0

14
3

文字

分享

0
14
3

讓地球大氣層充滿氧氣的星球改造神器:藍綠菌──《藻的秘密》

臉譜出版_96
・2020/01/14 ・3382字 ・閱讀時間約 7 分鐘 ・SR值 524 ・七年級

-----廣告,請繼續往下閱讀-----

  • 作者/茹絲.卡辛吉;譯者/鄧子衿

想回到 37 億年前,你可能需要先準備好「氧氣裝備」!

想像你自己來到三十七億年前的地球,在地球從宇宙塵埃聚集成行星之後,已經過了約七億五千萬年。

你站在一座岩石火山島上,往四面八方望去,只見富含鐵質的綠色海水延伸到地平線那端。你所在的這座島嶼上沒有植物,也沒有可供植物生長的土壤。因為土壤中含有植物被分解之後產生的有機成分,然而在三十億年前,地球上還沒有植物。

戴上裝備,出發!圖/pixabay

你可能要像是水肺潛水者那樣攜帶氧氣裝備,因為那個時候的地球上沒有氧氣。事實上,你周圍的大氣是由一氧化碳、二氧化碳和甲烷混合而成,其中可能還有氫氣、氮氣和二氧化硫,或許會致人於死,不過至少溫度是宜人的。

雖然當時太陽的亮度只有現在的七成,但是有二氧化碳和甲烷為地球表面保溫。當時地球自轉的速度是現在的兩倍,所以日出之後六小時就日落,這可能會讓你驚慌失措。

那時候月球和地球的距離是現在的十分之一,讓月球看起來有十倍大,在天空中非常明亮。由於距離地球很近,月球造成的重力效應也很強,海面漲落潮差超過數百呎。你或許可以看到月球上的隕石坑,不過可能得看日子。

-----廣告,請繼續往下閱讀-----

當時地球上的火山活動比現在活躍,經常會噴出火山灰和硫酸到大氣中。在清晨與落日時分,天空會呈現黃色和橘紅色。

37 億年前的地球沒有臭氧層,那還有生命存在嗎?

當時地球上的海水量是現在的兩倍,但是水分子一個個消失了,因為大氣中沒有氧氣,也就沒有臭氧層。

曾經有水的金星,現在乾燥無比。圖/wikimedia

在沒有臭氧層的狀況下,來自太陽的大批紫外線能毫不受阻攔地轟炸水,讓水分子分解成氫和氧。比較輕的氫原子很快地逸散到太空中,氧原子則馬上和水中的礦物質結合。在沒有臭氧層的狀況下,地球會朝著毫無生機的狀況進展。金星的命運便是如此,曾經有水的金星,現在乾燥無比。

不過這時候的地球有海洋,海洋中棲息著單細胞細菌,以及類似細菌的單細胞生物—古菌(archaea)。這些微生物和其他所有生物一樣,都需要能量才能運作,以及製造更多細胞的組成成分,以便分裂複製。

它們的細胞壁堅硬,因此不可能經由掠食其他同類來得到能量。不過它們可以把細胞壁外的硫化氫吸收到細胞內,經由化學反應讓硫化氫的電子釋放出來,再利用這些電子合成暫時儲存能量的分子 ATP(三磷酸腺苷)。細胞利用 ATP 和溶解在水中的二氧化碳合成有機化合物,包括生長和生殖所需要的胺基酸、蛋白質、脂質和醣類。

現在地球上依然有許多這類化學自營生物(chemoautotroph),它們生活在海底熱泉,或是黃石國家公園充滿硫的熱泉等這些極端的環境中。但是差不多在你拜訪古代地球的時候(或是前後一兩億年),一種新的細菌在太陽下演化出來了。

黃石國家公園中的大稜鏡溫泉,有些藻類會生長在這樣極端的環境中。圖/wikimedia

這種細菌漂浮在海面下附近,因為含有葉綠素和其他色素而呈現藍綠色。這些色素能吸收含有太陽能量的光子。藍綠菌用這些能量把水分解成氫和氧,產生電子,製造 ATP。然後它們就和化學自營生物一樣,利用 ATP 合成有機化合物,這個過程稱為光合作用。藍綠菌把氧氣當成廢棄物排出, 因此這過程稱為產氧型光合作用(oxygenic photosynthesis)。這是非常複雜的過程,就連今日的科學家依然還沒有解開這個機制的細節。

-----廣告,請繼續往下閱讀-----

藍綠菌具備的功能讓它們繁榮昌盛。古菌和其他細菌只是到處飄盪,企盼能遇到它們各自喜愛的化學食物,但是這種新出現的生物並不是分解水中偶然才能遇到的成分,而是分解無所不在的水分子。藍綠菌只要在有陽光的狀況下就能進食,因此繁殖的速度非常快,而且持續產出氧氣。(在二十億年中)這些氧氣飄到大氣中,形成具有保護作用的臭氧層,讓我們的藍色行星免於籠罩於沉沉死氣之中。1

藍綠菌和閃電竟然也有共通之處?!

