Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

市場機制扼殺了道德價值觀

Jacky Hsieh
・2013/05/12 ・982字 ・閱讀時間約 2 分鐘 ・SR值 511 ・六年級

-----廣告,請繼續往下閱讀-----

圖片為中央社檔案照片

很多人對童工議題表示反對,對壓榨勞工的企業不滿,或是對不人道的肉品動物宰殺過程嚴正抗議……然而,這樣的道德價值觀,當人們進入了「市場」,你想買到最廉價的3C產品,想吃便宜又大碗的肉品時,就把這些價值觀拋在腦後了。

是的,市場機制減少了的道德觀感。這是德國Universities of Bonn and Bamberg經濟學家與神經科學家最新一篇發表在《科學》上的研究結果。

研究者Falk教授說「為了研究市場上的道德議題,我們研究人們是否願意傷害某一個第三者而換取利益。典型的不道德例子,就是蓄意或無法解釋的傷害他人。」在實驗中,有一群「過剩的實驗鼠(surplus mice)」,在其他實驗室被養大,然而因為實驗需求任務完成後,即將被「犧牲」,所以藉以當做這個實驗的「第三者」,也就是,如果參與實驗的受試者不選擇金錢,他們就會把這筆「受試者費」買下並照顧原本要被犧牲的實驗鼠。

受試者被分成三組,個人組(individual condition)、雙方交易組(bilateral market)、與多方交易組(multilateral market)。個人組是個簡單的二選一問題,要不是讓老鼠繼續存活,但受試者領不到10歐元,不然就是受試者領完10歐元,但老鼠會被犧牲;雙方交易組則是個一對一交易,兩方談妥最高20歐元的金額交易,兩人可以自行選擇金額怎麼分配,然而一旦交易達成,實驗鼠就會被犧牲,反之若選擇不交易,兩人都空手而回;多方交易組則把雙方交易的規則用在一組人身上。

-----廣告,請繼續往下閱讀-----

市場之前,人人殘忍

每個受試者都會先觀賞一小段影片,告知這些實驗鼠會如何得被「犧牲」,才開始談交易,而這個實驗雖然救了不少實驗鼠,但也清楚的顯示,雙方和多方交易組,寧可選擇領錢的人顯著的多於個人組。研究者Nora Szech說:「面對交易市場時,人們面臨許多『機制』降低他們的罪惡感與責任感。」面對交易時,人們專注在競爭、利潤,而不是道德。

如果我沒做,總會有人做

除此之外,在多方交易時,受試者會強調這樣的抉擇無關緊要,用「如果我沒做,總會有人做」為自己的抉擇辯護。Falk教授說:「這就是市場機制的邏輯。」實驗者另外做了一組類似的實驗進行對比,但把老鼠的死活改成道德中性的物品當作交換時,三組人的結果就沒有太大的差別了。

寫作參考:Do Markets Erode Moral Values? People Ignore Their Own Moral Standards When Acting as Market Participants, Researchers Say──Science Daily(May 10, 2013)

資料來源:Morals and Markets──Science(May 10, 2013)

-----廣告,請繼續往下閱讀-----

圖片為中央社檔案照片:勞工怨與怒 抗議行動遍地開花

-----廣告,請繼續往下閱讀-----
文章難易度
Jacky Hsieh
57 篇文章 ・ 0 位粉絲
中大認知所碩士。使用者經驗工程師。喜歡寫東西分享。

0

0
0

文字

分享

0
0
0
預測市場?預測股票?如何讓預測有更高的準確率?——《超越直覺》
一起來
・2024/05/04 ・1635字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

我們發現在足球賽中,只要知道一個簡單的訊息(主隊過去的獲勝機率超過一半),預測力就會明顯好過隨便亂猜。如果再加上第二個簡單的訊息(勝負紀錄較佳的隊伍會略占優勢),可以再進一步提升預測力。除此之外,你可能還想收集其他訊息,像是四分衛最近的表現、球隊有沒有傷兵、明星跑衛的花邊新聞,但這些資訊對預測的幫助不大。換句話說,預測複雜系統這件事依循著「收益遞減定律」:第一個訊息很有幫助,但很快就找不到有幫助的其他訊息。

