0

0
0

文字

分享

0
0
0

究竟是誰偷走了TYC 8241 2652的塵埃盤?

臺北天文館_96
・2012/07/17 ・991字 ・閱讀時間約 2 分鐘 ・SR值 535 ・七年級

-----廣告,請繼續往下閱讀-----

加州大學Carl Melis等天文學家就目睹了一場類似事件:一顆年輕的類太陽恆星TYC 8241 2652周圍環繞的大量塵埃,意外的再也找不到了。這就像魔術一樣,一下看得到,一下看不到。只是,現在正在討論的這個TYC 8241 2652案例,其所含有的塵埃量足以填滿整個太陽系內側,而且它們是真的都不見了,並不是魔術。想像一下土星環突然消失的景象,不是土星環側面朝向地球的「視覺效果」,而是土星環完全消失的景象,這必定令人相當震撼,而這就是TYC 8241 2652發生的事。相關論文發表在7月5日出刊的《自然》(Nature)期刊中。

TYC 8241 2652位在南天的半人馬座方向,距離地球約450光年,是個很年輕的行星系統,形成迄今僅有1000萬年左右。TYC 8241 2652周圍的塵埃盤,是在1983年被美國航太總署(NASA)紅外天文衛星(Infrared Astronomical Satellite,IRAS)首度觀測到,自彼時起迄今已超過25個年頭。一般認為這個塵埃盤是正在形成的行星彼此間碰撞的碎屑所形成的,是行星形成很普遍的一個過程。如同地球,這些溫暖的塵埃吸收星光的能量,再以紅外波段將這些熱能輻射回太空,因此得以在紅外波段觀測到它。

不過,在2010年時,NASA的廣角紅外巡天探測器(Wide-field Infrared Survey Explorer,WISE)觀測資料首度強烈顯示這個塵埃盤消失了。之後,天文學家於2012年5月1日,利用位在智利的雙子南座望遠鏡(Gemini South telescope)取得TYC 8241 2652的紅外影像,確認這些塵埃的確已經消失無蹤,2年半前的WISE觀測結果無誤。在此期間,天文學家也利用多種天文觀測設備進行確認觀測。

目前已經研究過的塵埃環系統有數百個之多,天文學家以前從未碰到這樣的狀況。TYC 8241 2652的塵埃盤消失現象非常劇烈而快速,以人類時間尺度來說,也顯得相當快,更遑論以天文尺度論。這種狀況,讓Melis等人剛開始都單純地以為是某個觀測或分析環節出了什麼問題。

-----廣告,請繼續往下閱讀-----

天文學家陸續提出幾種可能可以解釋這個塵埃盤消失現象的理論。例如,其中一個可能的理論是正在形成的行星彼此撞擊而產生塵埃的過程中所釋出的氣體,可能會促使塵埃快速地落往恆星而被恆星吞噬消失。另一個可能的理論認為撞擊過程中所遺留的較大岩塊,彼此間又會互相撞擊,導致塵粒愈來愈細小。但是,沒有一個理論能讓眾天文學家信服,而且從觀測資料來看,這個消失事件和恆星本身的活動無關。因此,這個塵埃盤消失神秘事件,迄今尚是個未解的謎題。

資料來源:

  1. GOING OUT OF BUSINESS [2012.07.04]
  2. The Mysterious Case of the Disappearing Dust [2012.07.05]

轉載自台北天文館之網路天文館網站

文章難易度
臺北天文館_96
482 篇文章 ・ 41 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
NASA出動4艘飛船圍觀嫦娥3號登月
果殼網_96
・2014/01/27 ・2413字 ・閱讀時間約 5 分鐘 ・SR值 518 ・六年級

文/Steed

AS7m2C-fzS10VbguuwGQTil02lLog0rrJ1FLCJCcrKCEAwAAaQIAAEpQ_645x442
12月15日,玉兔月球車與嫦娥3號實現互拍。圖為嫦娥3號拍攝的月面上的玉兔月球車。圖片來源:新華網

12月14日,中國的嫦娥3號著陸器成功在月球虹灣著陸區登月。儘管此次探月任務沒有跟美國NASA展開任何形式的合作,但NASA仍在官網上放出了一篇文章,簡述了他們對在月球探測方面取得的種種進展,還一一細數了目前仍在執行任務的4艘繞月衛星將對嫦娥3號登月展開怎樣的觀測。NASA指出,他們「將這次著陸視為一次全新的科研機會,或許能夠增進對月面大氣的研究和觀測。」以下內容就是NASA官網上那篇文章的部分摘譯:

自阿波羅計畫將12人送上月面以來,美國太空總署(NASA)一直致力於月球科學。憑藉「克萊芒蒂娜」(Clementine)和「月球勘探者」(Lunar Prospector)之類的現代探測器,以及最近完成的LCROSS和GRAIL等任務,NASA的科學研究已經幫助繪製出了月面地圖,確定了水冰的存在,還理解了我們這顆衛星不規則的引力場。NASA當前的月球任務,正在幫助NASA更好地理解我們的太陽系,給未來對其他行星天體的探測提供信息,讓我們離未來探測小行星和火星之類的目的地所必需的技術更近一步。

科學家目前正在利用4艘NASA的繞月衛星研究我們的月球。中國的嫦娥3號於12月14日登陸月球,或許會給它們提供一次機會來採集新的數據。美國和國際上的研究者將這次著陸視為一次全新的科研機會,或許能夠增進對月面大氣的研究和觀測。

-----廣告,請繼續往下閱讀-----

嫦娥3號登月時,NASA的「月球大氣及塵埃環境探測者」(LADEE)、「月球勘測軌道飛行器」(LRO)和兩個被稱為「加速、重聯、湍流及電動力學月球-太陽交互作用」(ARTEMIS)的探測器,仍在繞月軌道上繼續它們的科學任務。

儘管美國和中國在這些任務之間沒有展開合作,美國的研究者從這次著陸中看到了潛在的科學價值。採集到的這些數據,將向國際科學界公開。

LADEE

LADEE,即「月球大氣及塵埃環境探測者」,配備著專業設備用於測量大氣成分和塵埃顆粒,或許能檢測到嫦娥3號登月時揚起的塵埃及排出的氣體所導致的月球大氣變化。

m6-Z20ARCcbdmO01AMq39waJ8nHjJV1LndCiMSOfymKhAgAAewEAAEpQ_645x363
NASA的LADEE探測器,將監測嫦娥3號登月是否會對月面極其稀薄的大氣及塵埃環境造成可以檢測的改變。圖片來源:NASA

-----廣告,請繼續往下閱讀-----

探測器原本的目標,是要研究月球原始大氣及軌道塵埃環境。利用探測器上攜帶的設備,科學家希望回答長期懸而未決的一個問題:月球上因為陽光照射而被帶上電荷的塵埃,能不能解釋幾次阿波羅任務期間檢測到的、在日出之前就出現在月球地平線上的光芒。

自11月10日降低繞月軌道開啟為期100天的首要任務以來,LADEE一直在收集科學數據。科學團隊已經為極其稀薄的月球外大氣層以及塵埃撞擊,建立了科學數據的基準線。在嫦娥3號著陸之前,LADEE團隊收集的數據已經覆蓋了一個完整的月相週期(29.5天)。

在嫦娥3號著陸前後,LADEE將利用它的中性質譜儀(NMS)展開額外的觀測。根據目前能夠獲得的、對嫦娥3號著陸系統的描述,研究團隊推測著陸推進系統將排出一些氣體產物,如水蒸氣、氮氣、一氧化碳、二氧化碳及氫氣。NMS將監測這些產物的密度。此外,LADEE還將繼續它的基準線觀測,以查看月面軟著陸能否對月球的背景塵埃及氣體環境產生足以檢測的變化。

LRO

2009年6月發射升空的月球勘測軌道飛行器(LRO),已經對月球的外大氣層進行了多項科學研究,並且取得了不少獨一無二的成果。這個探測器還拍回了大量清晰度空前的月面圖像。

-----廣告,請繼續往下閱讀-----

V5Ro8bT19WbDQ2E3TV2_B3pSKGXHFWy6GBcoSlU2lkGAAgAAaAEAAEpQ
NASA的LRO探測器將對嫦娥3號登月點進行多次高分辨率成像觀測,有望俯拍到正在月面上工作的嫦娥3號及玉兔月球車的畫面。圖片來源:NASA

在嫦娥3號登月的當天,LRO將進行多達8次的空間機動,利用它所攜帶的萊曼阿爾法測繪儀(LAMP)掃瞄著陸點附近的月面區域。這台紫外成像光譜儀將尋找嫦娥3號排出的煙塵。

從12月起,LRO上的相機(LROC)將有能力對著陸地點及月球車拍照,分辨率高達每像素大約2米。隨著月球的自轉將嫦娥3號的著陸地點帶到LRO的軌道平面以下,LROC每月都將有機會進行這樣的拍照觀測。反覆的成像觀測,將細緻地測量著陸造成的地表變化,以及玉兔月球車在月面上的運動。

LROC拍攝的照片能夠分辨出嫦娥3號降落引擎導致的地表變化,就如同它對過去的月面著陸器進行的同類觀測一樣。第一次嘗試拍攝時,光照條件不會太理想,因為著陸地點的太陽高度太低,但在接下來的幾個月裡,光照條件會有所改善。嫦娥3號著陸導致的月面大氣及地表的改變,將為LRO提供一個全新的科研機會,來仔細觀察月面上氣體的輸運,以及局部擾動對月面浮土的影響。

