次適者生存下的贏家。細究甲烷菌與變形菌取得能量的方式,變形菌的代謝廢物恰好是甲烷菌生成能量所需的原料[7],當接觸面積越大,這種「你丟我撿」的功能將發揮得越徹底;這似乎完美解釋了「甲烷菌、變形菌活得好好的,為什麼要結合共生」的疑問。

但下一個問題隨即產生:變形菌獨立生存時,需要由「細胞膜向外吸收有機物」生成氫氣及二氧化碳,但當變形菌被甲烷菌「吃下肚」後,由於甲烷菌吸收有機物的能力薄弱,在甲烷菌體內的變形菌似乎會面臨窒息而死的危機?

答案是:對!變形菌(粒線體的前身)的確可能在甲烷菌(真核細胞的前身)體內死亡,而使變形菌在甲烷菌體內被分解,如同因禍得福般,這讓變形菌的DNA有了離開變形菌這個物種的機會,讓他的基因能為甲烷菌所用,使得甲烷菌也取得吸收有機物的能力,在細胞膜上建立吸收養分的蛋白,解決養分輸送的問題。

自此,生物的演化跨進了一大步,我們可以不再仰賴緩慢的單一基因累積突變,可以開始加速演化的發生,也開始讓世界變得更複雜、更有趣了。

原力#3:細菌可能變成怪獸嗎?──體型變大

約二十億年前細菌就已出現在地球上,這麼長的時間為何演化不出卡通中Bacteria Monster Eats a Cow and Farmer的細菌怪獸?晚出現的真核生物反而在體型大小上成為贏家?令人意外的,答案藏在國小數學課本中:

立方體邊長增為10倍,表面積會增為100倍,體積會增為1000倍;類推到細胞的情境,「能量的需求」與細胞胞器的數量和大小有關,也正比於體積大小,若在體積增加下仍維持細胞內等倍成長的的化學反應,體型變大後將需要1000倍的能量;但「能量的供給」與表面積、細胞膜電子傳遞鏈機制有關,體型變大後只能增加100倍的能量。當需求遠大於供給,縱使體積變大,能使用的能量將會不足,緩慢的複製速度也將導致生存競爭力下滑。渺小,終究是細菌的宿命。

那,真核細胞究竟是突破了什麼,體型可以變大?──老梗了,但關鍵又是粒線體。真核細胞仰賴粒線體取得能量,而粒線體體積小、數量多(OS:幾乎是可以塞滿細胞的狀態了……如下圖橘色螢光部分),沒有表面積不夠大的問題,甚至可依耗能需求在細胞內自由調配粒線體數量。在能量無虞下,真核細胞突破了原核細胞永遠跨越不了的「長高、長壯、長大」的障礙。

原力#4:一切,都是為了自我修復──性與性別

雖然有上述眾多重要的功能,但也不是每一個粒線體都能發揮功效,除了因為大量生產必定有瑕疵品外,也與粒線體是能量工廠的職責有關。前段文章有提到,在粒線體膜上的電子傳遞鏈上流動的能量是很大量的,龐大的能量維繫生命所需,卻也意味著當任何一個蛋白質出錯時,這龐大的能量將導致預期以外的嚴重後果,如產生自由基等;因此,粒線體內這些與龐大能量相伴的DNA,也更容易發生突變或失控。

那,當「失控的粒線體」出現時該怎麼辦?我們可以從真核生物處理「壞掉的基因」的經驗取經。透過性與交配,真核生物和同伴交換基因、增加變異,讓壞掉的基因僅存於部分子代,經過幾輪的繁殖,這個基因終將被洗掉淘汰。同樣的機制也在粒線體發生,細胞分裂時,粒線體會跟隨它的宿主細胞複製到各個配子,將失控的粒線體鎖在部分子代,再透過多輪繁殖加以淘汰。

