0

0
1

文字

分享

0
0
1

就是那個光:1903年第三屆諾貝爾生理學醫學獎得主Niels Ryberg Finsen的文章回顧

hemmings
・2013/04/22 ・2074字 ・閱讀時間約 4 分鐘 ・SR值 514 ・六年級

文 / Hemmings Wu(比利時魯汶大學博士生,醫學背景,專攻功能神經外科/神經科學)

Niels Ryberg Finsen

第三屆諾貝爾生理學/醫學獎,於1903年頒給了丹麥醫師/醫學家Niels Ryberg Finsen。
他使用集中光治療疾病、特別是針對皮膚結核取得的重大突破,為醫學界開啓了光療(phototherapy or light therapy)這項嶄新的學科。

1901年出版的《Phototherapy》可說是Finsen生前發表的重要論文的英譯版集大成。其中又以第三章「The Treatment of Lupus Vulgaris by Concentrated Chemical Rays」(集中化學光線治療皮膚結核)影響最深遠。

注:chemical rays(化學光線)是紫外線的舊稱,而heat rays(熱光線)是紅外線的舊稱。為方便讀者理解,後文將以「紫外線」、「紅外線」稱呼。

-----廣告,請繼續往下閱讀-----
Finsen, Niels. Phototherapy. Edward Arnold, 1901.

Finsen首先在文章裡提到在他之前的科學家就已經發現光線具有殺菌作用,也開始使用集中光治療皮膚結核,效果卻都有限。在回顧了前人的研究以後,Finsen認為過去所使用的光線強度都不夠。然而,若要提高光線強度同時保持一定光療時間長度,首先必須要克服的障礙是紅外線及近紅光長期照射組織造成的燒傷。針對這個問題,Finsen使用了藍色的硫酸銅氨溶液(ammoniacal solution of sulphate of copper)或甲基藍溶液作為濾鏡,將紅外線及近紅光過濾。其次,雖然太陽光是最好的光源,但畢竟太陽光的利用時間有限,在條件限制下必須用人造光源取代太陽光。經過實驗,Finsen決定使用電弧燈(voltaic arc)作為人造光源,因為白熾燈(incandescent lamps)的紫外線量太低。

針對太陽光源,Dr. Finsen使用了如上圖這個裝置。圖中是一個空心平凸透鏡,其內裝有硫酸銅氨溶液。 Finsen, Niels. Phototherapy. Edward Arnold, 1901.
因為人造光源是發散光而非如太陽光的平行光,因此必須使用如上圖更為複雜的裝置。其中1號、2號透鏡接收到人造光源後可將發散光轉換為平行光,而3號、4號透鏡則起到聚光效果,最後再由充滿硫酸銅氨溶液的容器起到濾光效果。 Finsen, Niels. Phototherapy. Edward Arnold, 1901.

同時,Finsen還做了兩個小實驗。其一,先用上述方法得到的紫外線照射細菌培養皿,證明其確實具有殺菌效果,而且聚光越強,效果越明顯。其二,Finsen意外發現在缺血情況下,紫外線穿透局部組織的效果更好(因為血液會阻擋紫外線)。為此Finsen又發明了以下設備。

將纏有彈力帶的玻璃壓在患部皮膚上,可以起到引起局部組織缺血的效果。 Finsen, Niels. Phototherapy. Edward Arnold, 1901.

緊接著,Finsen開始了臨床實驗。

Finsen讓皮膚結核患者每天接受1-2小時的紫外線光療,光療集中在1-3釐米直徑的圓形範圍內,待該患部出現好轉後再將治療區域轉到其他患部如此逐點治療。

-----廣告,請繼續往下閱讀-----

Finsen一共治療了59名患者,其中58名患者臨床症狀都出現明顯緩解:23名患者痊愈,30名患者還在療程中,剩餘6名因為非醫療因素提前放棄接受治療。

Finsen也指出這個治療方案最大的缺點是十分耗時,有時候需要花3-4個月時間才能見到療效,但Finsen相信未來改良紫外線裝置後,可以縮短療程。

Screen Shot 2013-04-21 at 下午5.38.28
使用集中紫外線治療皮膚結核前(左)後(右)的對比照片。 Finsen, Niels. Phototherapy. Edward Arnold, 1901.

