0

0
0

文字

分享

0
0
0

ALMA首篇科學觀測成果發現:環繞北落師門的行星質量遠小於原先認定

臺北天文館_96
・2012/05/01 ・1672字 ・閱讀時間約 3 分鐘 ・SR值 554 ・八年級

在天空中距離地球僅只有25光年,並且比太陽更亮20倍的北落師門(Fomalhaut)本身是個明顯易見的天體, 天候良好時,肉眼就可看到。但它的名氣有一部分更是來自於它的行星:Form b。在2008年時,就有學者透過哈柏望遠鏡觀測到這顆恆星的冰環內部似乎有一個移動的天體,不過Form b究竟是否存在,因為難以確認, 一度曾是天文學裡的暗啞之謎,一時無人能解。不過,ALMA的新觀測中已經開始為大家揭曉這個謎底。它證實:這個薄冰環無論內緣和外緣都是很銳利地突然切斷的。在數值模擬更進一步協助下,科學家認定:在環中的塵埃粒子其實是受到兩顆行星的重力牽制,被侷限在環中。兩顆行星中,一顆行星距離恆星是比環近,另一顆則比較遠。

模擬結果也得出行星質量的可能大小 –比火星略大,但不會比地球大很多倍,這讓天文學家跌破眼鏡,因為原先估得太大了~2008年時,哈柏望遠鏡觀測這顆內側行星時,曾以為這顆行星比土星還大,土星是太陽系中排名第二大的行星,不過後續的紅外線觀測,卻沒能找到這顆行星的影蹤。

如此一來,部分學者就質疑哈柏所看到的那顆行星其實根本不存在。並且哈柏在可見光波段所觀測到的極微小的粒子、因為被恆星的輻射向外推,使塵埃環結構變得有些模糊難辨。但ALMA是在(比可見光波)更長的波段裡進行觀測,它找到一些體積較大一點點的塵埃粒子 – 直徑約一毫米 – 並未受到母星的輻射而被推動,因此在ALMA的觀測下,就可以清楚顯示出盤的銳利邊緣及狀似「戒指」的環形結構,這可能是兩顆行星重力作用造成的結果。

曾獲頒Sagan Fellow獎的佛羅里達大學教授Aaron Boley表示:「結合ALMA觀測到的戒指環狀以及電腦模型得出的結果,我們能為任何靠近環結構附近的行星可能的質量大小和軌道很明確地訂出上下限。」Boley還進一步補充說:「我們認為這些行星的質量必然是非常小;否則行星應該已經把環狀結構破壞。」而正因行星的質量小,或許可以解釋為什麼先前的紅外線觀測裡看不到它。

-----廣告,請繼續往下閱讀-----

同樣也來自佛羅里達大學的Matthew Payne表示,ALMA的研究顯示環狀結構寬度約為日地距離的16倍,厚度則只有寬度的1/7,「這個環也比先前所以為的更窄、更薄。」

Aaron Boley表示:「這個環距離母恆星有140AU,相較之下,在太陽系中,連冥王星距離太陽也只有40AU。運轉在距離恆星這麼遠的軌道上並且質量又這麼小,意味著這些行星,有可能是我們目前已知,繞行正常恆星的行星當中,溫度最低者。」

科學家進行北落師門觀測的時間是2011年9月左右,當時,66個天線碟還只完成了1/4。ALMA這座嶄新的望遠鏡,目前仍在施工中,明年全部完成時,完整系統將具有更強的觀測能力。即便是尚未完工,現在的ALMA也已經開始能為先前在毫米級觀測中困惑人的問題揭開朦朧面紗。

在ALMA協助下,天文學家獲得極有價值的證據,可明瞭這類行星系統如何形成和演化。本篇研究發現是ALMA進入公開觀測後階段(Phase 0)的第一篇科學論文發表。

-----廣告,請繼續往下閱讀-----

附註:科學家第一次觀測到行星(或衛星)使塵埃環維持著鋒利邊緣的作用,是在1980年當Voyager 1飛抵土星時,它取得了土星環系統的細部圖像。以太陽系的天王星為例,其衛星:Cordelia 和 Ophelia也是「圈牧」著天王星的epsilon環,正和本次ALMA對北落師門(Fomalhaut)所觀測到的現象一樣,有著「環緣很銳利」的特色。這種會將行星環加以限制的衛星有個浪漫的名字:「牧羊衛星」。衛星或行星是藉由重力效應侷限住塵埃環。原因是在環內的行星繞行恆星的速度比環上的塵埃粒子還更快,它的重力為粒子增加能量,將它們向外推。在環外的行星,速度則比塵埃粒子慢,其重力減慢了粒子的能量,使它們略向內縮。(Lauren 譯)

該篇論文可參考:Constraining the Planetary System of Fomalhaut Using High-Resolution ALMA Observations.