進一步來看,交配時精、卵來自不同個體,兩者的粒線體同時進入受精卵後將開始競賽複製速度,這將導致受精卵的混亂。2012年在Cell發表的老鼠實驗證實,將兩種不同粒線體放入同一隻老鼠將導致行為異常[7]。這或許可以解釋為什麼人類會有何老師介紹的泛素機制──既然都留下會導致個體行為異常,不如二擇一,只留下一種性別的粒線體。

原力#5:當求救訊號變成死亡訊息──自毀裝置

在單細胞生物中,當宿主細胞有能量但不讓粒線體工作,促成氧化反應的自由基將會掠奪蛋白質的電子、破壞粒線體導致內容物外漏,此時可被視為一種求救警訊。單細胞生物便會啟動交配的機制,以確保該物種的延續。

但在多細胞生物中,由於細胞數量動輒上百萬,單一細胞的可替代性高、修復需求不強,當單一細胞發出求救訊號時,這反而成為臨終的死亡訊息,而這個促成細胞凋亡(apoptosis)的訊息,也一樣是來自於粒線體,與單細胞生物在此時會積極繁衍的作為相比,多細胞生物的細胞凋亡機制,反而可促使不夠健康的細胞加速汰換。

細胞:「(SOS揮手)我受傷了!再接下來我的膜就要破掉我就要凋亡啦!」
個體:『(挑眉)哦?是嗎?……那,安心上路。(轉頭準備接班人)』

回望今日真核生物的繁盛多元,從併吞粒線體的那一剎那起,靠著原核生物難以企及的自毀裝置、自我修復、體型增長、取得能量…. 這征服地球的一代霸業非轉瞬而成,有適者生存的殘酷淘汰,有粒線體共存共榮的機運使然。踩踏著原核生物演化淘汰的屍首,燃燒著每一顆粒線體小宇宙──原力,始終與我們同在。

拜賜於新科主持人Z編時間拿捏得宜,這次的M.I.C.有了史上最長的發問時間,神鵰俠侶的眾門徒們也沒在承讓的,眾人東出一拳、西放一箭,合力在科學知識的華山論劍中將粒線體的神秘面紗逐一擊破,提問者、回答者、聽者都太過癮啦!(居然還有夥伴精準的問到何老師高深的博士論文主題!)


摘錄幾則帶大家重返點子對撞的現場:

Q:精子粒線體運動與鈣離子濃度有關,鈣離子是本來就存在或從外界攝取?
A:兩者皆有,來自細胞核膜鈣離子儲存槽的鈣離子會釋出,鈣離子濃度增加亦將活化細胞膜上電壓調控的通道,細胞外鈣離子也會流入。

Q:氧氣會和甲烷菌需要的氫氣作用,故甲烷菌厭氧,但變形菌相反;兩者共生後如何克服對氧氣不同的偏好?
A:這完全是我想講但沒時間講的啊!(Z編:這位真的不是老師的暗樁嗎?)當甲烷菌取得變形菌的基因,即可不再完全依賴氫氣生成能量,不需擔心氧與氫結合的問題,而變形菌所需的氧氣則是可以穿過細胞膜的。

Q:(北醫醫檢夥伴)實習時,評判精子活動力是以對稱鞭毛擺動為高分標準。
A:合理,我們能評估的只有剛射精的精子,那時的確是需要直線前進、鞭毛對稱擺動的能力;是進入黏稠的輸卵管後才需要不對稱的鞭毛擺動,但除非做試管否則難以評估。

Q:(Z編)可干擾精子細胞骨架的藥物是否可應用在避孕上?除了讓精子細胞軟掉的避孕效果對其他細胞的影響?是否有其他方法是利用「干擾粒線體運動模式」以達避孕效果?(避孕三連發讓P編終於忍不住插話問了一個我們都很想問的問題:請問Z編為什麼那麼想避孕呢XD
A:藥物是針對「細胞骨架」,所以除了精子細胞,全身的細胞都將受影響,應該不會是好的避孕方式。何老師的實驗室有在研究牛精子最活躍的情境以進行更有效率的受精,反向推論,只要能阻斷鈣離子的傳遞,應可達到避孕的效果。