至此,Finsen證明集中紫外線有良好的殺菌效果,而且應用在治療皮膚病,比如皮膚結核上,有良好療效。「紫外線可以殺菌」是我們現在認為是再普通不過的常識,但在一百多年前,在Finsen完成他的「Finsen light裝置」之前,醫生面對皮膚結核患者始終束手無策。Finsen的重要發明、發現,不僅為皮膚結核和其他皮膚病患者帶來希望,同時也撬開了醫學界光療這扇重要學科的大門。

從Finsen的實驗過程可以發現,傑出的醫學家,不僅僅是「只懂看病的醫匠」;他們懂物理、化學原理,會自己動手設計治療裝置,踏著前人走過的路去思考未來實驗方向,想方設法去治療尚未找到根治方法的疾病。

-----廣告,請繼續往下閱讀-----

遺憾的是,在Finsen獲得諾貝爾獎後隔年(1904年)就因病逝世,年僅43歲。其實他年輕的時候身體狀況就一直不好,但他並沒有因此而放棄醫學研究。在他逝世之前,他還發表了一篇研究低鹽飲食和健康關係的論文。孜孜不倦、才華洋溢卻英年早逝,相當令人惋惜。

最後,想在此分享Finsen生前描述自己心路歷程的一段話:

“My disease has played a very great role for my whole development… The disease was responsible for my starting investigations on light: I suffered from anaemia and tiredness, and since I lived in a house facing the north, I began to believe that I might be helped if I received more sun. I therefore spent as much time as possible in its rays. As an enthusiastic medical man I was of course interested to know what benefit the sun really gave.”

住在靠近北極圈法羅群島(Faroe island)朝北的房子裡,體弱多病的Finsen相信太陽光可以改善自己的健康狀況,才因此開始了光療相關的醫學研究。

「就是那個光!」不知道讀者以後在沙灘上曬太陽、或者看到紫外線燈管時,是否會想起Finsen和他的研究,而在心中發出如此驚歎呢?

-----廣告,請繼續往下閱讀-----

對Finsen和他的光療研究有興趣的讀者,不妨到這裡去閱讀Finsen《Phototherapy》的原文英譯本。

此篇回顧原文刊載於此

備註:文中圖片作者不具有版權。如有侵犯版權/著作產權之行為,請即刻與作者聯繫。
I do not own the copyrights to the images in this article. If you believe any content appearing constitutes a copyright infringement of another party’s right, please contact me immediately to notify of this infringement.

-----廣告,請繼續往下閱讀-----
文章難易度
hemmings
9 篇文章 ・ 1 位粉絲
認為科學必須從基礎紮根,相信經典必有其價值和意義。 通過介紹諾貝爾大師們的研究工作和嚴謹態度,在大眾科學的汪洋中推廣經典科學理論以及科學精神的重要性,並冀望藉此能讓讀者以一個更寬廣的角度來欣賞現代社會之包羅萬象。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

4
1

文字

分享

0
4
1
為什麼會被陽光曬傷?光有能量的話,為什麼照日光燈沒事?
PanSci_96
・2024/05/05 ・3185字 ・閱讀時間約 6 分鐘

唉!好曬呀!前兩集,一些觀眾發現我曬黑了。

在臺灣,一向不缺陽光。市面上,美白、防曬廣告亦隨處可見,不過,為什麼我們會被陽光曬傷呢?卻又好像沒聽過被日光燈曬傷的事情?

事實上,這也跟量子力學有關,而且和我們今天的主題密切連結。

之前我們討論到量子概念在歷史上的起點,接下來,我們會進一步說明,量子概念是如何被發揚光大,以及那個男人的故事。

-----廣告,請繼續往下閱讀-----

光電效應

在量子力學發展過程中,光電效應的研究是非常重要的轉捩點。

光電效應指的是,當一定頻率以上的光或電磁波照射在特定材料上,會使得材料發射出電子的現象。

在 19 世紀後期,科學家就已經發現某個奇特的現象:使用光(尤其是紫外線)照射帶負電的金屬板,會使金屬板的負電消失。但當時他們並不清楚背後原理,只猜測周遭氣體可能在紫外線的照射下,輔助帶負電的粒子從金屬板離開。

光電效應示意圖。圖/wikimedia

於是 1899 年,知名的英國物理學家 J. J. 湯姆森將鋅板放置在低壓汞氣之中,並照射紫外線,來研究汞氣如何幫助鋅板釋放負電荷,卻察覺這些電荷的性質,跟他在兩年前(1897 年)從放射線研究中發現的粒子很像。

