0

0
0

文字

分享

0
0
0

檸檬是治療癌症的良藥嗎?

科學松鼠會_96
・2013/03/15 ・2803字 ・閱讀時間約 5 分鐘 ・SR值 572 ・九年級

-----廣告,請繼續往下閱讀-----

credit: CC by * Cati Kaoe *@flickr

作者:綿羊c

流言: 美國馬里蘭州巴爾的摩市的健康科學研究所宣佈:檸檬可以殺死癌細胞,而不會影響健康細胞,不會產生化療那種可怕的副作用。據一家世界最大的製藥公司說,1970年以來,經過20多個實驗室測試,發現檸檬提取物可以破壞12種惡性細胞腫瘤,包括結腸癌、乳腺癌、前列腺癌、肺癌、胰腺癌……它被證明可以用於治療所有種類的癌症,比化療藥物阿黴素強10000倍!為什麼我們不知道這回事?因為在實驗室製造的人工 合成藥物為大公司帶來豐厚的利潤,因此他們對檸檬的功效諱莫如深。

真相: 其實大家不難看出,這條流言前後矛盾、措詞誇張,稍加判斷就會覺得十分可疑。事實上由於這條流言以郵件的形式在國外廣為傳播,流言中提到的機構巴爾的摩科學研究所還特意發佈了澄清聲明,聲明中說:

「製造這個傳言的人確實使用了我們發表過的研究成果,但事實上這些研究與檸檬無關,是他們插入了關於檸檬的信息。……它向癌症患者們傳達了錯誤或未經檢驗的醫學建議。健康科學研究所並沒有發佈過柑橘屬水果是否具有抗癌特性的信息。」

-----廣告,請繼續往下閱讀-----

這則聲明清楚地說明該流言是歪曲科研結果後得來的,不足為信。不過你也許會好奇,檸檬是怎麼跟癌症扯到一起的呢?檸檬的成分真的可以抗癌嗎?

營養豐富的芬芳果實

檸檬氣味芬芳,是許多飲品、甜點和菜餚的最佳配料,但果肉卻酸得難以入口,不宜鮮食,這主要是因為檸檬的果汁中含有大量果酸,其中最主要的檸檬酸比例高達5%以上。檸檬的皮則分為兩層:最外層含有精油,主要由90%的檸烯、5%的檸檬醛,以及少量其他醛類和酯類。內層不含精油,但儲存有多種苦黃酮苷和香豆素衍生物 [1] 。

檸檬營養豐富,是維生素C的優質來源,同時也是維生素B6、鉀、葉酸、黃酮類化合物和重要的植物生化素檸烯的來源 [1] 。從上個世紀90年代開始就有科學家發現,檸檬及其他幾種柑橘屬水果中富含的檸檬苦素、黃酮類化合物、類胡蘿蔔素、葉酸等成分在癌症研究中展現出了不錯的抗癌潛力,於是對這個方向的探索就此展開。

關於檸檬的抗癌研究

在探索某種成分是否具有抗癌功效時,最先進行的基本研究之一就是細胞層面的實驗,即讓這些潛力成分與癌細胞正面交鋒。在這類實驗中科學家們發現,檸檬苦素在抑制癌細胞生長方面效果不錯,有研究顯示這一成分能抑制多種癌症細胞系生長,其中包括白血病細胞、子宮頸癌細胞、乳腺癌細胞和肝癌細胞等 [2] 。檸檬中的幾種黃酮類成分也有類似功效,且無論是天然提取出的黃酮類還是人工合成的,都具有抑制效果 [3] 。科學家們發現,在柑橘類水果所含的眾多黃酮類成分中,一種稱為柚皮素的成分具有促進DNA損傷修復的功能,而DNA損傷正是最常導致細胞癌變的原因之一。所以柚皮素可能可以通過這個機理保護細胞,預防癌變 [4] 。

光有細胞層面的研究還不夠,科學家們還需要進行一些動物實驗,以確定這些成分在動物體內是否有類似的功能。在一項研究中,科學家們以大鼠為實驗對象,通過一種藥物誘發它們患上乳腺癌,再在它們的食物中添加柑橘屬植物中所含的黃酮類物質(橙皮素與柚皮素)或對應的果汁(橙子汁與柚子汁),結果發現了這些黃酮類物質和果汁的大鼠比起對照組大鼠,癌症發展速度更慢 [5] 。