照往例,現場對粒線體的討論在店家關門趕人才依依不捨的散會,不過,這才是線上討論的開始呢,M.I.C.的FB專屬社團當晚又繼續出現了溶小體、可否利用粒線體延緩老化的延伸討論,甚至還有夥伴提議要組粒線體讀書會了……什麼?你說社團的連結按不進去?不好意思啦,這是專屬於M.I.C.參與者的秘密社團,只有參加過的人才會受邀加入哦!(編按:就叫你要來參加現場嘛^.<)[8]

預告一下,以台北為基地的M.I.C.邁入二位數場次之際,PanSci也要向南部進攻啦──南部專屬科學活動「生猛科學熱炒」將在7/19於高雄舉辦,將是科學傳播史上第一個在「熱炒店」舉辦的活動(聽說還有在討論是否全程台語發音XD),欲知詳情請密切鎖定PanSci FB專頁囉!

特別感謝PanSci志工英凱(也是本文的筆者二)提供自製珍藏的光劍三把;願原力與PanSci同在!

註:

  1. ATP,Adenosine triphosphate,三磷酸線苷,可提供細胞進行生化反應、運動所需的能量。
  2. 頂體在遇到卵後將釋放出酵素,穿破卵外面的醣蛋白。
  3. 何老師的實驗室嘗試把細胞冷凍,把細胞內部露出,選擇性保留部分膜狀構造;藉此在掃描式電子顯微鏡底下觀察細胞內部胞器的特殊長相。
  4. Peter Sutovsky, Ricardo D. Moreno, João Ramalho-Santos, Tanja Dominko, Calvin Simerly & Gerald Schatten. Nature. 1999 Nov; 402:371-372.
  5. Sato M, Sato K. BBA. 2013 Aug; 1833(8):1979-84. 根據這篇論文,不只哺乳類,各類物種皆已發展出各式各樣殲滅精子粒線體的方式。
  6. Nass MM,Nass S. J Cell Biol. 1963 Dec; 19:593-611.
  7. Nick Lane. Cell. 2012 Oct; Volume 151, Issue 2, 246-248
  8. 看不到秘密社團先別難過,你還是可以先看PanSci幫你準備好的PanSci 2013 六月選書《能量、性、死亡:粒線體與我們的生命》書摘~

【關於 M. I. C.】 M. I. C.(Micro Idea Collider,M. I. C.)微型點子對撞機是 PanSci 定期舉辦的小規模科學聚會,約一個月一場,為便於交流討論,人數設定於三十人上下,活動的主要形式是找兩位來自不同領域的講者,針對同一主題,各自在 14 分鐘內與大家分享相關科學知識或有趣的想法,並讓所有人都能參與討論,加速對撞激盪出好點子。請務必認知:參加者被(推入火坑)邀請成為之後場次講者的機率非常的高!

-----廣告,請繼續往下閱讀-----
文章難易度
Peggy Lo
23 篇文章 ・ 2 位粉絲
非典型的人生迷茫組,對資訊整理有詭異的渴望與執著。

0

1
0

文字

分享

0
1
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
0

文字

分享

0
2
0
想要減肥或控制體重?先散步評估一下吧!——《大自然就是要你胖!》
天下文化_96
・2024/07/02 ・1877字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

恢復初始體重與延長健康壽命

身體的能量大多由細胞裡的能量工廠產生,也就是粒線體。這種能量以 ATP 的形式存在,用來驅動體內種種的生物過程,維持新陳代謝。攝取果糖後,身體會產生尿酸,對能量工廠造成氧化壓力,導致 ATP 產量減少,最後果糖所含的熱量會以脂肪和肝醣的形式儲存在體內。這個過程能幫助我們儲備能量,以因應食物不足的狀況。