圖片說明:來自ALMA的一張新照片讓我們更清楚看到環繞在北落師門周圍的塵埃環。位在圖片正中央的北落師門(Fomalhaut),是一顆明亮恆星,天候良好時,肉眼就可看到。藍色的部份是早先由哈柏望遠鏡所拍攝的照片,ALMA取得的圖像是右半部橘色的部份,在ALMA的協助下,天文學家對於這個距離地球相當近的行星系統有了重大而具突破性的認識,並且能更明瞭這類行星系統的形成和演化。目前ALMA只觀測了這個塵埃環的局部。

資料來源:中研院天文網[2012.04.20]

-----廣告,請繼續往下閱讀-----

轉載自台北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 43 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

0
1

文字

分享

0
0
1
秋季星空中一抹光亮:北落師門殘屑盤的觀測史——《科學月刊》
科學月刊_96
・2024/01/19 ・4118字 ・閱讀時間約 8 分鐘

  • 謝承安/ EASY 天文地科團隊成員,因喜愛動畫《戀愛中的小行星》開始研究小行星,現就讀臺大物理系。
  • 林彥興/清大天文所碩士, EASY 天文地科團隊總編輯,努力在陰溝中仰望繁星。
  • Take Home Message
    • 殘屑盤是恆星周遭的盤狀結構,由於北落師門殘屑盤離地球僅 25 光年,數十年來天文學家時常會藉由觀測它以了解殘屑盤的特性。
    • 去(2023)年韋伯望遠鏡的觀測結果與過去不同,顯示北落師門殘屑盤其實分成多個部分,更讓他們相信北落師門中有多個行星環繞。
    • 韋伯望遠鏡提供的影像還揭露許多來源未知的構造及現象,例如內側殘屑盤與內側裂縫等,都有待繼續探索。

北落師門(Fomalhaut)又稱南魚座 α 星,是秋季星空中著名的亮星之一。去年 5 月,以美國亞利桑那大學(University of Arizona)天文學家加斯帕(András Gáspár)為首的研究團隊在《自然天文學》(Nature Astronomy)期刊上發表,他們藉由詹姆士.韋伯太空望遠鏡(James Webb Space Telescope, JWST,簡稱韋伯望遠鏡),在北落師門周圍殘屑盤(debris disk)中首次發現了「系外小行星帶」的存在。韋伯望遠鏡拍下美麗的照片,也瞬間席捲各大科學與科普媒體的版面(圖一)。

圖一:韋伯望遠鏡在波長約 25 微米(μm)的中紅外線拍攝的北落師門影像,首次呈現北落師門殘屑盤中的三層結構。(NASA, ESA, CSA, A. Pagan (STScI), A. Gáspár (University of Arizona))

天文學家選擇北落師門作為目標並非偶然。半個世紀以來,北落師門一直是天文學家研究殘屑盤時的首選目標之一。韋伯望遠鏡的新影像為我們帶來什麼新發現?過去與現在的觀測方式又有什麼差異?本文將帶著大家一起回顧北落師門殘屑盤的觀測史。

行星相互碰撞後的殘屑盤

殘屑盤是環繞在恆星周遭,由顆粒大小不一的塵埃所組成的盤狀結構。如果讀者們聽過行星形成的故事,也知道行星是從恆星四周、由氣體與塵埃組成的「原行星盤」(protoplanetary disk)中誕生,那你或許會認為殘屑盤可能就是行星形成後剩下的塵埃。但實際上並非如此,在恆星形成初期的數百萬年間,原行星盤中的氣體和塵埃會被恆星吸積或是吸收恆星輻射的能量後蒸發,同時也會聚集成小型天體或行星,這些原因都會使原行星盤消散。而殘屑盤則是由盤面上的小行星等天體們互相碰撞後,產生的第二代塵埃組成(圖二)。

圖二:殘屑盤想像圖(NASA/JPL-Caltech)