如果這還不夠厲害,有些藍綠菌種類還有比舞動它們的藍綠色身段更厲害的技術。

地球上的生物需要氮,DNA、ATP、蛋白質和其他生物所必須的化合物中都含有氮原子。地球大氣中一直有很多氮氣,但是氮氣(N2)中的氮原子彼此結合得很緊密,生物無法直接運用。而閃電的電壓高達一億伏特,這等或是更高的能量能夠打破氮氣分子,讓個別的氮原子和氫或氧結合,形成氨、銨鹽(ammonium)或硝酸鹽等把氮固定起來的分子。

閃電可以固氮,但是如果生命只能依靠閃電,就永遠無法登上陸地了。圖/pixabay

但是棘手的地方在於閃電雖然壯觀,卻無法大量產生這類分子。如果生命只能依靠閃電,就永遠無法登上陸地。正當此時,藍綠菌登場了。它們能做到和閃電一模一樣的事,只不過是在微生物的尺度下。

藍綠菌成為地球上主要的固氮生物(diazotroph)。幸好藍綠菌樂於分享,它所固定下來的氮有一半會排入水中,可以被細菌和古菌吸收。如果沒有具備固氮能力的藍綠菌,海洋中的生物形式將會非常簡單,而且數量也不多,只因固定下來的氮不足。

-----廣告,請繼續往下閱讀-----

有創意的藍綠菌,讓自己在固氮時,不被氧氣擊倒

不論在過去或現代,藍綠菌固氮都相當不容易。首先它們要能夠製造固氮酶(nitrogenase),這種酵素含有鐵和鉬,能催化固氮反應。除此之外,它們還要防範一個由自己製造的問題:氧氣。

這個問題是這樣的:氧原子的最外層有六個電子,因此它還要再抓住兩個電子,才能讓最外層有八個電子,形成穩定的狀態。早期的海水溶滿了鐵,而鐵原子在最外層有兩個電子,所以你可以想見會發生什麼事──藍綠菌拋棄的氧很快就會抓住鐵,如此一來,藍綠菌就沒有能用來製造固氮酶的鐵原子了。

藍綠菌得要有創意才行。有些藍綠菌在固氮的時候停止光合作用(這樣就不會釋放氧氣了),有些藍綠菌只在晚上不進行光合作用時行固氮作用(但如果沒有陽光照射就會發生混亂)。有些則和同種的其他個體合作,細胞彼此連接成細微的絲狀結構,就像是一串珠鍊。約有十分之一的珠子會停止光合作用,並且讓細胞壁變得更厚,以阻擋氧氣進入。這些特殊的細胞稱為異型細胞(heterocyst),專門固氮,會把含氮分子分享給左右細胞,換來糖類以維持生存。現在能固氮的藍綠菌依然採用這些方法。

藍綠菌要讓自己繁榮昌盛,真的不容易!

藍綠菌要散播到全世界,不只必須解決固氮的問題。它們還面臨兩難的困境:它們需要靠近海洋表面,但是又要避免紫外線破壞 DNA。

為此它們演化出一層細胞外的多醣類(由糖分子連接而的長鏈),稱為黏質(mucilage),它可能是世界上最早的防曬成分,也是它讓藍綠菌具有那典型的黏滑表面。最後,所有的藍綠菌都因為有黏質而變得黏黏滑滑。

總加起來,藍綠菌確實具有各種讓它自己繁榮昌盛的能力。大部分的藍綠菌每七到十二小時可以複製一次,換算下來,一平方呎的藍綠菌可以在兩天之內覆滿一間小辦公室的地板。有些種類的藍綠菌每兩個小時便複製一次,於是同樣的大小在兩天之內就可以蓋滿六座足球場。

-----廣告,請繼續往下閱讀-----

不論是哪一種,最早的藍綠菌在數億年中複製的幅度,遠遠超過我們的想像。這段其間,它們也演化出許多不同大小和形狀的種類:球狀、卵狀、桿狀、螺旋狀或絲狀(數量最多的是圓形原綠球藻〔Prochlorococcus〕,它們在 1986 年才被發現,也是最小的藍綠菌,一茶匙的海水有四十萬個原綠球藻)。

藍綠菌如果漂浮在水面上,並且經由黏質黏在一起,就會形成綠色的團塊。這些團塊會吸收當時在水中漂蕩的各種成分,包括碳酸鈣和碳酸鎂之類的礦物質,以及其他死亡的微生物而變得愈來愈稠密。自始至終,這些活生生的藍綠菌能夠藉由黏質滑動,往有陽光的海面移動,並持續增殖。

註解:

  1. 最早進行光合作用的生物並不會造氧氣,它們以紫色的色素吸收近紅外線,從含硫化合物中取得電子,把細小的純硫顆粒當成廢棄物排出。它們沒有如同近親藍綠菌那般昌盛,但是依然能夠在現在無氧的水中續存。

——本文摘自泛科學 2020 年 1 月選書《藻的祕密:誰讓氧氣出現?誰在海邊下毒?誰緩解了飢荒?從生物學、飲食文化、新興工業到環保議題,揭開藻類對人類的影響、傷害與拯救》,2019 年 12 月,臉譜出版

 

文章難易度
臉譜出版_96
85 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

2
1

文字

分享

0
2
1
變身沙贊靠閃電夠力嗎?會是能源解方還是一場災難?《沙贊! 》中的神力閃電之謎
Rock Sun
・2023/05/30 ・4134字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

「沙贊!」然後一道閃電就會打下來,擊中一位青少年,瞬間變成一位穿著紅衣+披風、渾身肌肉的(中二)成年人,這就是 DC 宇宙中,超級英雄沙贊的變身過程。

很有趣的是,大家可以回想一下,最近這 10 幾年來席捲世界的漫威和 DC 英雄,絕大部分執行英雄行動前都是進行「著裝」,例如鋼鐵人、蝙蝠俠、美國隊長……等,但是沙贊不一樣,儘管不複雜,但他需要一套特別的手續來改變他自己的身體,已獲得他身為超級英雄的力量,這點跟日本的超人力霸王比較類似。

