0

0
0

文字

分享

0
0
0

M94星系,環裡有環?

臺北天文館_96
・2013/06/14 ・784字 ・閱讀時間約 1 分鐘 ・SR值 585 ・九年級

在史匹哲太空望遠鏡拍到的這張M94(或NGC 4736)中,看到的是幾個環?乍看下,會覺得好像有好幾個,但天文學家認為:環只有一個。

天文界一向也認為M94擁有兩個環,且二者大不同:一個很亮,結構緊密的內環,繞著星系的核轉,另一個環除了較黯以外,也比較寬,像大片恆星掉落在主要盤面以外。

然而,最近天文學家發現,此圖中以青藍色代表恆星光的這個外部環,搞不好可能只是光學錯覺。2009年一項研究中,天文學家曾結合了太空和地面望遠鏡的紅外線、紫外線、可見光及近紅外線資料,有了M94完整的圖像,進一步可得知,從我們的觀點看到這「兩個」旋臂,其實只是一個單獨而連貫的環。

但M94的內環,就不是光學幻覺了。被認為是「星爆環」(Starburst ring),在這塊小小的範圍裡,恆星生成速度相對地超快。一般誘發星爆的原因,多和兩星系間重力相互作用有關,但M94這個案例中,事實上,星系的橢圓形狀,可能才是星爆的主因。

-----廣告,請繼續往下閱讀-----

另外,在星爆環的內環和旋臂狀外環間,還塞了一些東西,這些其實是星系的盤面。縷縷綠色絲狀的星際塵,乍看下雖然很像一組重重疊疊的環,事實上塵埃呈弧狀是受到旋臂的曲線緊密扭絞的影響。

M94距離我們大約有1700萬光年,離銀河系有點遠。1781年時由梅西爾的助手Pierre Méchain首度發現,並納入梅西爾天體總表。

在上圖中以藍色和青色顯示的紅外光,波長範圍介於3.6~4.5微米之間,代表恆星的光。波長8微米及24微米的光是用綠色及紅色表示,分別代表溫度比較冷一點和溫度略為偏暖的這兩種塵埃。史匹哲紅外太空望遠鏡的冷媒在2004年時告罄,這些紅外波段的觀測是完成於冷媒用光以前。(Lauren譯)

資料來源:Galactic Wheels within Wheels[2013.05.29]

-----廣告,請繼續往下閱讀-----

轉載自網路天文館

文章難易度
臺北天文館_96
482 篇文章 ・ 41 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

1
0

文字

分享

0
1
0
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
NASA出動4艘飛船圍觀嫦娥3號登月
果殼網_96
・2014/01/27 ・2413字 ・閱讀時間約 5 分鐘 ・SR值 518 ・六年級

文/Steed

AS7m2C-fzS10VbguuwGQTil02lLog0rrJ1FLCJCcrKCEAwAAaQIAAEpQ_645x442
12月15日,玉兔月球車與嫦娥3號實現互拍。圖為嫦娥3號拍攝的月面上的玉兔月球車。圖片來源:新華網

12月14日,中國的嫦娥3號著陸器成功在月球虹灣著陸區登月。儘管此次探月任務沒有跟美國NASA展開任何形式的合作,但NASA仍在官網上放出了一篇文章,簡述了他們對在月球探測方面取得的種種進展,還一一細數了目前仍在執行任務的4艘繞月衛星將對嫦娥3號登月展開怎樣的觀測。NASA指出,他們「將這次著陸視為一次全新的科研機會,或許能夠增進對月面大氣的研究和觀測。」以下內容就是NASA官網上那篇文章的部分摘譯:

自阿波羅計畫將12人送上月面以來,美國太空總署(NASA)一直致力於月球科學。憑藉「克萊芒蒂娜」(Clementine)和「月球勘探者」(Lunar Prospector)之類的現代探測器,以及最近完成的LCROSS和GRAIL等任務,NASA的科學研究已經幫助繪製出了月面地圖,確定了水冰的存在,還理解了我們這顆衛星不規則的引力場。NASA當前的月球任務,正在幫助NASA更好地理解我們的太陽系,給未來對其他行星天體的探測提供信息,讓我們離未來探測小行星和火星之類的目的地所必需的技術更近一步。