還有一些研究者們通過大規模的統計來研究檸檬等柑橘屬水果的抗癌作用。比如2010年,一群歐洲科學家調查了各類癌症患者共計1萬多人,統計他們對 於柑橘屬水果的食用頻率和數量,並跟非癌症患者做比較,結果發現,消化系統癌症和上呼吸道癌症患者食用柑橘屬水果的量明顯少於非癌症患者 [6] 。一些日本科學家則採用了追蹤病例的方式,在1995-2003年間追蹤了4萬多名日本成年人食用柑橘屬水果的情況與患癌症的比例,結果發現吃柑橘屬水果越多的人群中患癌症的比例越小 [7] 。這些研究似乎也從一個角度說明,這些芬芳四溢的水果可能有預防癌症的效果。

不過並非所有研究結果都指向一個方向。檸檬中富含的葉酸是一種對DNA合成十分重要的營養成分,一直以來研究者們都將它視作保護細胞、預防癌症的優良物質。但近年也有一些研究表明,葉酸在抗癌作用上可能更像一把雙刃劍——條件適宜時它可以降低結腸直腸癌的發展,但過度攝入等情況下它也可能成為促進癌症發生的兇手 [8] 。

科學解讀研究結果

一隻小小的檸檬,牽出了許多角度各異、層面各異的科學研究,其中確有不少研究都表明檸檬中的一些成分可能有抗癌的作用。那麼這些研究結果能成為支持上文流言的證據嗎?

-----廣告,請繼續往下閱讀-----

想要知道這個問題的答案,我們就需要學會科學地解讀科學研究結果。

首先,一些細胞和動物層面的研究確實表明檸檬提取物有抑制癌細胞生長,甚至殺死癌細胞的功能。但想要證明某種成分被人攝入後能夠抗癌治癌,單靠如此簡單的細胞和動物模型研究是不夠的,還需要嚴格的多期臨床試驗。目前的研究結果遠不足以證明檸檬可以治療癌症,遑論檸檬的療效「比化療藥物強10000 倍」這樣毫無根據的推論。

再者,儘管有一些大規模統計研究認為多吃柑橘屬水果與患癌症機率較低有相關性,但相關性並不代表因果性。比如,常吃柑橘屬水果的人很可能有更健康的生活習慣,更常運動、更注重飲食健康等,因此他們得癌症的機率更低。所以這樣的研究結果不能說明多吃柑橘屬水果是他們更不容易得癌症的原因。大可不必因為看到這樣的研究,從此就只吃柑橘屬水果。應該各種水果蔬菜都吃、保持豐富的食譜,這樣才會更有益於健康。

事實上,儘管檸檬苦素、黃酮類化合物等柑橘屬提取成分在早期的細胞實驗中表現良好,但近年來這些研究的進展較為緩慢。想要看到進一步的結論,還有待更多科學家的努力 [9] [10] 。 尋找有效的抗癌藥物是一個艱苦漫長的過程,有潛力的成分或許不少,但大浪淘沙之後可以成功成為有效藥的則少之又少。而這個過程需要無數研究者的努力,需要極為嚴謹的篩選,絕不是僅憑簡單的幾個研究就可以下定論的。對於我們普通大眾,生病了應當去醫院、遵醫囑,而不能盲信偏方,哪怕這種偏方披上了現代科學的外衣。

-----廣告,請繼續往下閱讀-----

結論: 確實有科學研究表明,檸檬等柑橘屬果實中的一些成分具有研製出抗癌藥物的潛力。但是相關研究還不成熟, 離臨床應用還有一段距離。可以確定的是,宣稱檸檬「被證明可以用於治療所有種類的癌症」,這種說法是錯誤的。同時也絕不提倡用檸檬替代正規的腫瘤治療方法,治病還是應該遵照醫囑。作為健康信息應該具備真實性、準確性,並有可靠的醫學研究來源。虛假的健康信息對於自己和他人的健康毫無益處。