根據 DC 宇宙的設定,賦予沙贊力量、讓他變身的閃電都來自神界的奧林帕斯山,只要他大喊一聲,閃電就會隨傳隨到,而因為一切是神力的關係,理論上他接收力量的位置無關緊要,也非常的安全。

真不愧是奧林帕斯山啊!如果我們能夠在比利(電影中變身成沙贊的少年)的頭上裝一個收集閃電能量的器材,那費城一定變成全美國能源最豐沛的城市。

-----廣告,請繼續往下閱讀-----
我們說的是站中間那個穿紅色緊身衣的大男人。 圖/IMDb

但是要進行超級英雄活動,普通的閃電能量夠嗎?這道奧林帕斯山的閃電會不會是一道超越人類認知的超級閃電呢?

還有儘管沙贊不會受影響,但如果有人不小心在變身時不小心碰觸他或在他附近,會發生什麼事呢?

這真的值得一起來探討~

先定立標準:閃電能提供多少能量?

閃電是大自然中最純粹的能量展現之一,經過大氣學家的觀測和預估,一道閃電電壓大概是 3 億伏特,帶有 10 億焦耳的能量,這差不多是燃燒 30 公升左右的汽油。

-----廣告,請繼續往下閱讀-----

聽起來非常的厲害,那我們利用閃電來獲得能源會不會是個好方法?

其實從 1980 年代開始科學家就有這種想法,但是他們發現這其實很不切實際,主要原因有幾個:閃電很難預測、傳導到地面上能量又會大減、效率很不穩定……但那是大自然的閃電,讓沙贊變身的可是充滿神力的閃電耶!不只能夠提供沙贊穩定且高能的能量來源,還可以藉由跟蹤比利知道閃電的位置和時間。

我們只要把比利抓起來請出來,跟他預約時間大喊沙贊,就可以發電了~

圖/GIPHY

現在的問題是……這道閃電有多少能量呢?

要知道一道神奇閃電帶有多少能量其實有點困難,因為一旦比利變身之後,他似乎沒有時間限制,不像超人力霸人那樣有 3 分鐘的活動上限,後者會比較好估算是因為你可以設想這 3 分鐘內超人力霸王做了哪些事情,在逐一拆解。

-----廣告,請繼續往下閱讀-----

所以筆者覺得最能夠執行的方式,是羅列出電影中沙贊一次變身基本上會做到的事情,這樣結果應該就足夠是神力閃電的基本盤。

從電影《沙贊!眾神之怒》中,筆者列出幾個沙贊在超級英雄狀態時做的事,包括:

  1. 以音速飛行 10 分鐘
  2. 把一隻體型巨大的飛龍打飛 10 公尺
  3. 把一台車移動 200 公尺
  4. 從手中放出好幾道像特斯拉線圈的能量閃電

這樣感覺差不多了吧……等等~還有一件很重要的事,就是這道閃電同時還把一名 17 歲的青年變成一名看起來 30 歲的成年人,這瞬間成長所需的誇張能量應該也要算進閃電的功勞裡,所以這個列表還要加進另一項:

  1. 讓 17 歲的青年成長成 30 歲男性的所需熱量
長大成這樣~ 圖/IMDb

那我們接下來可以逐一估算了。

-----廣告,請繼續往下閱讀-----
  • 那首先就來計算成長所需的熱量吧!

要讓人成長的能量,其實也是熱量,也就是大家耳熟能詳的卡洛里,1 千大卡的熱量差不多是 4184 焦耳的能量。

根據衛服部提供的資料,一名成年人每日所需的熱量依他的活動量和體重來決定,那沙贊毫無疑問絕對是重度活動量那一類的,體重的話少年比利看起來介於 60~70 公斤之間,而飾演沙贊的演員柴克萊威曾說為了演戲需要增重到超過 90 公斤,雖然隨著體重增加每日所需熱量也會不同,但為了簡單估算,我們姑且用 80 公斤算到底吧~

圖/衛福部

比利瞬間成長為超人般壯碩所需能量= 40 大卡 x 80 公斤 x 365 天 x (30-17) 年 x 4184 J= 6.35x 1010 焦耳 = 635 億焦耳

這數字怎麼已經有點大了……但在吐槽之前,我們先把其他的所需能量都估算完吧~

-----廣告,請繼續往下閱讀-----
  • 以音速飛行 10 分鐘

這裡我們借用四分之一英里估算法,這是個可以從物體重量(通常是車子)和行駛四分之一英里所需的時間來求得功率的簡單方式。

沙贊體重 90 公斤,而他在音速下完成 1/4 英里所需的時間為 1.2 秒,根據線上工具估算,這名英雄相當於擁有 22,876 馬力,轉化為瓦特差不多是 1700 萬瓦特,如果沙贊要飛行 10 分鐘,他就會需要大約 100 億焦耳的能量

  • 把一隻體型巨大的飛龍打飛 50 公尺

這個計算方式並不困難,就是簡單的做功運算,但是筆者遇到了很嚴重的問題:電影中的飛龍-拉頓到底多重呢?