這些塵埃發光的機制主要有兩種。第一,塵埃本身可以散射來自母恆星的星光,從而讓天文學家能在可見光與近紅外波段看到它們。第二,塵埃在吸收來自恆星的星光之後,以熱輻射的形式將這些能量重新釋放。由於恆星的光強度與距離成平方反比,愈靠近恆星,塵埃的溫度就愈高,因此發出的輻射以近紅外線為主;反之,愈是遠離恆星,塵埃的溫度就愈低,發出的光就以中遠紅外線為主。

-----廣告,請繼續往下閱讀-----

觀測目標:北落師門

北落師門殘屑盤的觀測始於 1983 年。當時,美國國家航空暨太空總署(National Aeronautics and Space Administration, NASA)的紅外線天文衛星(Infrared Astronomical Satellite, IRAS)發現北落師門在紅外線波段的亮度異常高,代表周圍很可能有殘屑盤圍繞。由於北落師門離地球僅約 25 光年,這項發現引起眾多天文學家的關注,並在未來數十年前仆後繼地拿出各波段最好的望遠鏡,希望藉此深入了解殘屑盤的特性。其中,哈伯太空望遠鏡(Hubble Space Telescope, HST,簡稱哈伯望遠鏡)、阿塔卡瑪大型毫米及次毫米波陣列(Atacama Large Millimeter/submillimeter Array, ALMA)與韋伯望遠鏡擁有非常好的空間解析度,因此能夠清楚地觀測殘屑盤的結構。

● 哈伯的觀測

2008 年, NASA 公布哈伯望遠鏡在 2004 與 2006 年對北落師門的觀測結果(圖三),讓天文學家首次清晰地看到北落師門殘屑盤的影像。這張照片是哈伯望遠鏡以日冕儀(coronagraph)在 600 奈米(nm)的可見光波段下拍攝,中間的白點代表北落師門的位置,而周圍的環狀亮帶正是因散射的北落師門星光而發亮的殘屑盤,放射狀的條紋則是日冕儀沒能完全消除的恆星散射光。除此之外,天文學家還發現有一個亮點正圍繞著北落師門運行,並認為此亮點可能是一顆圍繞北落師門的行星,於是將它命名為「北落師門 b 」。很可惜在往後的觀測中,天文學家發現北落師門 b 漸漸膨脹消散,到 2014 年時就已經完全看不見了。因此它很可能只是一團塵埃,而非真正的行星。

圖三:哈伯望遠鏡於 2008 年公布的北落師門。中間白點代表北落師門的位置,周圍環狀亮帶是因散射北落師門的星光而發亮的殘屑盤,放射狀條紋則是沒完全消除的恆星散射光。右下角亮點當時被認為是圍繞北落師門的行星,但很可能只是塵埃。(Ruffnax (Crew of STS-125);NASA, ESA, P. Kalas, J. Graham, E. Chiang, and E. Kite (University of California, Berkeley), M. Clampin (NASA Goddard Space Flight Center, Greenbelt, Md.), M. Fitzgerald (Lawrence Livermore National Laboratory, Livermore, Calif.), and K. Stapelfeldt and J. Krist (NASA Jet Propulsion Laboratory, Pasadena, Calif.)

● ALMA 的觀測

ALMA 對北落師門的完整觀測於 2017 年亮相,他們展示出更加清晰漂亮的環狀結構,且位置與哈伯望遠鏡的觀測吻合。正如前面提到,殘屑盤中的塵埃溫度愈低,放出的輻射波長就愈長。因此 ALMA 在 1.3 毫米(mm)波段觀測到的影像,主要來自離殘屑盤中恆星最遠、最冷的部分。

圖四: ALMA 於 2017 年拍攝的北落師門殘屑盤,展示出清晰漂亮的環狀結構。(Sergio Otárola|ALMA (ESO/NAOJ/NRAO);M. MacGregor)

● 韋伯望遠鏡的觀測

最後則要來看去年韋伯望遠鏡所使用中紅外線儀(mid-infrared instrument, MIRI)拍攝的影像(圖五)。與之前的觀測不同,這次的影像顯示北落師門的殘屑盤其實分成幾個部分:

-----廣告,請繼續往下閱讀-----
圖五:韋伯望遠鏡在 25 微米波段觀測到的北落師門殘屑盤。(NASA GSFC/CIL/Adriana Manrique Gutierrez;NASA, ESA, CSA, A. Pagan (STScI), A. Gáspár (University of Arizona))