參考文獻

  1. (12) Murray, M., The Encyclopedia of Healing Foods. . 2005, New York: Atria Books.
  2. Tian, Q., et al., Differential inhibition of human cancer cell proliferation by citrus limonoids. Nutr Cancer, 2001. 40(2): p. 180-4.
  3. Manthey, J.A. and N. Guthrie, Antiproliferative activities of citrus flavonoids against six human cancer cell lines. J Agric Food Chem, 2002. 50(21): p. 5837-43.
  4. Gao, K., et al., The citrus flavonoid naringenin stimulates DNA repair in prostate cancer cells. J Nutr Biochem, 2006. 17(2): p. 89-95.
  5. So, F.V., et al., Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. Nutr Cancer, 1996. 26(2): p. 167-81.
  6. Foschi, R., et al., Citrus fruit and cancer risk in a network of case-control studies. Cancer Causes Control, 2010. 21(2): p. 237-42.
  7. Li, W.Q., et al., Citrus consumption and cancer incidence: the Ohsaki cohort study. Int J Cancer, 2010. 127(8): p. 1913-22.
  8. Mason, J.B., Folate, cancer risk, and the Greek god, Proteus: a tale of two chameleons. Nutr Rev, 2009. 67(4): p. 206-12.
  9. Sohail Ejaz, A.E., Kiku Matsuda,Chae Woong Lim, Limonoids as cancer chemopreventive agents. Journal of the Science of Food and Agriculture, 2006. 86(3): p. 339-345.
  10. Marchand, L.L., Cancer preventive effects of flavonoids—a review. Biomedicine & Pharmacotherapy, 2002. 56(6): p. 296-301.

轉載自科學松鼠會

-----廣告,請繼續往下閱讀-----
文章難易度
科學松鼠會_96
112 篇文章 ・ 6 位粉絲
科學松鼠會是中國一個致力於在大眾文化層面傳播科學的非營利機構,成立於2008年4月。松鼠會匯聚了當代最優秀的一批華語青年科學傳播者,旨在「剝開科學的堅果,幫助人們領略科學之美妙」。願景:讓科學流行起來;價值觀:嚴謹有容,獨立客觀

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
解密離岸風電政策環評:從審查標準到執行成效,一次看懂
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/21 ・3546字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 環境部 委託,泛科學企劃執行。 

政策環評是什麼,跟一般環評差在哪?

隨著公共建設的規模越來越大,傳統的環境影響評估(EIA),難以應對當今層層疊疊的環境議題。當我們評估一項重大政策時,只看「單一開發案」已經不夠,就像評估一棵樹,卻忽略了整片森林。因此,政策環境影響評估(SEA)應運而生,它看樹,也看森林,從政策的角度進行更全面的考量與評估。

與只專注於「單一開發案」的個案環評不同,政策環評更像是一場全面性的檢視,強調兩個核心重點:「整合評估」與「儘早評估」。簡單來說,這不再是逐案評估的模式,而是要求政府在制定政策時,就先全面分析可能帶來的影響,從單一行為的侷限中跳脫,轉而聚焦在整體影響的視角。無論是環境的整體變化,還是多項行為累計起來的長期影響,政策環評的目的就是讓這些潛在問題能儘早浮現、儘早解決。

除此之外,政策環評還像是一個大型的協商平台,以永續發展為最高指導原則,公開整合來自不同利益團體、民眾與各機關的意見。這裡,決策單位不再只是單純的「評分者」,而是轉為「協調者」或「仲裁者」,協調各方的意見看法在這裡得到整合,讓過程更具包容性。

-----廣告,請繼續往下閱讀-----

政策環評並沒有所謂的「否決權」,而是側重意見的蒐集與整合,讓行政機關在政策推動時,能更全面地掌握各方意見。政策環評旨在建立系統化、彈性的決策評估程序(包含量化、特徵化等評估方式),也廣納社會面或民眾滿意度等影響因子,把正式與非正式的作法一併考量進去。再來,決策程序中能層層檢討、隨時修正,也建立了追蹤機制和成效評估標準(如環境殘餘效應、累積效應等),透過學習來強化決策品質與嚴謹度。就像一場球賽,隨時根據變化、調整策略。

這樣的制度設計,就非常適合離岸風電這類規模大、跨區域、影響層面廣泛的能源政策評估,讓我們可以在政策推動初期就想到整個工程對環境、產業發展與社會的諸多影響,也為後續政策執行奠定更穩固的基礎。

政策環評並沒有否決權,而是重在整合各方意見、量化影響以及建立追蹤與修正機制,這樣的制度設計便適用於離岸風電等大型政策評估。圖/envato

離岸風電為何需要的是政策環評?