-----廣告,請繼續往下閱讀-----

它們是比氫原子要輕約一千倍、帶負電的微小粒子,也就是我們現在稱呼的電子。

1902 年,德國物理學家萊納德發現,即使是在抽真空的玻璃管內,只要照射一定頻率以上的光,兩極之間便會有電流通過,電流大小跟光的強度成正比,而將光線移除之後,電流也瞬間消失。

到此,我們所熟知的光電效應概念才算完整成型。

這邊聽起來好像沒什麼問題?然而,若不用現在的量子理論,只依靠當時的物理知識,很難完美解釋光電效應。因為根據傳統理論,光的能量多寡應該和光的強度有關,而不是光的頻率。

-----廣告,請繼續往下閱讀-----

如果是光線把能量傳給電子,讓電子脫離金屬板,那為什麼需要一定頻率以上的光線才有用呢?比如我們拿同樣強度的紫外線跟紅外線去照射,會發現只有照射紫外線的金屬板才會產生電流。而且,當紫外線的頻率越高,電子的能量就越大。

另一方面,若我們拿很高強度的紅外線去照射金屬板,會發現無論如何都不會產生電流。但如果是紫外線的話,就算強度很低,還是會瞬間就產生電流。

這樣難以理解的光電效應,使得愛因斯坦於 1905 年一舉顛覆了整個物理學界,並建立了量子力學的基礎。

光電效應的解釋

為了解釋光電效應,愛因斯坦假設,電磁波攜帶的能量是以一個個帶有能量的「光量子」的形式輻射出去。並參考先前普朗克的研究成果,認為光量子的能量 E 和該電磁波的頻率 ν 成正比,寫成 E=hν,h 是比例常數,也是我們介紹過的普朗克常數。

-----廣告,請繼續往下閱讀-----

在愛因斯坦的詮釋下,電磁波的頻率越高,光子能量就越大,所以只要頻率高到一定程度,就能讓電子獲得足以逃脫金屬板的能量,形成電流;反過來說,如果電磁波的頻率不夠高,電子無法獲得足夠能量,就無法離開金屬板。

這就像是巨石強森一拳 punch 能把我打昏,但如果有個弱雞用巨石強森百分之一的力道打我一百拳,就算加起來總力道一樣,我是不會被打昏,大概也綿綿癢癢的,不覺得受到什麼傷害一樣。

而當電磁波的強度越強,代表光子的數目越多,於是脫離金屬板的電子自然變多,電流就越大。就如同我們挨了巨石強森很多拳,受傷自然比只挨一拳要來得重。

雖然愛因斯坦對光電效應的解釋看似完美,但是光量子的觀點實在太過激進,難以被當時的科學家接受,就連普朗克本人對此都不太高興。

-----廣告,請繼續往下閱讀-----

對普朗克來說,基本單位能量 hν,是由虛擬的「振子」發出的;但就愛因斯坦而言,電磁波本身的能量就是一個個光量子,或現在所謂的「光子」。

然而,電磁波屬於波動,直觀來說,波是綿延不絕地擴散到空間中,怎麼會是一個個攜帶最小基本單位能量的能量包呢?

美國物理學家密立根就堅信愛因斯坦的理論是錯的,並花費多年時間進行光電效應的實驗研究。

到了 1914 年,密立根發表了世界首次的普朗克常數實驗值,跟現在公認的標準數值 h=6.626×10-34 Js(焦耳乘秒)相距不遠。

-----廣告,請繼續往下閱讀-----

在論文中,密立根更捶心肝(tuî-sim-kuann)表示,實驗結果令人驚訝地與愛因斯坦那九年前早就被人拋棄的量子理論吻合得相當好。

這下子,就算學界不願相信愛因斯坦也不行了。愛因斯坦也因為在光電效應的貢獻,獲得 1921 年的諾貝爾物理獎。

1921 年,愛因斯坦獲得諾貝爾物理學獎之後的官方肖像。圖/wikimedia

光電效應的應用

在現代,光電效應的用途廣泛。我們日常生活中常見的太陽能發電板,利用的就是光電效應的一種,稱為光生伏打效應,材料內部的電子在吸收了光子的能量後,不是放射到周遭空間,而是在材料內部移動,形成正負兩極,產生電流。