科學家目前正在利用4艘NASA的繞月衛星研究我們的月球。中國的嫦娥3號於12月14日登陸月球,或許會給它們提供一次機會來採集新的數據。美國和國際上的研究者將這次著陸視為一次全新的科研機會,或許能夠增進對月面大氣的研究和觀測。

嫦娥3號登月時,NASA的「月球大氣及塵埃環境探測者」(LADEE)、「月球勘測軌道飛行器」(LRO)和兩個被稱為「加速、重聯、湍流及電動力學月球-太陽交互作用」(ARTEMIS)的探測器,仍在繞月軌道上繼續它們的科學任務。

儘管美國和中國在這些任務之間沒有展開合作,美國的研究者從這次著陸中看到了潛在的科學價值。採集到的這些數據,將向國際科學界公開。

LADEE

LADEE,即「月球大氣及塵埃環境探測者」,配備著專業設備用於測量大氣成分和塵埃顆粒,或許能檢測到嫦娥3號登月時揚起的塵埃及排出的氣體所導致的月球大氣變化。

m6-Z20ARCcbdmO01AMq39waJ8nHjJV1LndCiMSOfymKhAgAAewEAAEpQ_645x363
NASA的LADEE探測器,將監測嫦娥3號登月是否會對月面極其稀薄的大氣及塵埃環境造成可以檢測的改變。圖片來源:NASA

探測器原本的目標,是要研究月球原始大氣及軌道塵埃環境。利用探測器上攜帶的設備,科學家希望回答長期懸而未決的一個問題:月球上因為陽光照射而被帶上電荷的塵埃,能不能解釋幾次阿波羅任務期間檢測到的、在日出之前就出現在月球地平線上的光芒。

自11月10日降低繞月軌道開啟為期100天的首要任務以來,LADEE一直在收集科學數據。科學團隊已經為極其稀薄的月球外大氣層以及塵埃撞擊,建立了科學數據的基準線。在嫦娥3號著陸之前,LADEE團隊收集的數據已經覆蓋了一個完整的月相週期(29.5天)。

在嫦娥3號著陸前後,LADEE將利用它的中性質譜儀(NMS)展開額外的觀測。根據目前能夠獲得的、對嫦娥3號著陸系統的描述,研究團隊推測著陸推進系統將排出一些氣體產物,如水蒸氣、氮氣、一氧化碳、二氧化碳及氫氣。NMS將監測這些產物的密度。此外,LADEE還將繼續它的基準線觀測,以查看月面軟著陸能否對月球的背景塵埃及氣體環境產生足以檢測的變化。

LRO

2009年6月發射升空的月球勘測軌道飛行器(LRO),已經對月球的外大氣層進行了多項科學研究,並且取得了不少獨一無二的成果。這個探測器還拍回了大量清晰度空前的月面圖像。

V5Ro8bT19WbDQ2E3TV2_B3pSKGXHFWy6GBcoSlU2lkGAAgAAaAEAAEpQ
NASA的LRO探測器將對嫦娥3號登月點進行多次高分辨率成像觀測,有望俯拍到正在月面上工作的嫦娥3號及玉兔月球車的畫面。圖片來源:NASA

在嫦娥3號登月的當天,LRO將進行多達8次的空間機動,利用它所攜帶的萊曼阿爾法測繪儀(LAMP)掃瞄著陸點附近的月面區域。這台紫外成像光譜儀將尋找嫦娥3號排出的煙塵。

從12月起,LRO上的相機(LROC)將有能力對著陸地點及月球車拍照,分辨率高達每像素大約2米。隨著月球的自轉將嫦娥3號的著陸地點帶到LRO的軌道平面以下,LROC每月都將有機會進行這樣的拍照觀測。反覆的成像觀測,將細緻地測量著陸造成的地表變化,以及玉兔月球車在月面上的運動。

LROC拍攝的照片能夠分辨出嫦娥3號降落引擎導致的地表變化,就如同它對過去的月面著陸器進行的同類觀測一樣。第一次嘗試拍攝時,光照條件不會太理想,因為著陸地點的太陽高度太低,但在接下來的幾個月裡,光照條件會有所改善。嫦娥3號著陸導致的月面大氣及地表的改變,將為LRO提供一個全新的科研機會,來仔細觀察月面上氣體的輸運,以及局部擾動對月面浮土的影響。