經過一番搜尋,網路上對於一條中世紀奇幻飛龍到底有多重幾乎是沒有定論,看起來好像沒有人有認真算過,所以筆者打算自己來操刀,解決這個世紀大謎題 (?)。

-----廣告,請繼續往下閱讀-----

有看過《空想科學讀本》的人對筆者使用的方法一定不陌生,就是把模型浸到水裡面,估算體積之後放大,再考慮密度來求得飛龍的體重。

所以筆者到了地下街的玩具店,買了一條看起來最像電影中奇幻飛龍體型的模型玩具(其實是動漫《轉生成為史萊姆》的公仔,似乎是主角後期的樣子吧?筆者沒有看不清楚~),將它放進水盆裡面裝水,做好水位標記之後取出模型,水位下降之後從水盆的面積和下降高度求得玩具龍的體積大概是 0.000283 立方公尺,這時我們需要玩具龍的身長和電影中的拉頓身長來做等比放大,玩具龍身體差不多是 25 公分,而從電影中拉頓站在棒球場內野的畫面來做估算,它的身長大約是 25 公尺,身長差 100 倍,所以體積會變 100 的 3 次方也就是 100 萬倍,所以說拉頓的體積大概是 283 立方公尺。

筆者買到的龍模型,雖然它是站立的,但平放在地上看起來跟電影中的龍差不多。圖/作者提供

這時我們需要拉頓身體的密度來求得體重,如果拉頓是生物的話,它的身體密度應該也要接近水(每立方公尺 1000 公斤),例如人體的密度就差不多是每立方公尺 1062 公斤,但是電影中拉頓身體看起來有點像是由木頭構成的,而世界上最堅硬的木頭是澳洲鐵木樹(Australian buloke)密度是 1085 kg/m3,再加上龍的奇幻性質,我想把拉頓的身體密度定為 1100 kg/m3 應該是還可以接受的吧?

如果用這個方式估算,電影中看守花園的飛龍拉頓,體重大概會是 311 公噸,我們套入物理課本中看過的做功計算公式,可以知道沙贊把一條龍打飛 50 公尺所需要的能量,大概會是 7775 萬焦耳

-----廣告,請繼續往下閱讀-----
電影中飛龍的劇照。圖/Twitter
  • 把一台車移動 200 公尺

相較前面兩個,這計算相對簡單一點,我們一樣用上面的作功公式來求需要能量,而我們需要的就是車子的重量。根據統計,美國一般路上的車子平均重量為 1800 公斤,如果要在 3 秒鐘內移動 200 公尺,就相當於需要 4 百萬焦耳

  • 從手中放出好幾道能量閃電

沙贊從手上放出閃電,看起來就像是電弧的一種,而電弧是因為有強大的電場或高壓電存在,使的原本不導電的物質電漿化得以使電流通過的現象,而說到能夠最穩定產生電弧的狀況,筆者第一個想到的是在現實中會看到的特斯拉線圈。

特斯拉線圈是一種由知名物理學家特斯拉發明的強大變壓器,這種變壓器使用共振原理運作,主要用來生產超高電壓但低電流、高頻率的交流電力,因為特斯拉線圈可產生絢麗的電弧效果,所以很常在一些科學博物館或展示中看到,而世界上最強大的特斯拉線圈: Electrum 的能量使用率為 130,000 瓦特,假設沙贊能夠用同等功率放出電弧長達 10 秒鐘,就會需要 130 萬焦耳的能量。

Electrum 特斯拉線圈。圖/wikipedia

這下子我們需要的數字都有了!

這道神奇閃電所附帶的能量大約是:

635 億(變成大人)+100 億(音速飛行 10 分鐘)+7775 萬(打飛一條龍)+400 萬(移動一台車)+130 萬(放出閃電)= 735 億 8305 萬焦耳

 而正常世界一道閃電的能量大約是 10 億焦耳,也就是說~這道神奇閃電差不多是等於 74 道現實中閃電的能量。

好厲害啊!真不愧是奧林帕斯的眾神,能夠這麼精準的傳遞如此巨大的電能量根本就是神蹟…..也確實是神蹟沒錯~

但是如果一個不小心承接這道能量的人不是沙贊的話,會發生什麼事呢?

一般人被普通的閃電擊中就已經不是鬧著玩的了!

直接被閃電擊中的人會成為電流的一部分,一部分電流會沿著皮膚表面移動,另一部分會穿過身體的心血管或神經系統,前者會對皮膚造成灼傷,後者則有可能造成呼吸停止或心臟驟停,但我們還是能找到一些歷史上從雷擊中生還的故事,因為有沒有辦法在雷擊中活下來是跟就醫和電流通過體內的時間而定……運氣好的話,你不會死的。

但是在沙贊的神奇閃電面前,這一切都成為笑話。

這道 735 億焦耳的閃電能量相當於 2 顆歷史上最強大非核子炸彈:炸彈之母(GBU-43/B 大型空爆炸彈)爆炸所釋放出的能量,所以如果今天好死不死沒有打在比利身上,而是擊中地面的話,後果一定不堪設想,周遭的親友絕對是灰飛煙滅,費城可能會變成廢墟,之前說的收集能量可能完全行不通,因為應該沒多少設備儀器能夠承受如此巨大的威力。

反倒是比利啊~你是不是在承接沙贊能力時同時被改造了,被2顆炸彈之母轟炸都沒事,真是太神啦!還有就是一定要站好喔~

全世界只有這位男人能承受的力量。圖/IMDb
Rock Sun
64 篇文章 ・ 895 位粉絲
前泛科學的實習編輯,曾經就讀環境工程系,勉強說專長是啥大概是水汙染領域,但我現在會說沒有專長(笑)。也對太空科學和科普教育有很大的興趣,陰陽錯差下在泛科學越寫越多空想科學類的文章。多次在思考自己到底喜歡什麼,最後回到了原點:我喜歡科學,喜歡科學帶給人們的驚喜和歡樂。 "我們只想盡我們所能找出答案,勤奮、細心、且有條理,那就是科學精神。 不只有穿實驗室外袍的人能玩科學,只要是想用心了解這個世界的人,都能玩科學" - 流言終結者