對於某些事件,我們當然會非常計較預測的準確性,像是投放線上廣告或投資高頻交易(HFT),可能一天內就要預測數百萬、數十億次,而且金額相當龐大。投入極大心力與費用、運用最精細的運算模型來開發複雜的預測方式,在那種情況下或許值得。但在其他商業領域,例如製作電影、出版書籍到發展新技術,只需要一年預測數十次、頂多數百次,而且這不過是整個決策過程中的一部分。這時,我們只要借助相對簡單的方式,就可以讓預測臻至完善。

預測時,不該只根據一人的意見就做決定——尤其是你自己的意見。雖然人們善於察覺與特定問題相關的因素,卻往往不會評估因素之間的相對重要性。譬如,預測電影的首映週末票房時,你可能會認為一些變項都是高度相關,例如製作費、宣傳費、上映廳數、試映會評價。沒錯。但我們要如何權衡「評價不優」與「額外行銷預算:一千萬美元」之間的比重?這沒有一定答案。同樣,在決定分配行銷預算的方法時,要如何判斷多少人會受到網路或雜誌廣告影響,又有多少人會從親朋好友那邊聽到產品訊息?我們也不清楚。唯一知道的是,這些因素都可能相關。

圖/envato

你可能會以為,精準判斷應該是專家的強項。但正如泰特洛克的試驗結果,專家在量化預測上的表現,其實跟普通人一樣糟糕,甚至可能更糟。然而,我們依賴專家之所以會成效不彰,不是因為專家的預測力跟一般人沒兩樣。問題在於,我們通常一次只會諮詢一位專家(否則何必找專家)。但我們應該要綜合多人的意見(無論是專家或非專家)再取平均值。至於要如何達成?這其實沒那麼重要。

-----廣告,請繼續往下閱讀-----

儘管預測市場有各種花俏的噱頭與技術,表現也比民調這類簡單方式好一點,但這種微小差異,還不如採用某種方式簡單綜合許多觀點再取平均。或者,我們也可以直接根據歷史數據,評估各項因素的相對重要性——這實際上就是統計模型在做的事。我必須再強調一次,雖然複雜模型可能會比簡單模型好一點,但兩者的差異小到幾乎沒有差別。到頭來,模型跟群眾所能達到的預測目的都一樣。第一,這兩種預測方式都要靠人為判斷,確認哪些因素與預測相關。第二,兩者皆需要估計、權衡那些因素的相對重要性。正如心理學家羅賓.道斯所言:「訣竅在於,找到要注意的變項,然後知道如何加入它們。」

只要一直使用這個訣竅,一段時間後,就會知道哪一些預測的失誤率較小,哪一些較大。舉例來說,當你要預測一個事件的結果,假如其他條件都相同,那越早做預測的失誤率就越大。不管你用什麼方法預測電影票房,在「剛開拍」時會比「上映前幾週」時要難得多。同樣,如果你想預測尚未上市的新產品銷量,那準確度可能不會高過預測已上市的產品。

你無法解決這個問題,唯一能做的只有:使用其中一種方式,或甚至結合幾種方式,就像我們研究預測市場時的方法,然後隨時觀察、記錄預測的表現。我在第 6 章開頭也提過,一般人通常不習慣追蹤自己的預測。我們做了大量預測,卻很少回頭檢視自己對了幾次。然而,留意並記錄預測成效或許才是最重要的事,唯有如此,你才能知道準確度是多少,進而知道自己預測的可信度。

——本文摘自《超越直覺》,2024 年 01 月,一起來出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

一起來
5 篇文章 ・ 2 位粉絲

1

1
1

文字

分享

1
1
1
讓 AI 取代真人執法可行嗎?將判斷全交給 AI 可能隱藏什麼危險?——專訪中研院歐美研究所陳弘儒助研究員
研之有物│中央研究院_96
・2024/03/18 ・6292字 ・閱讀時間約 13 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|劉韋佐
  • 責任編輯|田偲妤
  • 美術設計|蔡宛潔

人工智慧將改變以人為主的法治領域?

由人工智慧擔任警察,再也不是科幻電影的情節,交通管制常見的科技執法就是應用 AI 辨識闖紅燈、未依規定轉彎、車輛不停讓行人等違規行為。 AI 的客觀、高效率正在挑戰以人為審判主體的法治領域,這樣的轉變會對我們產生什麼影響呢?中央研究院「研之有物」專訪院內歐美研究所陳弘儒助研究員,他將帶我們思考:當 AI 取代人類執法時,將如何改變人們對守法的認知?