首先,哈伯望遠鏡與 ALMA 之前就已觀測到的塵埃環,它的半徑約 136~150 天文單位(AU)、寬約 20~25 AU,而溫度則落在約 50~60 K,與太陽系的古柏帶(Kuiper belt)十分相似,因此被稱為「類古柏帶環」(KBA ring)。雖然在觀測上的溫度相似,但其實此塵埃環與北落師門的距離是古柏帶到太陽的四倍;不過北落師門光度約為太陽的 16 倍,根據前述提及的平方反比關係,才導致兩者的溫度相近。此外,在更外層名為「暈」(halo)的黯淡結構則對應古柏帶外圍天體密度較低的區域。

再來,韋伯望遠鏡還發現了更多未解的謎團:內側殘屑盤(inner disk)與中間環(intermediate ring)。其實早在本次韋伯望遠鏡的觀測之前,天文學家就已經從北落師門的光譜推測,北落師門的殘屑盤中除了存在前面提過的類古柏帶環之外,應該還有另一批更靠近恆星、溫度更高的塵埃,溫度與大小對應太陽系中的環狀小行星帶。但當韋伯望遠鏡實際觀測後,卻發現與太陽系的環狀小行星帶相比,北落師門有著相當瀰散的內側殘屑盤。為什麼會有這樣的不同呢?目前天文學家也不清楚,仍待進一步研究。

最後,在類古柏帶環與內側殘屑盤之間,還存在著一個半長軸約 104 AU 的「中間環」,在太陽系中則沒有對應的結構,這項新發現也需要進一步的研究來了解它的來源。

此外,雖然北落師門 b 最終被證實並不是一顆行星,但這並不代表北落師門旁沒有行星環繞。最初,殘屑盤的形成原因是由小行星等天體不斷碰撞所產生,經過不斷地碰撞合併,其實就有可能已經產生直徑數百到數千公里的行星。從北落師門的殘屑盤還可以推論,在內側殘屑盤與中間環之間可能有一顆海王星質量以上的行星,它就像鏟雪車般清除軌道上的塵埃,從而產生「內側裂縫」(inner gap)的結構。

-----廣告,請繼續往下閱讀-----

另一方面,天文學家也藉由數值模擬發現,如果僅考慮來自北落師門的重力影響,類古柏帶環應該要比觀測到的更寬才對。因此他們推測,很可能在類古柏帶環內外兩側有兩顆行星,像控制羊群的牧羊犬一樣以自身的重力限制塵埃移動,才產生了這麼細的塵埃環。

● 更多的殘屑盤觀測

北落師門雖然是一顆年齡僅4.4億年的年輕恆星,卻已經是一個擁有殘屑盤、形成行星的成熟恆星系統。而來自韋伯望遠鏡的最新觀測結果,無疑讓天文學家更深入地認識殘屑盤中複雜的結構,也更令他們相信北落師門系統中有多個行星環繞。

不過,北落師門系統仍舊有許多未解之謎。例如為什麼太陽系有著環狀的小行星帶,北落師門卻是瀰散的內側殘屑盤?在無數的恆星中,究竟是太陽系還是北落師門的殘屑盤構造比較常見?殘屑盤中是否有行星存在?如果有,在北落師門的演化歷史中又扮演著怎樣的角色呢?這些問題都有待更多的觀測與理論模擬來解答。

在北落師門之後,觀測團隊預計將韋伯望遠鏡指向天琴座的織女星(α Lyr, Vega),以及位於波江座的天苑四(ε Eri),兩者都是離地球非常近且擁有殘屑盤的恆星。其中織女星的溫度與質量比北落師門更大,而天苑四的質量與溫度雖然比太陽小,卻有強烈的磁場活動。藉由觀測不同系統中殘屑盤的性質差異,並與太陽系進行對比,不僅能更加認識殘屑盤的起源、與行星的交互作用,更能理解我們自己的恆星系中,數百萬顆的太陽系小天體從何而來。

-----廣告,請繼續往下閱讀-----

JWST 原始資料的處理過程影片介紹,非常值得一看!

