網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

2

0
0

文字

分享

2
0
0

尋找宇宙塵和全球氣候變遷的關連

臺北天文館_96
・2012/04/13 ・1324字 ・閱讀時間約 2 分鐘 ・SR值 590 ・九年級

雖然大多數人認為宇宙是真空的,不過其實宇宙空間中到處有許多肉眼不可見的東西,例如:塵埃就是其中之一。 如果將太陽到木星之間的宇宙空間中的所有物質壓縮成一團,可以製造出一顆直徑25公里的月亮呢!現在,有個新的「地球大氣宇宙塵(Cosmic Dust in the Terrestrial Atmosphere,CODITA)」研究計畫,由英國里茲大學大氣化學教授John Plane領軍的研究團隊,希望測量落入地球大氣層塵埃量究竟有多少。宇宙塵中的金屬元素可能會在各個方面影響地球的氣候變化,因此如果能正確估計落入地球大氣的宇宙塵量,或許可幫助科學家瞭解粒子是如何在不同地球大氣層間一層層地傳遞過去。

CODITA剛獲得歐洲研究委員會(European Research Council)同意,未來5年內將有250萬歐元的研究經費。這個由Plane領軍的團隊,由11名來自里茲大學的科學家,以及10名來自美國和德國的研究者所組成。

太陽系中的塵埃主要來自小行星彼此間的互撞和彗星接近太陽時被蒸發的物質。當塵粒接近地球,會以非常高的速度進入地球大氣,估計時速可達38,000~248,000公里,速度高低視塵埃繞太陽運動的方向與地球公轉同向或反向而定。塵粒以如此高速衝擊大氣分子的狀況下,會被快速加熱到超過攝氏1600度的高溫狀態,此時它們會融化並蒸發。直徑大於2公釐(mm)的塵粒,在這樣的過程中會形成地面可見的流星;但事實上,絕大部分進入地球大氣的塵粒直徑都小於此限,因此一般人根本不會察覺,只能利用特別的流星雷達偵測裝置才能偵測到。

目前對落入地球大氣的塵埃量估計值,不同研究方法所得結果相差可達百倍。CODITA的目的之一,就是要解決這麼大的差異。衛星觀測結果顯示:每天約有100~300噸宇宙塵進入地球大氣。這個估計值和從極區冰核及深海沈積物中測出如銥和鋨等與宇宙塵有關的罕見元素的累積速度相符。不過,在地球大氣內的測量結果卻僅有每天5噸左右。前述這些測量,包含流星雷達觀測,或是用雷射觀測塵粒在上層大氣蒸發後釋出的鈉和鐵原子,以及動用飛機去測量低層大氣中的流星釋出的鐵原子。

Plane表示:如果進入地球大氣的塵埃量約為每日200噸的話,那麼塵粒向下傳輸到大氣中層的速度將比原本認為的還快;但如果每日真的只有5噸,那麼關於太陽系中塵埃究竟如何演化或是如何傳輸到中層大氣的概念,就得好好想想究竟哪裡有問題了。

塵粒進入大氣後蒸發出來的金屬,牽涉到許多層面的大氣變遷現象。例如,在地球高層大氣中才會出現的夜光雲(noctilucent cloud)的形成可能與宇宙塵有關,因為宇宙塵可提供作為冰晶凝結成雲所需凝結核。夜光雲通常出現在極區夏季期間,是氣候變遷的指標之一。此外,來自塵粒的金屬會影響平流層中的臭氧化學反應。塵埃量也會增加硫酸鹽懸浮粒子的數量,可能抵銷全球暖化的現象。宇宙塵也是海洋中鐵元素的累積來源,可能導致氣候反餽現象,這是因為海洋中的浮游生物會發出與氣候有關的氣體。

CODITA此計畫主要目的,在瞭解宇宙塵蒸發的特性,與大氣中冰晶成核作用有關的流星煙塵的形成過程等等。如能多瞭解一點宇宙塵的化學作用與氣候之間的關連性問題,或許就可以解開這麼多與全球氣候變遷有關的事項,難怪歐洲研究委員會如此重視這個研究計畫。

資料來源:CODITA: measuring the cosmic dust swept up by the Earth[2012.03.29]

轉載自台北天文館之網路天文館網站

文章難易度
所有討論 2
臺北天文館_96
477 篇文章 ・ 13 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!


0

10
5

文字

分享

0
10
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
1 篇文章 ・ 2 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》