交通尖峰時段,後方出現一台救護車,你願意闖紅燈讓道嗎?
圖|iStock

想像有一天你正在尖峰時段開車,車子停在十字路口等紅燈時,後方出現一輛急駛而來的救護車,你為了讓道必須開過停止線。這時你是否願意冒著違規被開罰的風險?還是承擔風險以換取他人盡速就醫?

在上述情境中,針對「要不要闖紅燈」我們經歷了一段價值判斷過程。如果剛好十字路口有真人警察,他的判斷可能是:這是情急之下不得不的行為,並非蓄意違規。

然而,如果負責執法的是「法律人工智慧系統」(Artificially legal intelligent,簡稱 ALI)情況可能截然不同。

-----廣告,請繼續往下閱讀-----

ALI 這個詞源自 Mireille Hildebrandt 的研究,在概念上可區分為兩類:採取傳統程式碼的 IFTTT(if this then that)、運用機器學習的資料驅動。前者是注重法律推理或論證的計算機模型,將法律規範轉為程式碼,藉由程式編寫來執行法律任務。後者則透過大量資料的學習,來預測行為範式,用於再犯率、判決結果預測上有較好的成果。

一般情況下,應用在交通管制的 ALI 會辨識車輛是否超速、闖紅燈等違規行為,不過交通情境千變萬化,ALI 能否做出包含「道德價值的判斷」將是一大挑戰!

中研院歐美研究所陳弘儒助研究員察覺,人工智慧(AI)正在左右人們對守法的價值判斷及背後的因果結構,進而反思當我們將原本由人來判斷的事項,全權交由 AI 來執行時,可能產生哪些潛移默化的影響?

讓我們與陳弘儒展開一場從法哲學出發的對話,探索 AI 與法治價值之間的緊張關係。

-----廣告,請繼續往下閱讀-----
中研院歐美研究所陳弘儒助研究員,從法哲學出發,探索 AI 與法治價值之間的緊張關係。
圖|之有物

問

怎麼會對「人工智慧」(AI)與「法律人工智慧系統」(ALI)產生研究興趣?

會對 AI 感興趣是因為我很早就對電腦有興趣,我原本大學想唸資訊工程,因為高中有些科目沒辦法唸,於是去唸文組,大學進入法律系就讀,研究所考入「基礎法學組」研讀法哲學。

後來我到美國讀書,當時 AlphaGo 的新聞造成很大的轟動,啟發我思考 AI 的應用應該有些法律課題值得探討,於是開始爬梳 AI 與法律的發展脈絡。

AI 這個詞大概在 1950 年代被提出,而 AI 與法律相關的討論則在 1970、80 年代就有學者開始思考:我們能否將法律推理過程電腦程式化,讓電腦做出跟法律人一樣的判斷?

事實上,AI 沒有在做推理,它做的是機率的演算,但法律是一種規範性的判斷,所有判斷必須奠基在法律條文的認識與解釋上,給予受審對象合理的判決理由。

這讓我好奇:如果未來廣泛應用 AI 執法,法律或受法律規範的民眾會怎麼轉變?

-----廣告,請繼續往下閱讀-----

至於真正開始研究「法律人工智慧系統」(ALI)是受到我父親的啟發。有一陣子我經常開車南北往返,有一天我跟父親聊到用區間測速執法的議題。交通部曾在萬里隧道使用區間測速,計算你在隧道裡的平均速率,如果超速就開罰。

父親就問我:「政府有什麼理由用區間測速罰我?如果要開罰就必須解釋是哪一個時間點超速。」依照一般的數學邏輯,你一定有在某個時間點超速,所以平均起來的速率才會超過速限,可是法律判斷涉及規範性,我們必須思考背後的正當性課題,不能只用邏輯解釋,這啟發我逐漸把問題勾勒出來,試圖分析執法背後的規範性意涵。

問

如果將執行法律任務的權限賦予 AI,可能暗藏什麼風險?