離岸風電是能源轉型的重要策略之一,但這不是只在某塊空地上架幾個風車,而是要在廣闊的大海中進行大規模建設,牽涉的不僅是發電,還涉及海洋保育、航空交通、水下文化資產等議題,更與當地漁民的權益息息相關。

這樣的大型離岸風電工程,因海洋環境的風險和不確定性極高,很容易讓人擔心生態影響。如何在海洋生態保護和綠能發展之間找到平衡點?這就需要政策環評的把關,從多方檢視這些複雜的挑戰,確保政策推行既能穩妥,又能達成發電目標。

-----廣告,請繼續往下閱讀-----

2016 年 3 月,經濟部自願提出「離岸風電區塊開發政策評估說明書」,是臺灣首次針對再生能源政策所進行的政策環評。根據這份評估說明書,政府將採分期公告、逐年檢討的方式,每三年開放 0.5~1 百萬瓩(GW)的電量額度鼓勵業者投入開發。當時環保署(現為環境部)歷經九個月召開 2 次意見徵詢會議,蒐集環評委員、專家學者、相關機關、民眾等意見,最終於同年 12 月的環評委員會作出徵詢意見。這些協商和檢討的過程,讓政策「名正言順」,得以充分顧及各方利益與生態平衡。

共通性環境議題與因應對策

在「離岸風電區塊開發政策評估說明書」中,環評會議盤點了開發過程中共通的環境議題。

首先,對於海洋生態保育的重點,特別是對中華白海豚的保護。環評會要求風機基座必須距離白海豚棲地1公里以上,以減少對其生態的干擾。實際上,這項規範在後續的實務執行中更為嚴格,例如,福海二期示範風場已退縮到 2.5 公里外,臺電二期風場甚至退到 4.2 公里外,顯示政策環評確實發揮了實質作用。此外,針對施工期間的聲音干擾,要求施工需有 30 分鐘以上的打樁緩啟動時間,並限制聲量不得超過 180 分貝等。

針對鳥類保育,政策環評也訂立了具體規範。其中,包括風機之間必須留設 500 公尺以上的鳥類穿行廊道,並在施工期間避開每年 11 月至隔年 3 月的候鳥過境期。同時,為確保這些措施確實生效,工程方也被要求設置「鳥類活動監測系統」,持續追蹤、評估風場對鳥類的影響。

-----廣告,請繼續往下閱讀-----

此外,環評會也確立了「先遠後近」的開發原則,要求優先開發較單純的航道外側區塊,待累積足夠經驗及相關資料後,再進行近岸區域的開發。這項原則考量了近海生態系的複雜性,也顧到養殖漁業的漁民權益,展現出政策環評在平衡發展需求與環境保護上的價值。

新一代的審查機制:達成能源轉型及環境保護雙贏

為提升環評效率並確保審查品質,環境部參考過去離岸風電審查經驗,制定「風力發電離岸系統開發行為環境影響評估初審作業要點」,建立了全新的二階段審查機制。

環境部推動二階段審查機制,提升離岸風電環評效率與審查品質。圖/envato

這套新機制分為兩個階段。第一階段,就像「初步檢查」,由環境部依照檢核表進行初審,並由環評審查委員會執行秘書邀集 2-5 位環評委員進行初審,通過第一階段初審之業者,可取得經濟部遴選資格,其初審結果有效期為兩年,必要時可申請展延一年。接著進入「第二階段」,開發單位檢附目的事業主管機關核配的容量證明文件等資料,提供更詳細的環境影響說明書以進行實質審查。

檢核表明確規範了 15 大項審查事項、112 項檢核項目,涵蓋開發案的全生命週期。

-----廣告,請繼續往下閱讀-----

工程面,包含風機及海上變電站基礎設置、海域電纜路線規劃、陸域設施工程等硬體設施的規範。其中,風機基礎設置必須避開海岸保護區、河口、潮間帶等環境敏感區域,且須進行地震危害度分析。海域電纜部分,除特殊情形外,埋設深度至少須達 1.5 公尺,且不得跨越中華電信海底電纜 1 公里的範圍。

環境保護上,檢核表則對施工噪音管制訂立了明確標準。舉例來說,打樁期間警戒區 750 公尺範圍內的水下噪音不得超過 160 分貝,且必須全程採用最佳噪音防制工法。同時,每個開發案或聯席審查的風場,同一時間內只能進行一支基樁施作,而日落前一小時到日出前也不得啟動新的打樁作業。

環境監測計畫更是檢核表中的重點,分為「施工前、施工期間、營運期間」三階段,每個階段都規定了詳細的監測要求(包括海域底質監測、水下噪音監測、鯨豚目視監測等)。以鯨豚監測為例,每年需執行20趟次,四季中每季至少執行 2 趟次。此外,所有監測數據都必須上傳至環境部「環保專案成果倉儲系統」(https://epaw.moenv.gov.tw/)供各界查閱。