  • 〈本文選自《科學月刊》2024 年 01 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

延伸閱讀

  1. Galicher, R. et al. (2013). Fomalhaut b: Independent analysis of the Hubble space telescope public archive data. The Astrophysical Journal, 769(1), 42.
  2. MacGregor, M. A. et al. (2017). A complete ALMA map of the Fomalhaut debris disk. The Astrophysical Journal, 842(1), 8.
  3. Gáspár, A. et al. (2023). Spatially resolved imaging of the inner Fomalhaut disk using JWST/MIRI. Nature Astronomy, 1–9.
-----廣告,請繼續往下閱讀-----
科學月刊_96
249 篇文章 ・ 3707 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

6
4

文字

分享

0
6
4
被吸進黑洞會怎樣?黑洞和一般的洞,哪裡不一樣?——《宇宙大哉問》
天下文化_96
・2022/09/24 ・2414字 ・閱讀時間約 5 分鐘

  • 作者/豪爾赫.陳、丹尼爾.懷森
  • 譯者/徐士傑、葉尚倫

如果我被吸進黑洞會怎麼樣?

很多人似乎都有這個疑問。

如果路上突然出現一個黑洞,會發生什麼事?圖/天下文化提供

「進入黑洞後會發生什麼事呢?」在許多科學書籍中都有提到,也是我們聽眾和讀者經常提出的問題。但是為什麼大家對這問題特別有興趣呢?難道公園裡處處都是黑洞?或是有人計畫在黑洞附近野餐,但又擔心放任他們的孩子在旁邊跑來跑去會發生問題?

可能不是。這個問題的吸睛度與實際上會不會發生無關,而是源自我們對迷人太空物體的基本好奇心。眾人皆知,黑洞是神祕莫測的奇怪空間區域,是時空結構中與宇宙實體完全脫節的「空洞」,任何東西都無法逃脫。

不過,掉入黑洞是什麼感覺呢?一定會死嗎?和掉進普通洞裡的感覺有什麼不同?你會在洞內發現宇宙深處的祕密,還是看到時空在你的眼皮子底下伸展開來?在黑洞裡面,眼睛(或大腦)能正常發揮功能嗎?

-----廣告,請繼續往下閱讀-----

只有一種方法可以找到答案,那就是跳進黑洞。所以抓起你的野餐墊,和你的孩子說聲再見(也許是永別),然後牢牢抓緊,因為我們即將深入黑洞公園展開終極冒險。

讓我們跳進黑洞尋找答案吧!圖/天下文化提供

接近黑洞

當你接近黑洞時,注意到的第一件事可能是,黑洞確實看起來就像「黑色的洞」。黑洞是絕對黑色,本身完全不發射或反射光線,任何擊中黑洞的光都會被困在裡面。所以當你觀察黑洞時,眼睛看不到任何光子,大腦會將其解釋為黑色。

黑洞也是個不折不扣的洞。你可以將黑洞視為空間球體,任何進入黑洞的東西都會永遠留在裡面。這是因為已經留在黑洞內的東西所造成的重力效應:質量在黑洞中被壓縮得十分密集,進而產生巨大的重力影響。

為什麼?因為離有質量的東西愈近,重力愈強,而質量被壓縮代表你可以十分靠近質量中心。質量很大的東西通常分布得相當分散。以地球為例,地球質量大約與一公分寬(大約一個彈珠大小)的黑洞等同大小。如果你與這個黑洞距離一個地球半徑長,感受到的重力就如同站在地球表面一樣,都是 1g。

-----廣告,請繼續往下閱讀-----
如果你與黑洞距離一個地球半徑長,感受到的重力就如同站在地球表面一樣。圖/天下文化提供

但是當你分別接近兩者中心時,會發生截然不同的狀況。當你愈靠近地球中心點,愈感覺不到地球重力。那是因為地球圍繞著你,把你平均的往各個方向拉。相反的,當你離黑洞愈近,感受到的重力愈大,因為整個地球質量近在咫尺的作用在你身上。這就是黑洞強大的威力,超緊緻質量對周圍事物立即產生巨大影響。

當你離地球中心越近,就越感受不到重力,但當你離黑洞中心愈近,感受到的重力卻越大。圖/天下文化提供

真正緊緻的質量會在自身周圍產生極大重力,並且在一定距離處,把空間扭曲到連光都無法逃脫(請記住,重力不僅會拉動物體,還會扭曲空間)。光不能逃脫的臨界點稱為「事件視界」,在「某種程度」上,事件視界定義了黑洞從何處開始,以此距離為半徑的黑色球體則稱為黑洞。

黑洞的大小會隨著擠進多少質量而發生變化。如果你把地球壓縮得足夠小,會得到一個彈珠大小的黑洞,因為在大約一公分距離內,光再也無法逃脫。但是如果你再壓縮更多質量,黑洞半徑就會更大。例如,你把太陽壓縮變小,空間扭曲程度更高,事件視界更遠,大約發生在距離中心點三公里處,因此黑洞寬度約六公里。質量愈大,黑洞愈大。