而會不會曬傷也跟光子的能量有關。

-----廣告,請繼續往下閱讀-----

曬傷是皮膚受到頻率夠高的太陽光,也就是紫外線裡的 UVB 輻射造成的損傷。這些光子打到皮膚,會讓 DNA 分子裡構成鍵結的電子逃逸,引起皮膚細胞中 DNA 的異常變化,導致細胞損傷和免疫反應,這就是為什麼曬傷後皮膚會出現紅腫、疼痛和發炎的原因。

而頻率較低的光線,因為光子能量偏低,所以就不太會造成傷害,這也是為什麼我們沒聽過被日光燈曬傷這種事。

結語

從 17 世紀後半,惠更斯和牛頓各自提出光的波動說和微粒說開始,人們就聚焦於光到底是波動還是粒子的大哉問;19 世紀初,湯瑪士.楊用雙狹縫干涉實驗顯示了光的波動性,而到 19 世紀中後期,光屬於電磁波的結論終於被馬克士威和赫茲分別從理論和實驗兩方面確立。

經過約莫兩百年的研究發展,世人才明白,光是一種波動。

怎知,沒過幾年,愛因斯坦就跳出來主張光的能量由一個個的光量子攜帶,還通過實驗的檢驗——光又成為粒子了。

物理學家不得不承認,光具有波動和粒子兩種性質,而會呈現哪一種特性則依情況而定,稱為光的波粒二象性。

愛因斯坦於 1905 年提出的光量子概念,顛覆了傳統認為波動和粒子截然二分的觀點,將光能量量子化的詮釋也被實驗印證,在那之後,除了光的能量之外,還有其他物理量被發現是「量子化」的,像是電荷。

我們現在知道,電荷也有個基本單位,就是單一電子攜帶的電荷大小。

儘管之後又發現組成原子核的夸克,具有 -1/3 和 +2/3 單位的基本電荷,但並沒有改變電荷大小是不連續的這件事,並不是要多少的電量都可以。

如果你覺得很奇怪,不妨想想,我們用肉眼看會覺得身體的每一個部位都是連續的,但其實在微觀尺度,身體也是由一個個很小的原子和分子組成,只是我們根本看不出來,才覺得是連續的。

光子的能量和電荷的大小,其實也是像這樣子,細分下去就會發現具有最基本的單位,不是連續的。

事實上,量子力學在誕生之後,一直不斷地為人們帶來驚喜,簡直就是物理學界突然闖進一隻捉摸不定的貓。我們下一個故事,就要來聊量子力學發展過程中,打破世間常識的某個破天荒假說,而假說的提出者,是大學原本主修歷史和法律,擁有歷史學士學位,但後來改念物理,並憑藉博士論文用 5 年時間就拿到諾貝爾物理學獎的德布羅意。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
0

文字

分享

0
0
0
2021 年諾貝爾生理學或醫學獎,史上最「有感」的得獎研究!ft. 陳志成博士【科科聊聊EP61】
PanSci_96
・2021/10/15 ・2173字 ・閱讀時間約 4 分鐘

2021 年諾貝爾生醫獎得主 David Julius 和 Ardem Patapoutian。圖/Niklas Elmehed

眾所期待的 2021 諾貝爾生醫獎得獎人出爐!朱里雅斯(David Julius)找出辣椒素受體,揭曉熱痛感是怎麼來的;帕塔普蒂安(Ardem Patapoutian)則發現對機械力敏感的離子通道,並證明它無所不在的重要性。

泛泛泛科學邀請到中央研究院的陳志成老師。研究「酸覺」的他,與熱痛感、機械力受體可說是息息相關,他還主張「酸覺」和「痛覺」是不同的感覺!接下來就跟著他一起剖析本屆的諾貝爾生醫獎研究,探討奇妙的身體感覺。

本次專訪感謝 台灣科技媒體中心 的協助。

  • 01:44 Julius 與 Patapoutian 的研究

David Julius 的研究是找到辣椒素受體 1(TRPV1),它具有識別皮膚神經末梢中「熱」的功能;Ardem Patapoutian 是發現可以對皮膚和內部器官中的機械力刺激做出反應的機械力受體(Piezo1、Piezo2),公開了力學刺激也會連結到對應受體的神秘面紗。

-----廣告,請繼續往下閱讀-----

延伸閱讀:

The Nobel Prize in Physiology or Medicine 2021

2021諾貝爾生醫獎記者會 會後新聞稿

【2021諾貝爾生理或醫學奬】為何會有「熱熱的、刺刺的」感覺?溫度與觸覺受體的發現

-----廣告,請繼續往下閱讀-----
  • 02:54 關於痛覺來源的三種理論:辣椒素受體、熱痛、酸

有三種刺激可以活化痛感的神經,而這三種會對本體感覺產生反應的分別是辣椒素受體(主要由英國人所支持)、熱痛感、酸感。

  • 08:39 David Julius 選擇辣椒素來了解痛覺

David Julius 過去曾經分析過辣椒素如何引發接觸辣椒時的灼燒感,因此開啟了他後續的研究,最後獲得這次諾貝爾獎榮譽。

其實有許多科學家都在尋找辣椒素受體,但可惜都未在 David Julius 發現前找到。

  • 13:52 志成老師曾和辣椒素受體擦肩而過

志成老師過去在英國唸書時,他的指導教授也在尋找辣椒素受體。但在研究過程中,因為研究方法的篩選,錯過了辣椒素受體,可能也和諾貝爾獎擦肩而過。但是也因為那份研究,才讓本來想研究細胞凋亡的志成老師轉換跑道,開始研究酸痛感覺的離子通道。

-----廣告,請繼續往下閱讀-----
  • 18:10「痛」不只一種,不同溫度就有不同痛!

在 David Julius 的研究中,發現到辣椒素受體 1(TRPV1),會在溫度大於攝氏 43 度時被活化。之後 Julius 的研究團隊還發現了會被低溫激發的 TRPM8 受體。透過這些研究,他們因此確認許多受體會因為溫度差,而在神經中產生不同的信號。

  • 24:03 為什麼其他學者找不到辣椒素受體?

早期研究人員所使用的研究方式雖然能夠量測很微弱的細胞電生理訊號,雖然可以知道離子通道存在,但像在大海撈針,難以準確地找到特定的離子通道。而 David Julius 的研究團隊,調整了研究方法,藉由鈣離子影像技術,雖然比較不敏感,但卻能更快的找到辣椒素受體。

  • 28:44 Ardem Patapoutian 發現對機械力敏感的離子通道

Patapoutian 是研究和機械性觸覺有關的機制。在我們的皮膚和內臟中,有類似壓電感測器的機械力受體(Piezo)。而研究團隊找到了 Piezo1 和 Piezo2 兩組離子通道,這兩組通道也被證明,是能調節人類部分的生理現象。

  • 39:08 志成老師用老鼠找出「酸感」的離子通道

志成老師團隊仿過去的德國研究研究,對有纖維肌痛(fibromyalgia)的老鼠注射不同劑量的高滲葡萄糖鎮痛劑、可以觸發「酸感」的生理食鹽水。最後發現,這樣的葡萄糖增生注射療法(Dextrose Prolotherapy)可以緩解纖維肌痛的症狀,且能對其他慢性疼痛病提出見解。

-----廣告,請繼續往下閱讀-----

延伸閱讀:

A role for substance P and acid-sensing ion channel 1a in prolotherapy with dextrose-mediated analgesia in a mouse model of chronic muscle pain

  • 45:43 志成老師提出:酸覺和痛覺是不同的感覺

所謂的「酸痛」是「酸」還是「痛」?酸與痛是同一種感覺還是分開的呢?志成老師發現「酸」可以止「痛」,因此他大膽提出「酸覺理論」,主張酸覺和痛覺是不同的感覺。

延伸閱讀:

-----廣告,請繼續往下閱讀-----

感覺的故事:痛覺與本體感覺| CASE報科學

酸痛是怎麼一回事? – 談痛覺分子生物學與酸的受體分子

  • 53:53 你說的酸(sng)是什麼感覺?

「Sng」是指非傷害性的酸痛,也是由台語「酸」所轉變而來的名詞。志成老師與他的研究團隊提出「sngception(sng-ception)」的概念,來描述體感神經系統對組織周圍酸中毒的反應,並將「sng」與傷害性的酸痛分開來。

延伸閱讀:Sensing acidosis: nociception or sngception?

-----廣告,請繼續往下閱讀-----
  • 59:08 史上最「有感」的諾貝爾生醫獎

看完本次諾貝爾生醫獎的內容,希望能有更多人才投入研究離子通道。當這些對應感覺的離子被一一區分開後,除了能促進我們將自己的感覺說明地更清楚,也能對消炎與止痛等治療方法,提供更多的研究解決方向。

-----廣告,請繼續往下閱讀-----
PanSci_96
1247 篇文章 ・ 2380 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。