生存開關活化所產生的氧化壓力,可能對細胞內的能量工廠和身體其他部位造成損害。在自然界中,這種氧化壓力通常為時短暫,能量工廠很快就會恢復正常運作。相對之下,現代人體內的生存開關卻是全年無休、火力全開。原本是為了生存而暫時抑制粒線體的能量產生,沒想到卻變成一種永久的枷鎖,並帶來嚴重的後果。

長期暴露在慢性氧化壓力中,會使能量工廠的結構發生變化。粒線體會變小,功能下降。即使在生存開關並未活化的狀況下,粒線體產生的能量也不復以往。這等於重新設定了新陳代謝的基礎值,降低能量的產生和使用,隨之而來的便是體重增加。因為身體現在認定減重前的體重才是正常,所以將體重減輕視為生存威脅,於是調整新陳代謝速率做為因應。這時,你的新陳代謝就成為你的敵人!

長期暴露在慢性氧化壓力中,粒線體會變小,降低能量的產生和使用,隨之而來的便是體重增加。因為身體現在認定減重前的體重才是正常,所以將體重減輕視為生存威脅,於是調整新陳代謝速率做為因應。圖/envato

生存開關長期處於活化狀態,不只會影響體重和能量。現在更有證據指出,慢性或反覆出現氧化壓力,也會導致人體老化,於是皮膚出現皺紋,內臟器官緩慢磨損。所有的食物攝取,多少都會對能量工廠造成氧化壓力(第一章曾說過,減少熱量攝取可能延長壽命,原因可能正是在此)。然而,與其他營養相比,攝取果糖對粒線體造成的氧化壓力要大得多。

-----廣告,請繼續往下閱讀-----

在我看來,若能在粒線體受到永久損傷之前,及早對肥胖症展開治療,效果最好。的確,我個人的經驗是,兒童和青少年的肥胖症比較容易治療,只需要改變飲食,減少攝取會活化生存開關的食物,因為年輕人仍然擁有大量功能正常的粒線體。相較之下,要治療肥胖症的長期患者挑戰就高得多,因為他們的能量工廠長期承受慢性的氧化壓力。然而,任務仍然可能達成,關鍵在於恢復粒線體。

要治療肥胖症,就得增加粒線體的產能

我們被「鎖定」在高體重和低能量的狀態,這聽來真是令人沮喪,但這種狀態並非不能改變,能量工廠是可復原的。基本上有兩大方法,首先,盡量減少對能量工廠的損害,讓它們有時間自然恢復。這種方法主要著重在中止生存開關持續活化。其次是積極修復能量工廠,甚或是增加生產粒線體,以彌補失去的數量。

評估粒線體的健康,你可以從散步開始!圖/envato

在討論如何達成這兩項目標之前,我想先提供簡單的方法,讓你評估自己能量工廠的健康狀況:觀察自己的自然步態,也就是平時的行走速度。你可以記錄自己繞行附近一個街區的時間,同時佩戴計步器計算步數,然後算出每秒行走的步數和距離。另一種方法更簡單,只要記錄繞行街區的時間,將現在的時間與之後的時間進行比較,就能判斷粒線體的健康狀況是否改變。重點在於測量時要採行自然步態;換句話說,行走時請勿故意加快腳步。正常的步行速度約為每秒 1.2 公尺,但每秒 0.6 至 1.8 公尺都算正常範圍。我建議把目標設定為每秒 1.2 公尺以上。長期超重的人步行速度通常較慢,平均約為每秒 0.9 公尺。

研究顯示,自然步行速度與粒線體的品質呈現正相關,步行速度較快的人壽命較長,整體健康狀況也較好。步行速度減慢可能是因為骨骼肌疲勞增加,或 ATP 濃度低。值得注意的是,年輕超重者的步行速度往往與其他年輕人相似,但隨著年齡增長,超重者和正常體重者之間的步行速度差異會愈來愈大。