0

1
2

文字

分享

0
1
2
當人們對細菌一無所知、當醫生不洗手:生產,就像是去鬼門關前走一趟──《厲害了,我的生物》
聚光文創_96
・2022/09/13 ・1767字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

無知的代價:產褥熱

故事說到這裡,此時此刻,人們依然只能透過顯微鏡、放大鏡等工具,追尋微生物的芳蹤。當然啦,發現微生物是一回事,要確認這些微生物與特定疾病的相關性,並且證實它們的致病性與致病機制,則完全又是另一回事。

在那個對微生物一無所知的年代,該有多可怕?圖/envatoelements

然而,產業救星巴斯德先生在拔了一根草、測了測風向以後,敏銳的發現,風向是會改變的。在與微生物和疾病的永恆戰鬥中,人類也不會永遠的屈居下風。

巴斯德的重心,逐漸從化學轉移到微生物之上。他雖然不是醫生,也不是婦女,卻對婦女的生死大關特別有興趣。

在十八世紀到十九世紀之間,有多達百分之三十的婦女,會在生產後的「產褥期」,受到細菌感染而持續發燒,稱為「產褥熱」(puerperal fever)。

-----廣告,請繼續往下閱讀-----

當時,產褥熱的致死率相當高,一旦受到感染,有百分之七十五的產婦可能會挺不過去,一手接生一手送死,悲傷的故事在醫院裡不斷上演。

被忽視的警告:「不要碰完屍體去接生!」

一八四三年,美國醫生霍姆斯(O. W. Holmes)在論文中提到,不少醫生會在解剖完屍體之後,再為產婦進行接生,這些產婦中,染上產褥熱的比例也偏高。

但是,當時的醫學界並不認同霍姆斯的觀點,將他的提醒當成了耳邊風。

進產房前,別忘了先寫遺囑!圖/聚光文創

與此同時,在著名的維也納大學醫學院中,匈牙利醫師塞麥爾維斯(Ignaz Philipp Semmelweis),正為了附屬醫院中,遲遲無法下降的產婦死亡率而苦惱著。

-----廣告,請繼續往下閱讀-----

即使進行了詳細的大體解剖,塞麥爾維斯也無法找出產褥熱的原因,只能眼睜睜的看著產婦一邊期待著新生命的降臨,一害怕著死神將揮舞著鐮刀,收割她們的性命。

心痛的塞麥爾維斯,於是將目光轉向產房細節。他注意到,如果產婦居住在解剖室旁的產房,產褥熱的比例更居高不下;反觀助產士教學病房裡的產婦,死亡率就明顯較低。

塞麥爾維斯於是推測,或許在屍體中帶有某種毒素,經由負責解剖的醫生、實習生的雙手,在接生或產檢之際進入產房,造成了產婦的死亡。

只是洗個手,死亡率剩下原本的 1/4

一八四七年,塞麥爾維斯決定,要求產科裡所有醫生、實習生,特別是那些剛進行過大體解剖的小夥伴們,在為產婦接生或檢查之前,務必要用肥皂與漂白水浸泡、清洗雙手,並澈底刷洗指甲底下的汙垢。

-----廣告,請繼續往下閱讀-----

果不其然,一個簡簡單單的洗手動作,就讓院內產婦的死亡率,從百分之十二下降到百分之三!可喜可賀!

即使塞麥爾維斯發現「洗手」就可以降低產婦的死亡率,但它的發現並未被醫界重視。圖/envatoelements

按照常理思考,我們可以大膽推測,接下來的劇情發展應該是:「塞麥爾維斯被譽為英雄,他所推行的洗手習慣,立刻被全世界廣泛採用……」

NO~NO~NO,塞麥爾維斯拿到的,可不是這麼簡潔、老生常談的劇本,故事尚未劇終,本章節依然未完待續。

事實上,他的重要發現並沒有受到醫學界的認可,連病房主任也說,死亡率的下降,是醫護同仁們用心禱告的結果,跟洗不洗手什麼沒啥關係。

-----廣告,請繼續往下閱讀-----

不僅論點違背主流風向,許多醫生甚至覺得,塞麥爾維斯的說法,根本就是在說「醫生手很髒」或「病從醫生來」,對此,他們表達強烈的不憤怒與不滿。

讀到這裡,我們或許會覺得,只是洗個手,有那麼痛苦那麼難嗎?殊不知,即便是疫情當前的今日,對於這個倡導手部衛生的建議,依然有人會感到不滿與抗拒。

如此一想,一百多年前的醫生們不想洗手,好像不是多麼不可思議的事情了。

沒想到竟然連醫生都會不想洗手!圖/聚光文創

──本文摘自《厲害了,我的生物》,2022 年 8 月,聚光文創,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
聚光文創_96
6 篇文章 ・ 6 位粉絲
據說三人出版社就算得上中型規模,也許是島嶼南方太過溫暖,我們對出版業的寒冬始終抱持著浪漫與天真。 作者們說,出版市場很艱困,但我們依然想在翻譯領軍的文學市場中,為本土的作者、原創故事發聲。 喜歡做為升學孩子減輕壓力的書,不要厚重百科類型、沒有艱澀的專有名詞,很多重大發現的背後故事更值得我們好好品味。

0

14
3

文字

分享

0
14
3
讓地球大氣層充滿氧氣的星球改造神器:藍綠菌──《藻的秘密》
臉譜出版_96
・2020/01/14 ・3382字 ・閱讀時間約 7 分鐘 ・SR值 524 ・七年級

  • 作者/茹絲.卡辛吉;譯者/鄧子衿

想回到 37 億年前,你可能需要先準備好「氧氣裝備」!