我們先來談人類和 AI 在做判斷時的差別。人類無時無刻都在做判斷,判斷的過程通常會先做「區分」,例如在你面前有 A 和 B 兩個選項,在做判斷前必須先把 A 和 B 區分開來,讓選項有「可區別性」。

在資料龐大的情況下,AI 的優勢在於能協助人類快速做好區分,可是做判斷還需經歷一段 AI 難以觸及的複雜過程。人類在成長過程中會發展出一套顧及社會與文化認知的世界觀,做判斷時通常會將要區分的選項放進這個世界觀中,最終做出符合社會或自身考量的抉擇。

-----廣告,請繼續往下閱讀-----

當我們將判斷程序交由 AI 執行,就會涉及「判斷權限移轉」的問題,這經常在日常生活中發生,你只要發現原本自己可以執行的事情,有另外一個對象做的比你好或差不多好,你就會漸漸把判斷的工作交給它,久而久之,你大概會覺得這是很好的做法,因為可以節省大量時間。

自駕車導航系統就是判斷權限移轉的例子,由於導航通常可以找出最佳行車路線,駕駛人幾乎會跟著走,但仍有可能誤入路況不佳或無法通行的地方。
圖|Vladimir Srajber, Pexels

我擔心這種判斷權限移轉會快速且廣泛的發生,因為 AI 的工作效率極高,可以大幅節省人力成本,但是哪一些權限可以放給 AI?哪一些權限人類一定要守住?我們經常沒有充足的討論,等到發生問題再亡羊補牢可能為時已晚。

以讓道給救護車而闖紅燈的情境為例,如果讓 AI 來做交管,可以節省警察人力,又可以快速精準地開罰,卻迫使民眾需額外花時間,證明闖紅燈有正當理由。如果是真人警察來判斷,警察通常會認為你的行為有正當理由而不開罰。這對於受法律規範的民眾來說,會產生兩種全然不同的規範作用。

AI 產生的規範作用會讓民眾擔心事後銷單的麻煩程序,如果無法順利解決,可能會訴諸民意代表或上爆料公社,並漸漸改變民眾對守法的態度。而真人警察產生的規範作用,將使民眾自主展現對法律的高度重視,雖然當下的行為牴觸法律,卻是行為人經過多方權衡後做的判斷,相信法律會支持自己出於同理心的行為。

-----廣告,請繼續往下閱讀-----

問

使用 AI 執法除了看上它的高效率,也是因為和真人相比 AI 不會受私情影響,比較可以做出公正的判斷。如果從法治觀念來看,為何決策權不能全權交由 AI 執行?

我認為法治的核心價值在臺灣並沒有很好的發展,我們常想的是怎麼用處罰促成民眾守法,長久下來可能會得到反效果。當人們養成凡事規避處罰的習慣,一旦哪天不再受法律約束,可能會失去守法的動機。

事實上,法治最根深柢固的價值為:

法律作為一種人類行為規範的展現,促使民眾守法的方式有很多種,關鍵在於尊重人的道德自主性,並向民眾陳述判決理由。

給理由非常重要,可以讓民眾不斷透過理由來跟自己和法律體系溝通。如此也可以形成一種互惠關係,使民眾相信,國家公權力能用適當的理由來制定法律,而制定出的法律是以尊重公民自主性為主。當民眾理解法律對我所處的社會有利,會比較願意自動產生守法的動機。

AI 執法看似比人類「公正無私」,但它的執法方式以處罰為主、缺乏理由陳述,也沒有對具體情境的「敏感性」。人跟人之間的互動經常需要敏感性,這樣才能理解他人到底在想什麼。這種敏感性是要鍛鍊的,真人警察可在執法過程中,透過拿捏不同情境的處理方式來累積經驗。

-----廣告,請繼續往下閱讀-----

例如在交通尖峰時段應該以維持交通順暢為原則,這時警察是否具備判斷的敏感性就很重要,例如看到輕微的違規不一定要大動作開罰,可以吹個警笛給駕駛警示一下就好。

我越來越覺得人類這種互動上的敏感性很重要,我們會在跟他人相處的過程中思考:跟我溝通的對象是什麼樣的人?我在他心中是什麼模樣?然後慢慢微調表現方式,這是人類和 AI 最根本的不同。

行動者受各種法律變項影響的因果圖。上圖是由真人警察執法,對於處罰之可能性有影響力,可依不同情境判斷是否開罰。下圖是由全自動法律人工智慧執法,由 AI 直接將處罰之可能性加諸在行動者身上,缺乏真人警察二次確認,很可能影響行動者對守法與否的衡量。
圖|之有物(資料來源|陳弘儒)

問

相較於法律人工智慧,ChatGPT 等生成式 AI 強大的語言功能似乎更接近理想中的 AI,其發展可能對我們產生哪些影響?