-----廣告,請繼續往下閱讀-----

LRO不只傳回了未來載人及無人探測器所需的全部資訊,還顯示出月球要比科學家之前所想像的更加複雜、也更有活力。LRO將繼續向地球發回月球的數據,直到2014年10月。此外,它的任務還有可能再延期2年。

ARTEMIS

ARTEMIS衛星將協助LADEE解釋它對嫦娥3號登月所做的測量。

Image converted using ifftoany
NASA的THEMIS任務示意圖。圖中的5顆衛星,後來有2顆被NASA重新啟用,在繞月軌道上探測月球與太陽風的相互作用。它們也將對嫦娥3號登月展開觀測。圖片來源:NASA

NASA的ARTEMIS任務由兩顆衛星構成,自2010年以來就在繞月軌道上運行。它們原本是NASA的另一項任務THEMIS的探測器,那項任務一共動用了5顆衛星。ARTEMIS任務讓NASA重新啟用了其中兩顆在軌衛星,以延續它們的科學使命。

-----廣告,請繼續往下閱讀-----

第一顆ARTEMIS衛星(P1)於12月14日從距離月面不到200千米的地方飛掠。按照當前的計畫,這顆衛星將尋找與嫦娥3號登月有關的等離子體煙塵及磁場跡象。第二顆衛星(P2)將觀察原始的太陽風等離子體及磁場狀況。這些都是確定月面塵埃為何會揚起所必需的信息。

目前ARTEMIS的研究著眼於測量月球表面的靜電荷、月球在超音速太陽風中拖出的等離子體尾跡,以及月球與太陽風的相互作用。

 

轉載自果殼網

果殼網_96
108 篇文章 ・ 9 位粉絲
果殼傳媒是一家致力於面向公眾倡導科技理念、傳播科技內容的企業。2010年11月,公司推出果殼網(Guokr.com) 。在創始人兼CEO姬十三帶領的專業團隊努力下,果殼傳媒已成為中國領先的科技傳媒機構,還致力於為企業量身打造面向公眾的科技品牌傳播方案。

0

0
0

文字

分享

0
0
0
M94星系,環裡有環?
臺北天文館_96
・2013/06/14 ・784字 ・閱讀時間約 1 分鐘 ・SR值 585 ・九年級

-----廣告,請繼續往下閱讀-----

在史匹哲太空望遠鏡拍到的這張M94(或NGC 4736)中,看到的是幾個環?乍看下,會覺得好像有好幾個,但天文學家認為:環只有一個。

天文界一向也認為M94擁有兩個環,且二者大不同:一個很亮,結構緊密的內環,繞著星系的核轉,另一個環除了較黯以外,也比較寬,像大片恆星掉落在主要盤面以外。

然而,最近天文學家發現,此圖中以青藍色代表恆星光的這個外部環,搞不好可能只是光學錯覺。2009年一項研究中,天文學家曾結合了太空和地面望遠鏡的紅外線、紫外線、可見光及近紅外線資料,有了M94完整的圖像,進一步可得知,從我們的觀點看到這「兩個」旋臂,其實只是一個單獨而連貫的環。

但M94的內環,就不是光學幻覺了。被認為是「星爆環」(Starburst ring),在這塊小小的範圍裡,恆星生成速度相對地超快。一般誘發星爆的原因,多和兩星系間重力相互作用有關,但M94這個案例中,事實上,星系的橢圓形狀,可能才是星爆的主因。

-----廣告,請繼續往下閱讀-----

另外,在星爆環的內環和旋臂狀外環間,還塞了一些東西,這些其實是星系的盤面。縷縷綠色絲狀的星際塵,乍看下雖然很像一組重重疊疊的環,事實上塵埃呈弧狀是受到旋臂的曲線緊密扭絞的影響。

M94距離我們大約有1700萬光年,離銀河系有點遠。1781年時由梅西爾的助手Pierre Méchain首度發現,並納入梅西爾天體總表。

在上圖中以藍色和青色顯示的紅外光,波長範圍介於3.6~4.5微米之間,代表恆星的光。波長8微米及24微米的光是用綠色及紅色表示,分別代表溫度比較冷一點和溫度略為偏暖的這兩種塵埃。史匹哲紅外太空望遠鏡的冷媒在2004年時告罄,這些紅外波段的觀測是完成於冷媒用光以前。(Lauren譯)

資料來源:Galactic Wheels within Wheels[2013.05.29]

-----廣告,請繼續往下閱讀-----

轉載自網路天文館