想像你自己來到三十七億年前的地球,在地球從宇宙塵埃聚集成行星之後,已經過了約七億五千萬年。

你站在一座岩石火山島上,往四面八方望去,只見富含鐵質的綠色海水延伸到地平線那端。你所在的這座島嶼上沒有植物,也沒有可供植物生長的土壤。因為土壤中含有植物被分解之後產生的有機成分,然而在三十億年前,地球上還沒有植物。

戴上裝備,出發!圖/pixabay

你可能要像是水肺潛水者那樣攜帶氧氣裝備,因為那個時候的地球上沒有氧氣。事實上,你周圍的大氣是由一氧化碳、二氧化碳和甲烷混合而成,其中可能還有氫氣、氮氣和二氧化硫,或許會致人於死,不過至少溫度是宜人的。

雖然當時太陽的亮度只有現在的七成,但是有二氧化碳和甲烷為地球表面保溫。當時地球自轉的速度是現在的兩倍,所以日出之後六小時就日落,這可能會讓你驚慌失措。

-----廣告,請繼續往下閱讀-----

那時候月球和地球的距離是現在的十分之一,讓月球看起來有十倍大,在天空中非常明亮。由於距離地球很近,月球造成的重力效應也很強,海面漲落潮差超過數百呎。你或許可以看到月球上的隕石坑,不過可能得看日子。

當時地球上的火山活動比現在活躍,經常會噴出火山灰和硫酸到大氣中。在清晨與落日時分,天空會呈現黃色和橘紅色。

37 億年前的地球沒有臭氧層,那還有生命存在嗎?

當時地球上的海水量是現在的兩倍,但是水分子一個個消失了,因為大氣中沒有氧氣,也就沒有臭氧層。

曾經有水的金星,現在乾燥無比。圖/wikimedia

在沒有臭氧層的狀況下,來自太陽的大批紫外線能毫不受阻攔地轟炸水,讓水分子分解成氫和氧。比較輕的氫原子很快地逸散到太空中,氧原子則馬上和水中的礦物質結合。在沒有臭氧層的狀況下,地球會朝著毫無生機的狀況進展。金星的命運便是如此,曾經有水的金星,現在乾燥無比。

-----廣告,請繼續往下閱讀-----

不過這時候的地球有海洋,海洋中棲息著單細胞細菌,以及類似細菌的單細胞生物—古菌(archaea)。這些微生物和其他所有生物一樣,都需要能量才能運作,以及製造更多細胞的組成成分,以便分裂複製。

它們的細胞壁堅硬,因此不可能經由掠食其他同類來得到能量。不過它們可以把細胞壁外的硫化氫吸收到細胞內,經由化學反應讓硫化氫的電子釋放出來,再利用這些電子合成暫時儲存能量的分子 ATP(三磷酸腺苷)。細胞利用 ATP 和溶解在水中的二氧化碳合成有機化合物,包括生長和生殖所需要的胺基酸、蛋白質、脂質和醣類。

現在地球上依然有許多這類化學自營生物(chemoautotroph),它們生活在海底熱泉,或是黃石國家公園充滿硫的熱泉等這些極端的環境中。但是差不多在你拜訪古代地球的時候(或是前後一兩億年),一種新的細菌在太陽下演化出來了。

黃石國家公園中的大稜鏡溫泉,有些藻類會生長在這樣極端的環境中。圖/wikimedia

這種細菌漂浮在海面下附近,因為含有葉綠素和其他色素而呈現藍綠色。這些色素能吸收含有太陽能量的光子。藍綠菌用這些能量把水分解成氫和氧,產生電子,製造 ATP。然後它們就和化學自營生物一樣,利用 ATP 合成有機化合物,這個過程稱為光合作用。藍綠菌把氧氣當成廢棄物排出, 因此這過程稱為產氧型光合作用(oxygenic photosynthesis)。這是非常複雜的過程,就連今日的科學家依然還沒有解開這個機制的細節。

藍綠菌具備的功能讓它們繁榮昌盛。古菌和其他細菌只是到處飄盪,企盼能遇到它們各自喜愛的化學食物,但是這種新出現的生物並不是分解水中偶然才能遇到的成分,而是分解無所不在的水分子。藍綠菌只要在有陽光的狀況下就能進食,因此繁殖的速度非常快,而且持續產出氧氣。(在二十億年中)這些氧氣飄到大氣中,形成具有保護作用的臭氧層,讓我們的藍色行星免於籠罩於沉沉死氣之中。1

-----廣告,請繼續往下閱讀-----

藍綠菌和閃電竟然也有共通之處?!