我認為會有更複雜的影響。ChatGPT 是基於大型語言模型的聊天機器人,使用大量自然語言文本進行深度學習,在文本生成、問答對話等任務上都有很好的表現。因此,在與 ChatGPT 互動的過程中,我們容易產生一種錯覺,覺得螢幕後好像有一名很有耐心的真人在跟你對話。

事實上,對於生成式 AI 來說,人類只是刺激它運作的外在環境,人機之間的互動並沒有想像中的對等。

仔細回想一下整個互動過程,每當外在環境(人類)給 ChatGPT 下指令,系統才會開始運作並生成內容,如果我們不滿意,可以再調整指令,系統又會生成更多成果,這跟平常的人際互動方式不太一樣。

-----廣告,請繼續往下閱讀-----
ChatGPT 能讓使用者分辨不出訊息來自 AI 或真人,但事實上 AI 只是接受外在環境(人類)刺激,依指令生成最佳內容,並以獲得正向回饋、提升準確率為目標。
圖|iStock

資工人員可能會用這個理由說明,生成式 AI 只是一種工具,透過學習大量資料的模式和結構,從而生成與原始資料有相似特徵的新資料。

上述想法可能會降低人們對「資料」(Data)的敏感性。由於在做 AI 訓練、測試與調整的過程中,都必須餵給 AI 大量資料,如果不知道資料的生產過程和內部結構,後續可能會產生爭議。

另一個關於資料的疑慮是,生成式 AI 的研發與使用涉及很多權力不對等問題。例如現在主流的人工智慧系統都是由私人公司推出,並往商業或使用者付費的方向發展,代表許多資料都掌握在這些私人公司手中。

資料有一種特性,它可以萃取出「資訊」(Information),誰有管道可以從一大群資料中分析出有價值的資訊,誰就有權力影響資源分配。換句話說,多數人透過輸入資料換取生成式 AI 的服務,可是從資料萃取出的資訊可能在我們不知情的狀況下對我們造成影響。

問

面對勢不可擋的生成式 AI 浪潮,人文社會學者可以做些什麼?

國外對於 AI 的運用開始提出很多法律規範,雖然國外關於價值課題的討論比臺灣多,但並不代表那些討論都很細緻深入,因為目前人類跟 AI 的相遇還沒有很久,大家還在探索哪些議題應該被提出,或賦予這些議題重新認識的架構。

這當中有一個重要課題值得思考:

我們需不需要訓練 AI 學會人類的價值判斷?

我認為訓練 AI 理解人類的價值判斷很可能是未來趨勢,因為 AI 的發展會朝人機互動模式邁進,唯有讓 AI 逐漸理解人類的價值為何,以及人類價值在 AI 運作中的局限,我們才有辦法呈現 AI 所涉及的價值課題。

當前的討論多數還停留在把 AI 當成一項技術,我認為這種觀點將來會出問題,強大的技術如果沒有明確的價值目標,是一件非常危險的事情。實際上,AI 的發展必定有很多價值課題涉入其中,或者在設計上有一些價值導向會隱而不顯,這將影響 AI 的運作與輸出成果。

思考怎麼讓 AI 理解人類價值判斷的同時,也等於在問我們人類:對我們來說哪一些價值是重要的?而這些重要價值的基本內容與歧異為何?

我目前的研究有幾個方向,一個是研究法律推理的計算機模型(Computational models of legal reasoning);另一個是從規範性的層面去探討,怎麼把價值理論、政治道德(Political morality)、政治哲學等想法跟科技界交流。未來也會透過新的視野省視公民不服從議題。

這將有助科技界得知,有很多價值課題需要事先想清楚,影響將擴及工程師怎麼設計人工智慧系統?設計過程面臨哪些局限?哪些局限不應該碰,或怎麼把某些局限展現出來?我覺得這些認識都非常重要!

鐵面無私的 ALI ?人類與人工智慧執法最大的分野是什麼?