黑洞的大小會隨著擠進多少質量而發生變化。圖/天下文化提供

其實,黑洞的大小並沒有理論限制。在太空中我們已探測到的黑洞寬度,最小約有二十公里,最大可達數百億公里。實際上,黑洞形成的限制只有周圍環繞物質的多寡,以及所允許的形成時間。

-----廣告,請繼續往下閱讀-----

當你接近黑洞時,可能會注意到的第二件事是,黑洞通常不孤單寂寞。有時你會看到周圍東西掉進黑洞。或者更準確的說,你會看到東西在黑洞周圍旋轉等待落入。

這種東西稱為「吸積盤」,是由氣體、塵埃和其他物質組成。這些物質沒有被直接吸入黑洞,而是在軌道上盤旋等待、螺旋進入黑洞。這景象對於小黑洞而言,可能不是那麼令人印象深刻,但如果是超大質量黑洞,確實值得一看。氣體和塵埃以超高速度飛來飛去,產生非常強烈的純粹摩擦力,導致物質被撕裂,釋放出許多能量,創造出宇宙中最強大的光源。這些類恆星(或稱類星體)的亮度,有時比單個星系中所有恆星的亮度總和還要高數千倍。

超大質量黑洞能釋放出許多能量,創造出宇宙中最強大的光源。圖/天下文化提供

幸運的是,並不是所有黑洞,甚至是超大質量黑洞,都會形成類星體(或耀星體,就此而言,像是吃了類固醇的類星體)。大多數時候,吸積盤並沒有合適的東西或條件來創造如此戲劇化的場景。這也算是一樁美事,否則的話,你一靠近活動劇烈的類星體,可能會讓你在瞥見黑洞之前就氣化了。希望你選擇落入的黑洞周圍有個漂亮的、相對平靜的吸積盤,讓你有機會接近並好好欣賞。

——本文摘自《宇宙大哉問:20個困惑人類的問題與解答》,2022 年 8 月,天下文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
天下文化_96
142 篇文章 ・ 623 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

5
4

文字

分享

0
5
4
解析韋伯太空望遠鏡第一批影像背後的科學意義
EASY天文地科小站_96
・2022/07/14 ・4350字 ・閱讀時間約 9 分鐘

  • 作者:林彥興|EASY 天文地科小站主編、清大天文所碩士生,努力在陰溝中仰望繁星

萬眾矚目的詹姆士韋伯太空望遠鏡,在經過半年的校準與測試後,終於公開了它拍攝到的第一批成果。這些五彩斑斕、美麗絕倫的照片究竟是什麼樣的天體,照片的背後又有哪些深藏的意義?就讓我們一起深入解密,韋伯的第一批照片吧!

韋伯望遠鏡是什麼?

詹姆士.韋伯太空望遠鏡是美國、歐洲與加拿大太空總署合作開發的新一代旗艦級紅外線太空望遠鏡,也是無數天文學家夢寐以求、能幫助人類破解許多未解天文迷團的利器。

韋伯的研發其實早從 1996 年就已經開始,但是由於開發時遇到諸多困難,導致嚴重的預算超支與進度延宕,這台耗資上百億美金的超級望遠鏡,直到去年年底才終於從法屬圭亞那發射中心,用一枚亞利安 5 號運載火箭發射升空,前往距離地球 150 萬公里的日地第二拉格朗日點。

拉格朗日點是什麼?

日地拉格朗日點一共有五個。當物體在這些點上,其受到來自太陽與地球的重力恰到好處,因此太空船只需要少量的燃料,就可以長期與地球和太陽保持穩定的相對位置,可謂是地球軌道附近的風水寶地。

而韋伯繞行的,是位於地球後方的第二拉格朗日點,簡稱 L2。之所以選擇這裡,是因為只有 L2 的位置剛好會讓地球、太陽、月亮都在同一側,而這三個星體正是天文望遠鏡的主要紅外線光害來源。位在 L2 的韋伯,就可以用它的遮陽帆一次把三顆星體全部擋住,認真凝望遠方而不受干擾,因此 L2 可以說是觀測宇宙的絕佳地點。升空的幾個月之間,韋伯已經完成一系列的儀器校準工作,一步步把望遠鏡調整到最佳狀態。