如果這還不夠厲害,有些藍綠菌種類還有比舞動它們的藍綠色身段更厲害的技術。

地球上的生物需要氮,DNA、ATP、蛋白質和其他生物所必須的化合物中都含有氮原子。地球大氣中一直有很多氮氣,但是氮氣(N2)中的氮原子彼此結合得很緊密,生物無法直接運用。而閃電的電壓高達一億伏特,這等或是更高的能量能夠打破氮氣分子,讓個別的氮原子和氫或氧結合,形成氨、銨鹽(ammonium)或硝酸鹽等把氮固定起來的分子。

閃電可以固氮,但是如果生命只能依靠閃電,就永遠無法登上陸地了。圖/pixabay

但是棘手的地方在於閃電雖然壯觀,卻無法大量產生這類分子。如果生命只能依靠閃電,就永遠無法登上陸地。正當此時,藍綠菌登場了。它們能做到和閃電一模一樣的事,只不過是在微生物的尺度下。

藍綠菌成為地球上主要的固氮生物(diazotroph)。幸好藍綠菌樂於分享,它所固定下來的氮有一半會排入水中,可以被細菌和古菌吸收。如果沒有具備固氮能力的藍綠菌,海洋中的生物形式將會非常簡單,而且數量也不多,只因固定下來的氮不足。

-----廣告,請繼續往下閱讀-----

有創意的藍綠菌,讓自己在固氮時,不被氧氣擊倒

不論在過去或現代,藍綠菌固氮都相當不容易。首先它們要能夠製造固氮酶(nitrogenase),這種酵素含有鐵和鉬,能催化固氮反應。除此之外,它們還要防範一個由自己製造的問題:氧氣。

這個問題是這樣的:氧原子的最外層有六個電子,因此它還要再抓住兩個電子,才能讓最外層有八個電子,形成穩定的狀態。早期的海水溶滿了鐵,而鐵原子在最外層有兩個電子,所以你可以想見會發生什麼事──藍綠菌拋棄的氧很快就會抓住鐵,如此一來,藍綠菌就沒有能用來製造固氮酶的鐵原子了。

藍綠菌得要有創意才行。有些藍綠菌在固氮的時候停止光合作用(這樣就不會釋放氧氣了),有些藍綠菌只在晚上不進行光合作用時行固氮作用(但如果沒有陽光照射就會發生混亂)。有些則和同種的其他個體合作,細胞彼此連接成細微的絲狀結構,就像是一串珠鍊。約有十分之一的珠子會停止光合作用,並且讓細胞壁變得更厚,以阻擋氧氣進入。這些特殊的細胞稱為異型細胞(heterocyst),專門固氮,會把含氮分子分享給左右細胞,換來糖類以維持生存。現在能固氮的藍綠菌依然採用這些方法。

藍綠菌要讓自己繁榮昌盛,真的不容易!

藍綠菌要散播到全世界,不只必須解決固氮的問題。它們還面臨兩難的困境:它們需要靠近海洋表面,但是又要避免紫外線破壞 DNA。

為此它們演化出一層細胞外的多醣類(由糖分子連接而的長鏈),稱為黏質(mucilage),它可能是世界上最早的防曬成分,也是它讓藍綠菌具有那典型的黏滑表面。最後,所有的藍綠菌都因為有黏質而變得黏黏滑滑。

總加起來,藍綠菌確實具有各種讓它自己繁榮昌盛的能力。大部分的藍綠菌每七到十二小時可以複製一次,換算下來,一平方呎的藍綠菌可以在兩天之內覆滿一間小辦公室的地板。有些種類的藍綠菌每兩個小時便複製一次,於是同樣的大小在兩天之內就可以蓋滿六座足球場。

-----廣告,請繼續往下閱讀-----

不論是哪一種,最早的藍綠菌在數億年中複製的幅度,遠遠超過我們的想像。這段其間,它們也演化出許多不同大小和形狀的種類:球狀、卵狀、桿狀、螺旋狀或絲狀(數量最多的是圓形原綠球藻〔Prochlorococcus〕,它們在 1986 年才被發現,也是最小的藍綠菌,一茶匙的海水有四十萬個原綠球藻)。

藍綠菌如果漂浮在水面上,並且經由黏質黏在一起,就會形成綠色的團塊。這些團塊會吸收當時在水中漂蕩的各種成分,包括碳酸鈣和碳酸鎂之類的礦物質,以及其他死亡的微生物而變得愈來愈稠密。自始至終,這些活生生的藍綠菌能夠藉由黏質滑動,往有陽光的海面移動,並持續增殖。

註解:

  1. 最早進行光合作用的生物並不會造氧氣,它們以紫色的色素吸收近紅外線,從含硫化合物中取得電子,把細小的純硫顆粒當成廢棄物排出。它們沒有如同近親藍綠菌那般昌盛,但是依然能夠在現在無氧的水中續存。

——本文摘自泛科學 2020 年 1 月選書《藻的祕密:誰讓氧氣出現?誰在海邊下毒?誰緩解了飢荒?從生物學、飲食文化、新興工業到環保議題,揭開藻類對人類的影響、傷害與拯救》,2019 年 12 月,臉譜出版

 

文章難易度
臉譜出版_96
85 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

1

1
1

文字

分享

1
1
1
葡萄酒變酸了?這可不能忍!巴斯德揪出「乳酸菌」,成功拯救法國的釀酒業──《厲害了,我的生物》
聚光文創_96
・2022/09/12 ・2154字 ・閱讀時間約 4 分鐘

國安危機!為什麼葡萄酒變酸了?