陳弘儒的研究室有許多公仔,包括多尊金斯伯格(Ginsburg)公仔,她是美國首位猶太裔女性大法官,畢生為女權進步與性別平權奮鬥。
圖|之有物

陳弘儒是臺灣少數以法哲學理論研究法律人工智慧系統(ALI)的學者,他結合各種現實情境,與我們談論 ALI、生成式 AI 與當代法治價值的緊張關係。

由於 ALI 擅長的資料分類與演算,與人類判斷過程中涉及的世界觀與敏感性思辨,有著根本上的差異;以處罰為主、缺乏理由陳述的判斷方式,也容易影響民眾對公權力的信任。因此陳弘儒認為,目前 ALI 應該以「輔助人類執法」為發展目標,讓人類保有最終的判斷權限

至於現正快速發展的生成式 AI ,根據陳弘儒的觀察,目前仍有待各方專家探索其中的價值課題,包括資料提供與使用的權力不對等、哪些人類價值在訓練 AI 的過程中值得關注等。

在過去多是由人文社會學者提出警告,現在連 AI 領域的權威專家也簽署公開信並呼籲:AI 具有與人類競爭的智慧,這可能給社會和人類帶來巨大風險,應該以相應的關注和資源進行規劃和管理

在訪談過程中,有一件令人印象深刻的小插曲,陳弘儒希望我們不要稱呼他「老師」,因為他從小就畏懼老師、警察等有權威身分的人,希望以更平等的方式進行對話。

假如今天以 AI 進行採訪,整個談話過程或許能不受倫理輩分影響,但這也讓我們意識到,在 AI 的世界裡,許多人際互動特有的敏感性、同理反思都可能不復存在。

陳弘儒的研究讓我們體會,AI 在法治領域的應用不僅是法律問題,背後更包含深刻的哲學、道德與權力課題,也讓我們更了解法治的核心價值:

法律要做的不只是規範人們的行為,而是透過理由陳述與溝通展現對每個人道德自主性的尊重。

-----廣告,請繼續往下閱讀-----
所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3646 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
沒有結局的比賽:你會選擇合作還是背叛?——《大話題:賽局理論》
大家出版_96
・2023/04/23 ・1525字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

重複賽局中的均衡結果

在 1883 年,法國經濟學家伯特蘭(1822 – 1900)研究了販售相同產品的廠商之間的價格競爭,在他的分析中,廠商面對的誘因問題很類似囚徒困境賽局。

削價競爭是不同廠商間達到均衡的可能。圖/《大話題:賽局理論》

伯特蘭預測在均衡時廠商之間會彼此削價,類似囚徒困境賽局中的{認罪,認罪}結果。但我們在現實中常常看到廠商彼此勾結並訂定高價。西方民主國家多數立有「反壟斷法」禁止這類勾結,以促進競爭。

為了瞭解在囚徒困境之類的處境中,參與者何時會勾結,我們必須跳脫一次性賽局,也就是參與者只進行一次後就結束的賽局。轉而考慮更符合現實的重複互動,也就是參與者會不斷進行同樣賽局。

為避免削價競爭,廠商間可能會想透過合作訂出更好的價格。圖/《大話題:賽局理論》

如果參與者重複互動,我們能夠在囚徒困境中觀察到合作的均衡嗎?

-----廣告,請繼續往下閱讀-----

假設兩位參與者都知道囚徒困境賽局會進行兩次。為了找出重複互動賽局的均衡,我們要先預測最後一回合賽局的均衡,然後倒推第一回合賽局的均衡。這種推理方式稱為逆向歸納法。

預測下一次均衡的賽局來回推這次該採取的行動。圖/《大話題:賽局理論》

如果這就是結局?

在第二回合,參與者知道這是最後一次互動,也就沒有必要嘗試改變未來的結果。因此,最後一局結果就像是一次性囚徒困境:沒人合作。

參與者可以推論,不論第一回合如何,第二回合肯定沒有合作。那麼,從參與者的角度來看,第一回合也跟一次性囚徒困境沒有兩樣。因此,在均衡時兩回合都不會出現合作。

事實上,即使囚徒困境賽局進行多次,只要賽局有個確切的結束回合,我們永遠不會觀察到合作。逆向歸納法從最終回合拆解了整體賽局的結果。

-----廣告,請繼續往下閱讀-----
由於預測到結局,因此人們選擇不再合作了。圖/《大話題:賽局理論》

現實世界沒有真正的「最終回」

以色列裔美國數學家歐曼(1930 年生)在 2005 年與謝林一起獲得諾貝爾經濟學獎。他的研究之一是無限回合賽局均衡下的合作行為。在無限回合中,逆向歸納法無法從最終局拆解合作情形,因為沒有明確的最終局。