LRO不只傳回了未來載人及無人探測器所需的全部資訊,還顯示出月球要比科學家之前所想像的更加複雜、也更有活力。LRO將繼續向地球發回月球的數據,直到2014年10月。此外,它的任務還有可能再延期2年。

ARTEMIS

ARTEMIS衛星將協助LADEE解釋它對嫦娥3號登月所做的測量。

Image converted using ifftoany
NASA的THEMIS任務示意圖。圖中的5顆衛星,後來有2顆被NASA重新啟用,在繞月軌道上探測月球與太陽風的相互作用。它們也將對嫦娥3號登月展開觀測。圖片來源:NASA

NASA的ARTEMIS任務由兩顆衛星構成,自2010年以來就在繞月軌道上運行。它們原本是NASA的另一項任務THEMIS的探測器,那項任務一共動用了5顆衛星。ARTEMIS任務讓NASA重新啟用了其中兩顆在軌衛星,以延續它們的科學使命。

第一顆ARTEMIS衛星(P1)於12月14日從距離月面不到200千米的地方飛掠。按照當前的計畫,這顆衛星將尋找與嫦娥3號登月有關的等離子體煙塵及磁場跡象。第二顆衛星(P2)將觀察原始的太陽風等離子體及磁場狀況。這些都是確定月面塵埃為何會揚起所必需的信息。

目前ARTEMIS的研究著眼於測量月球表面的靜電荷、月球在超音速太陽風中拖出的等離子體尾跡,以及月球與太陽風的相互作用。

 

轉載自果殼網

果殼網_96
108 篇文章 ・ 9 位粉絲
果殼傳媒是一家致力於面向公眾倡導科技理念、傳播科技內容的企業。2010年11月,公司推出果殼網(Guokr.com) 。在創始人兼CEO姬十三帶領的專業團隊努力下,果殼傳媒已成為中國領先的科技傳媒機構,還致力於為企業量身打造面向公眾的科技品牌傳播方案。

0

0
0

文字

分享

0
0
0
M94星系,環裡有環?
臺北天文館_96
・2013/06/14 ・784字 ・閱讀時間約 1 分鐘 ・SR值 585 ・九年級

在史匹哲太空望遠鏡拍到的這張M94(或NGC 4736)中,看到的是幾個環?乍看下,會覺得好像有好幾個,但天文學家認為:環只有一個。

天文界一向也認為M94擁有兩個環,且二者大不同:一個很亮,結構緊密的內環,繞著星系的核轉,另一個環除了較黯以外,也比較寬,像大片恆星掉落在主要盤面以外。

然而,最近天文學家發現,此圖中以青藍色代表恆星光的這個外部環,搞不好可能只是光學錯覺。2009年一項研究中,天文學家曾結合了太空和地面望遠鏡的紅外線、紫外線、可見光及近紅外線資料,有了M94完整的圖像,進一步可得知,從我們的觀點看到這「兩個」旋臂,其實只是一個單獨而連貫的環。

但M94的內環,就不是光學幻覺了。被認為是「星爆環」(Starburst ring),在這塊小小的範圍裡,恆星生成速度相對地超快。一般誘發星爆的原因,多和兩星系間重力相互作用有關,但M94這個案例中,事實上,星系的橢圓形狀,可能才是星爆的主因。

-----廣告,請繼續往下閱讀-----

另外,在星爆環的內環和旋臂狀外環間,還塞了一些東西,這些其實是星系的盤面。縷縷綠色絲狀的星際塵,乍看下雖然很像一組重重疊疊的環,事實上塵埃呈弧狀是受到旋臂的曲線緊密扭絞的影響。

M94距離我們大約有1700萬光年,離銀河系有點遠。1781年時由梅西爾的助手Pierre Méchain首度發現,並納入梅西爾天體總表。

在上圖中以藍色和青色顯示的紅外光,波長範圍介於3.6~4.5微米之間,代表恆星的光。波長8微米及24微米的光是用綠色及紅色表示,分別代表溫度比較冷一點和溫度略為偏暖的這兩種塵埃。史匹哲紅外太空望遠鏡的冷媒在2004年時告罄,這些紅外波段的觀測是完成於冷媒用光以前。(Lauren譯)

資料來源:Galactic Wheels within Wheels[2013.05.29]

-----廣告,請繼續往下閱讀-----

轉載自網路天文館

文章難易度
臺北天文館_96
482 篇文章 ・ 41 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!