-----廣告,請繼續往下閱讀-----

相比知名前輩「哈伯太空望遠鏡」,韋伯的優勢不只是擁有比哈伯大六倍的鏡面,更重要的是它是以紅外線為主力觀測波段。宇宙膨脹造成嚴重紅移,但哈伯望遠鏡的守備範圍主要是可見光,波長範圍是 90 – 2500 奈米,可說是鞭長莫及啊。

這時換上以波長 600 – 28500 奈米的紅外線為守備範圍的韋伯,就可以讓我們看到更遙遠、更古老的宇宙。此外,同一個天體在可見光和紅外線看起來,往往長得相當不一樣。這個強大的紅外線觀測能力,正是韋伯最引以為傲的武器。

作為深具儀式感的第一批科學影像,韋伯這次公布的影像分別對應四個主要科學主題:早期宇宙星系演化恆星的生命循環系外行星

1. 早期宇宙—— 星系團 SMACS 0723 與重力透鏡效應

星系團 SMACS 0723。圖/Webb Space Telescope

畫面中心黃白色的天體,是由成百上千的星系共同組成的星系團 SMACS 0723。在韋伯之前,哈伯太空望遠鏡就曾經花費數個禮拜的時間拍攝這個星系團。然而擁有更大鏡面、更精良儀器的韋伯,僅用了 12.5 個小時就拍出了解析度更高、畫面品質更好的照片,讓我們看到許多以前難以辨識的黯淡星系。可見哈伯與韋伯在觀測能力上的差距。

對天文學家來說,圖中最令人興奮的其實不是前景壯闊的星系團,而是後方這些經過重力透鏡扭曲和放大的小小星系們。星系團龐大的質量扭曲了周圍的時空,讓整個星系團好像一塊巨大的放大鏡一樣,可以偏折和聚焦通過的星光,稱為「重力透鏡效應」。

當星系團後方更遙遠、更古老的星系發出的光線通過星系團時,就會被星系團的重力透鏡效應偏折和聚焦,形成而圖中無數弧形的扭曲影像。

-----廣告,請繼續往下閱讀-----
紅圈為照片上受重力透鏡影響的區域之一,可以看到星系被拉長。

這些仍在襁褓中的小小星系,往往正在快速的孕育新的恆星,或是互相合併,因此有著混沌不規則的形狀。離我們越遠的星體發出的光,需要越長的時間才能到達我們的眼中。因此研究這些遙遠且古老的星系,能幫助天文學家理解宇宙早期的模樣。

2. 星系演化——史蒂芬五重奏(Stephan’s Quintet)

上一張照片讓我們認識星系的起源,這張「史蒂芬五重奏(Stephan’s Quintet)」則可以讓天文學家更仔細地研究星系內的複雜結構,以及星系與星系之間的交互作用。

史蒂芬五重奏(Stephan’s Quintet)。圖/Webb Scape Telescope

正如其名,「史蒂芬五重奏(Stephan’s Quintet)」是由五個視覺上相當靠近的星系所組成。但其實最左邊的這個星系(NGC7320)與另外四者並無關聯,只是從地球上看剛好位在天空中差不多的位置而已。

圖片中偏向黃白色,感覺如絲綢般順滑的部分是在近紅外線波段拍攝,主要顯示的是星系中恆星的分布;而醒目的橘紅色,則是來自中紅外波段的資料,展示的是星系中的高溫塵埃,以及星系中的氣體高速對撞時產生的震波(Shock wave)。

除了影像,韋伯還使用光譜儀仔細檢視了影像中右上方的星系(NGC 7319)中心,因為那裏有一顆比太陽重 2400 萬倍的超大質量黑洞,正在吸食周遭的氣體,並在過程中釋放巨大的能量。

-----廣告,請繼續往下閱讀-----

藉由觀察光譜的細節,韋伯可以分辨出像是氬離子、氖離子或是氫分子等等化學組成,甚至知道氣體的溫度、運動速度這些從一般照片難以辨識的資訊。

史蒂芬五重奏就像一個天然的實驗場,讓天文學家研究星系演化的詳細過程。

3. 系外行星——WASP-96 b 的大氣光譜

這一張照片可能是整批影像中,視覺上最不起眼的一張,它是系外行星 WASP-96 b 的大氣光譜。

WASP-96 b 的大氣光譜。圖/Webb Scape Telescope

最近 20 多年來,人類對太陽系以外行星的認識越來越多。截至今日,人類已經發現超過 5000 顆系外行星。然而,以現有的觀測技術,天文學家通常只能用一些間接的方法,測量它們的質量、半徑、軌道週期等粗略的特性。想知道這個行星是否適合生命生存,就不能少了行星大氣層的化學組成和溫度資訊。