合作要能成為均衡的結果,首要條件是參與者的策略能夠處罰過去的壞行為(不合作)。為了避免以後受罰,參與者可能選擇合作。

此刻的合作將影響到未來自我的利益時….圖/《大話題:賽局理論》

試看在無限回合的囚徒困境賽局中所謂的冷酷策略:參與者起初採取合作行動(例如囚徒保持沉默,也可能是室友賽局中的洗碗,或是廠商的勾結高價)。

在接下來的賽局中,只要對方合作,我也一直保持合作。但只要對方背叛了(例如囚徒認罪、室友不再洗碗、廠商用低價搶走市場),我就選擇背叛。

-----廣告,請繼續往下閱讀-----
此時的合作是怕雙方不合作的結果。圖/《大話題:賽局理論》

——本文摘自《大話題:賽局理論》,2023 年 3 月,大家出版出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
大家出版_96
14 篇文章 ・ 11 位粉絲
名為大家,在藝術人文中,指「大師」的作品;在生活旅遊中,指「眾人」的興趣。

0

0
0

文字

分享

0
0
0
市場機制扼殺了道德價值觀
Jacky Hsieh
・2013/05/12 ・982字 ・閱讀時間約 2 分鐘 ・SR值 511 ・六年級

-----廣告,請繼續往下閱讀-----

圖片為中央社檔案照片

很多人對童工議題表示反對,對壓榨勞工的企業不滿,或是對不人道的肉品動物宰殺過程嚴正抗議……然而,這樣的道德價值觀,當人們進入了「市場」,你想買到最廉價的3C產品,想吃便宜又大碗的肉品時,就把這些價值觀拋在腦後了。

是的,市場機制減少了的道德觀感。這是德國Universities of Bonn and Bamberg經濟學家與神經科學家最新一篇發表在《科學》上的研究結果。

研究者Falk教授說「為了研究市場上的道德議題,我們研究人們是否願意傷害某一個第三者而換取利益。典型的不道德例子,就是蓄意或無法解釋的傷害他人。」在實驗中,有一群「過剩的實驗鼠(surplus mice)」,在其他實驗室被養大,然而因為實驗需求任務完成後,即將被「犧牲」,所以藉以當做這個實驗的「第三者」,也就是,如果參與實驗的受試者不選擇金錢,他們就會把這筆「受試者費」買下並照顧原本要被犧牲的實驗鼠。

受試者被分成三組,個人組(individual condition)、雙方交易組(bilateral market)、與多方交易組(multilateral market)。個人組是個簡單的二選一問題,要不是讓老鼠繼續存活,但受試者領不到10歐元,不然就是受試者領完10歐元,但老鼠會被犧牲;雙方交易組則是個一對一交易,兩方談妥最高20歐元的金額交易,兩人可以自行選擇金額怎麼分配,然而一旦交易達成,實驗鼠就會被犧牲,反之若選擇不交易,兩人都空手而回;多方交易組則把雙方交易的規則用在一組人身上。

-----廣告,請繼續往下閱讀-----

市場之前,人人殘忍

每個受試者都會先觀賞一小段影片,告知這些實驗鼠會如何得被「犧牲」,才開始談交易,而這個實驗雖然救了不少實驗鼠,但也清楚的顯示,雙方和多方交易組,寧可選擇領錢的人顯著的多於個人組。研究者Nora Szech說:「面對交易市場時,人們面臨許多『機制』降低他們的罪惡感與責任感。」面對交易時,人們專注在競爭、利潤,而不是道德。

如果我沒做,總會有人做

除此之外,在多方交易時,受試者會強調這樣的抉擇無關緊要,用「如果我沒做,總會有人做」為自己的抉擇辯護。Falk教授說:「這就是市場機制的邏輯。」實驗者另外做了一組類似的實驗進行對比,但把老鼠的死活改成道德中性的物品當作交換時,三組人的結果就沒有太大的差別了。

寫作參考:Do Markets Erode Moral Values? People Ignore Their Own Moral Standards When Acting as Market Participants, Researchers Say──Science Daily(May 10, 2013)

資料來源:Morals and Markets──Science(May 10, 2013)

-----廣告,請繼續往下閱讀-----

圖片為中央社檔案照片:勞工怨與怒 抗議行動遍地開花

-----廣告,請繼續往下閱讀-----
文章難易度
Jacky Hsieh
57 篇文章 ・ 0 位粉絲
中大認知所碩士。使用者經驗工程師。喜歡寫東西分享。