在上一集中,我們聊到了十七世紀,荷蘭科學家 aka 手作達人雷文霍克,以他那充滿手工溫度的兩百五十臺顯微鏡,以及一百七十二塊鏡片,為世人展示了「微型動物」(微生物)的世界。

然而在雷文霍克之後,除了斯巴蘭札尼神父曾經投以關愛的眼神,做了一些相關的實驗與研究,微生物似乎逐漸被眾人遺忘。

一直到微生物學的奠基者,巴斯德(Louis Pasteur)的出現,微生物的存在終於開始閃閃發光。一開始,巴斯德是打算進行「自然發生說」的相關實驗,沒想到,一個可能動搖國本的問題卻找上了他。

巴斯德(Louis Pasteur)被譽為微生物學的奠基者,也是研發出狂犬病疫苗的科學家。圖/Wikipedia

在浪漫優雅的法國,飲酒文化與釀酒事業同樣歷史悠久,然而,當時的酒商與釀酒廠負責人卻天天急得跳腳,一點也浪漫不起來。

-----廣告,請繼續往下閱讀-----

原來,釀酒這門手藝太過精細,只要一不小心,酒廠生產的酒很可能就會酸化變質,不僅造成商譽與營運的巨大損失,也會影響市場供應的穩定性。

生活不能缺少微醺的感覺,釀酒業的危機,簡直就是國安危機,巴斯德義無反顧的決定伸出援手。

於是,巴斯德拿出科學家的精神,仔細研究了整個釀酒過程,收集、觀察製程中,不同時間的發酵液,並且分析、比較這些酒液的不同。

經過一次一次的培養與試驗,巴斯德終於發現,在顯微鏡下,正常的發酵液中,有一種形狀圓圓的球體小生物(也就是酵母菌);而那些發酵失敗、變酸的酒液中,則可以看見一種又細又長的桿狀小生物(乳酸菌是也)。

-----廣告,請繼續往下閱讀-----
乳酸菌平常也許是不錯的東西,但要是跑到酒裡面可就不好了。圖/envatoelements

抓出讓酒精變質的小小兇手

一八五七年八月,巴斯德發表了他的研究成果,這篇論文,可以說是現代微生物學的開山之作。論文中指出,發酵,是涉及某些特定的細菌、黴菌、酵母菌等微生物的活動。

這些研究不僅拯救了釀酒業,也影響著食品業與醫藥產業。當時的科學界一度認為,發酵與食物腐敗、傷口發炎等現象,是可以畫上等號的,因此啟發了一名外科醫師的抗菌革命之路(這段故事我們後面再聊,先賣個關子)。

回到釀酒業的危機處理之上,雖然揪出了讓酒變酸的凶手,但巴斯德的工作還沒有完成,還得找出一勞永逸的方法,才算是功德圓滿。

經過一番苦思冥想,巴斯德最後採用的是加熱滅菌法,這種方法,如今也被稱為「巴斯德消毒法」(pasteurization)。

-----廣告,請繼續往下閱讀-----

我們都知道,加熱是個有效的滅菌方式,巴斯德將釀好的酒,短暫、而且小心翼翼的加熱,直到攝氏五十至六十度,藉此殺死那些可能讓酒變質的細菌。如此一來,不僅能讓酒長斯保存,也不會犧牲酒的口感,是不是很讚!

感謝巴斯德讓我們今天能喝到沒有壞掉的酒。圖/聚光文創

陷入絕境的養蠶業:蠶寶寶為什麼會生病?

感謝飛天小女警,啊不,是巴斯德的努力,一天又平安的過去了,釀酒業終於恢復了平靜。然而,一八六五年,法國農村再次遭遇危機。

雍容華貴的絲綢,是廣受貴族喜愛的高級布料,養蠶、攪絲、織布,也是當時法國農村的一大主力產業。沒想到,一種傳播快速、並且容易致死的疾病,卻在蠶寶寶界蔓延開來,蠶農們對此束手無策,養蠶業因此陷入絕境。

在昔日師長的建議之下,巴斯德決定投身於蠶病研究,為蠶寶寶尋得一線生機。

-----廣告,請繼續往下閱讀-----

在此之前,他並沒有養過蠶,也缺乏相關知識。於是他動身前往法國南部,花了五年的時間,在第一線的蠶病疫區進行研究。

透過顯微鏡,巴斯德在病蠶的身體裡,發現了一些微小的病原體。

不曉得大家小時候有沒有養過蠶寶寶呢?圖/envatoelements

同樣的,溯源之後還得找出根治方法,巴斯德除了研究鑑定方法,以幫助蠶農辨認染病的蠶寶寶之外,也建議蠶農對病蠶進行隔離。

篩檢與隔離,加上選擇性育種與提高蠶群的清潔度,巴斯德提出的「蠶界防疫新生活」,不但拯救了無數蠶寶寶的性命,也讓瀕臨崩潰的法國絲綢獲得喘息。

-----廣告,請繼續往下閱讀-----

在釀酒業與養蠶業分別取得成功之後,巴斯德於是將目光從經濟產業轉向醫療產業。

這些肉眼看不見的微生物,既然可能讓酒變酸,也可能讓蠶生病,是不是也可能引發人類的疾病?如果真是如此,只要知道如何躲避生物的攻擊,或許就能增加戰勝疾病的可能性。

大家努力待在家防疫的時候也別忘了記得動一動。圖/聚光文創

──本文摘自《厲害了,我的生物》,2022 年 9 月,聚光文創,未經同意請勿轉載。

所有討論 1
聚光文創_96
6 篇文章 ・ 6 位粉絲
據說三人出版社就算得上中型規模,也許是島嶼南方太過溫暖,我們對出版業的寒冬始終抱持著浪漫與天真。 作者們說,出版市場很艱困,但我們依然想在翻譯領軍的文學市場中,為本土的作者、原創故事發聲。 喜歡做為升學孩子減輕壓力的書,不要厚重百科類型、沒有艱澀的專有名詞,很多重大發現的背後故事更值得我們好好品味。