那要怎麼取得行星的大氣資訊呢?當行星通過恆星跟地球中間時,恆星的一部分星光將會通過行星的大氣層,並被行星的大氣吸收。吸收的多寡和波段,取決於行星大氣層的溫度和化學組成等特性。此時,天文學家就可以藉由分析光譜中的各種特徵,去回推行星大氣層的性質。

圖片中的白點,即是韋伯實際觀測 WASP-96 b 時取得的光譜資訊。而藍色的線,則是天文學家認為最貼合觀測數據的理論模型。

-----廣告,請繼續往下閱讀-----

根據這個觀測結果,天文學家計算出 WASP-96 b 的大氣溫度約為 725°C,大氣中明顯有著水氣,並推測可能還有雲和霾存在。未來進一步的分析和觀測,將為世人揭開更多系外行星的神祕面紗。

4. 恆星的生命循環——「南環狀星雲」與「船底座大星雲(Carina)」

最後兩張照片都與恆星的生命循環有關。正如人會有生老病死,恆星也是一樣。

恆星一般誕生在巨大分子雲中,氣體在重力吸引下逐漸塌縮、升溫並點燃核融合,成為一顆恆星。

當小質量的恆星步入晚年,其結構容易變得不穩定,最終將自己的外層氣體拋射出去,形成美麗的行星狀星雲,也將氣體吐回到星際空間中,成為下一代恆星的養分。氣體都拋射完之後留下的核心,就是白矮星。

-----廣告,請繼續往下閱讀-----

各位現在看到的,是暱稱「南環狀星雲」的行星狀星雲,左右兩張圖分別於近紅外線與中紅外線拍攝。

南環狀星雲。圖/Webb Scape Telescope

我們可以看到,左圖中的影像比右圖要更清晰一些,這是因為在相同的望遠鏡口徑下,波長越短所能達到的理論解析度就越高。

有趣的是,在左圖中看起來位於星雲中心的明亮恆星,其實並不是行星狀星雲的核心。真正的核心其實是在其左下方,一顆被塵埃包裹著的黯淡白矮星。在近紅外線波段的影像中,這顆白矮星幾乎淹沒在隔壁恆星的炙烈星芒之中。

但在中紅外波段,由於恆星的亮度相對降低,包裹著白矮星的塵埃發出的光就變得清晰可見。再次展示即使是同一個天體,使用不同的波段進行觀測,往往可以看到不同的東西。

最後這片壯麗的宇宙山崖,則是位於「船底座大星雲 Carina」西北角的 NGC3324 恆星形成區。在這裡,源自星雲中無數初生恆星所發出的炙烈輻射、恆星風與噴流,吹散、游離了星雲中原有的濃密氣體與塵埃。交織出這片壯闊而複雜的結構。

船底座大星雲(Carina)。圖/Webb Scape Telescope

這張照片一共結合了這六個不同的濾鏡的影像拍攝而成。每個濾鏡涵蓋的波段各不相同,代表的物理意義也不一樣。比如(F090W、F200W、F444W)這三個寬帶濾鏡,分別在影像中按照波長順序,以藍色、綠色和紅色這三原色呈現,為照片打下骨幹。而在此之上,照片的製作團隊又疊上青色代表氫原子的(F187N)濾鏡影像,以黃色代表氫分子的(F470N)濾鏡影像,以及用橘色代表甲烷和多環芳香烴的 (F335M) 濾鏡影像,為照片再添更多的細節。

-----廣告,請繼續往下閱讀-----

想要將這麼多個波段的影像全部結合起來,仔細調整讓細節更加突出,最終呈現出一張如此絢麗又震撼的照片,是非常不容易的。這展示了韋伯太空望遠鏡不僅在科學上相當重要,在藝術上也價值非凡。

最後別忘了,以上只挑選介紹了第一批資料中最具代表性的幾張,更多關於五個目標的照片和光譜,可以在韋伯的官網上找到。而這批照片,又只是韋伯未來二十年服役生涯中,前兩個月的小試牛刀而已。韋伯的時代,才剛剛要開始!

-----廣告,請繼續往下閱讀-----
EASY天文地科小站_96
23 篇文章 ・ 1560 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事