-----廣告,請繼續往下閱讀-----

我鼓勵你去散步,評估你的自然步行節奏。這可幫助你深入了解減肥和維持體重的難易程度,不僅如此,長期監控自己的自然步行速度,還有助於評估體重控制的整體進展。

——本文摘自《大自然就是要你胖!》,2024 年 06 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

3
2

文字

分享

0
3
2
精子從哪裡進入卵子會影響胚胎發育?——《生命之舞》
商周出版_96
・2023/10/20 ・2697字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

當我第一次驚喜瞥見打破對稱性的可能起源時,我驚訝地發現到這段歷程似乎很早就開始了,而這也為我運用綠色螢光蛋白追蹤細胞分化的研究鋪起了大道。卡羅琳娜與我想要進一步探索這個研究發現,所以我們提出了一個有關其終極源頭的簡單問題:精子進入卵子的位置是否對於胚胎一開始失去對稱性有任何影響?在線蟲與青蛙這類動物的胚胎中確實是這樣,但在哺乳動物(例如小鼠)的胚胎中也一樣嗎?

對稱藝術

當我們將生命的起源以動畫演繹出時,常常看到的影像就是精子設法進入沒有任何特徵的圓形卵子上,並融入其中。若情況是這樣的話,就很難看出精子進入卵子的位置是要如何對未來一切發育有所影響。在這個理想化的卵子上,任一處表面都與其他表面沒有任何差異。不過,當然還是存在有個參考指標,那個等同於「這邊是上面」的指標就是:極體。

圖/pexels

極體是從減數分裂的不對稱過程中所產生,細胞「骨架」在這個過程中會聚集以協助細胞進行分裂。這個細胞骨架稱為紡錘體,它會從細胞中心點往細胞邊緣移動,產生出一個大大的卵子與一個小小的極體。我們可以合理認為,紡錘體與染色體的移動可能打破了卵子的對稱性,也造成了擠壓極體的發育。許多人的確注意到極體最終總是會落在受精卵進行分裂的那個平面上。

理查.加德納這位我們之前見過的科學家,發現極體會附著在卵子上,它不只會確立受精卵首次分裂成兩個細胞的那個平面,它還會在幾天後確立出囊胚的對稱軸。這項發現讓我們有所啟發。這真的是因為卵子中的軸向資訊會一直持續到囊胚階段,還是有其他的因素會影響胚胎發育的對稱性?在我們進行科學研究的過程中,我與卡羅琳娜在當下這個時間點想要知道的是,精子進入卵子的位置是否也會影響胚胎發育,並提供第二個定位線索。

卵子上的座標——精子進入的位置會影響胚胎發育嗎?

就像在地表上某個地點跟北極的相對位置,可以定義所謂的經線,我與卡羅琳娜想要知道,精子進入卵子的位置是否也可以提供相對於極體位置的另一位置資訊。若真的是這樣,我們就能更精準確立進行首次分裂的那個平面。這感覺起來很合理,因為極體的形成與精子的進入位置都會重新排列之後會運用在卵子分裂上的細胞骨架。若不是這樣,分裂的那個平面與精子的進入位置之間就只有隨機的關係。

-----廣告,請繼續往下閱讀-----

以現代科技來說,我們很容易就可以解決這個問題。我們可以將這個過程拍成影片,來看看從精子進入卵子後到後續細胞進行分裂的幾天之間究竟發生了什麼事。但在我們開始研究的那個年代,不存在這樣的選項。我們無法拍攝小鼠胚胎從受精開始進入發育的影片,要等到幾天後胚胎進入囊胚階段才行。我們只能想辦法去標記精子進入的位置,以便可以追蹤它與受精卵在數小時後首次分裂的那個平面之間的關係。

圖/pexels

我一開始想著要用某種自然一點的東西,像是胚胎幹細胞這種非常微小的細胞,在卵子受精後馬上附著在精子進入點上,因為那時還可以看到進入點,但最後我有了更簡單的辦法:我們改用肉眼看不見的微小螢光珠。我們成功了,但我很後悔沒有給這些珠子取個像「微球體」這樣酷炫的科學名稱。當然,同領域人士不認同的不僅僅只是這些珠子要怎麼命名,但「珠子」這個名稱有種簡樸感,所以批評者會用這個名稱來貶低我們的研究,這就是我們得要付出的代價。

一開始很容易就能看到精子是從哪裡進入卵子的。它會留下一個名為受精錐(fertilization cone)的小小凸起。受精錐是由卵子的細胞骨架所建構,並由肌動蛋白的纖維所組成,它大約會凸起半個小時。這時間剛好足夠嵌入一至兩個珠子來標記位置。

我們將這些珠子浸到名為植物血凝素(phytohemagglutinin)的蛋白質混合物中,珠子就會具有黏性。植物血凝素常用於讓細胞聚集在一起。因為人的手不夠穩定,所以卡羅琳娜會以一隻機械手臂來拿取具有黏性的珠子,並將珠子放到卵子的表面上,同時還會以另一隻機械手臂牢牢固定住剛受精的卵子。

-----廣告,請繼續往下閱讀-----
圖/pexels

雖然珠子很小,直徑只有 0.0001 至 0.0002 公分,但在紫外線的照射下看起來大多了,亮綠色的點讓我們很容易就可以追蹤它的命運。觀察受精卵的發育時,我們發現珠子最終會來到細胞首次分裂所產生的兩個細胞之間的邊緣,或者是非常接近這個地方。

受精卵的分裂平面真的是由精子決定的嗎?

我們一直都在挑戰我們的思考與發現。上述情況有可能是任何落在卵子表面的珠子都會掉進分裂溝(cleavage furrow)中。所以為了確認,我們進行了一項對照實驗,卡羅琳娜將另一顆類似的珠子隨機放在卵子表面的其他地方。令我們欣慰的是,這顆珠子最終沒有掉進細胞分裂時所產生的分裂溝中。對我們而言,這表示精子進入卵子的位置以某種方式「被記住」了,並且成為受精卵偏好進行分裂的地點。換句話說,若我們是對的,受精卵之所以會在這個平面進行分裂,是因為偏好(biased)而非隨機(randomly)。

我們持續獲得了各種新發現。在胚胎從兩個細胞發育成四個細胞的階段中,帶有精子進入標記的那個細胞,會傾向於先進行分裂。這個細胞的命運之所以會改變,是因為精子帶入的物質滋養了它嗎?受精的三天後,精子進入標記會留置在囊胚兩部位之間的邊緣處,一個部位是含有會形成胚胎本體的胚胎部分,另一個則是胚外部分。

這表示了,兩細胞胚胎內的其中一個細胞較容易發育成胚胎,另一個則傾向於變成胚外部分。我們感到震驚。我們觀察影像好幾個小時,甚至好幾天。我一開始根本不敢相信這些發現,所以我請卡羅琳娜一再重複進行實驗,打破早期對稱性的證據怎麼這麼簡單,會不會太簡單了?

-----廣告,請繼續往下閱讀-----

可以理解地,對此感到懷疑的人士可能會吹毛求疵地表示,決定分裂平面的不是精子進入點,而是將珠子嵌在進入點的這個動作。為了驗證這個可能性,我們進行了許許多多的對照實驗,我之後會提到。我們已經確認過,將珠子放置在受精錐以外的任何一個地方,都不足以決定分裂的平面。但我們還有諸多其他事項要一而再、再而三的確認,因為我們必須很確定。

這張圖片的 alt 屬性值為空,它的檔案名稱為 0823--300.jpg

——本文摘自《生命之舞》,2023 年 9 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。