這套標準化的審查機制不僅解決了「同一風場可能有多家廠商重複調查或審查」的資源浪費,也透過明確的檢核項目,讓開發單位在規劃階段就能掌握更具體的環境保護要求。不僅如此,該機制亦確保了環境保護標準前後一致,避免不同案件之間標準不一。

-----廣告,請繼續往下閱讀-----

結語

透過新的審查機制,環境部正積極推動再生能源開發案的環評審查作業,在提升行政效率之餘,也確保環境影響評估的品質,支持臺灣的離岸風電開發及國家能源轉型政策,也做好把關。藉由標準化檢核表和二階段審查制度,期待能在推動能源轉型的同時落實環境保護。

為確保制度能持續精進,環境部每半年至一年會進行制度檢討,並持續公開所有環評書件於「環評書件查詢系統」(https://eiadoc.moenv.gov.tw/eiaweb/)。此外,環評會議召開前一週,也必須在指定網站公布開會訊息,讓民眾能申請列席旁聽或發表意見。透明化措施一方面展現了政府推動永續發展的決心,另一方面也確保全民能共同參與監督離岸風電的發展過程。未來,這套制度將在各界的檢視與建議中持續完善,為臺灣的永續發展貢獻心力,發揮環評作業的最大效益。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
復發淋巴瘤的希望之光:ADC 治療的革新突破
careonline_96
・2024/10/21 ・2212字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

圖/照護線上

肺癌後又罹淋巴瘤!復發靠突破性治療–抗體藥物複合體 ADC 續命

「瀰漫性大 B 細胞淋巴瘤(Diffuse large B-cell lymphoma),簡稱 DLBCL,是一種有機會治癒的疾病,但並非每個人都能如此幸運。曾碰過一位讓我印象深刻的患者,他的淋巴瘤在第一線治療緩解多年後又再復發。」林口長庚醫院血液科施宣任醫師表示,「患者過去曾因罹患肺癌切除過肺臟,身體狀況難以承受自體幹細胞移植,面臨治療選擇相當有限的困境,狀況一度很不樂觀。」

幸運的是,當時針對 DLBCL 淋巴瘤的突破性新治療–抗體藥物複合體 ADC(Antibody-drug conjugate)剛好核准通過。根據臨床試驗數據,針對復發的病患,若於治療時再加上 ADC 藥物,完全反應率是傳統化療的兩倍,整體存活期更較傳統化療增加將近三倍!因此當時在討論後,立刻幫患者將 ADC 藥物加入治療組合中,後續也順利地達到完全緩解快一年,目前沒有復發跡象,持續門診追蹤。

瀰漫性大B細胞淋巴瘤(DLBCL)治療不能等
圖/照護線上

台灣常見淋巴瘤 DLBCL 惡性度高!復發具抗藥性急需新治療突破

DLBCL 是台灣最常見的淋巴瘤。根據國健署癌症登記報告,台灣一年新增超過四千例淋巴癌個案中有九成屬於非何杰金氏淋巴瘤,超過一半是惡性度很高的 DLBCL,不僅進展快速,且可能侵犯全身器官,因此治療要越快越好,盡量避免等待空窗期。

施宣任醫師強調,「不像一些小細胞的低惡性度淋巴瘤可以等症狀明顯再治療,大細胞病變通常來勢洶洶,像 DLBCL 雖然會因為分期等因素,治療選擇上略有差異,但基本就是完全不能等!」過去 DLBCL 標準的第一線治療為化療藥物再加上 CD20 單株抗體的『免疫化學治療』,除化療毒殺腫瘤細胞外,同時藉由單株抗體直接促使帶有 CD20 的 B 細胞死亡達到緩解的效果。「大約 5~6 成的病患接受免疫化學治療後可以達成長期完全緩解也就是痊癒;剩下無法完全緩解的這群病患,又被稱作頑固型 DLBCL 淋巴瘤,因為已經對第一線藥物產生抗藥性,治療上較為棘手,需要更有效的新藥物選擇。」

-----廣告,請繼續往下閱讀-----
抗體藥物複合體ADC雙管齊下,結合單株抗體+化療
圖/照護線上

ADC 治療雙管齊下 提升療效降低副作用 健保已開放第三線給付

ADC 是經臨床試驗證實有效 DLBCL 淋巴瘤治療的新突破選擇。ADC 藥物的『複合』二字,指的就是單株抗體與化療的結合,藉由單株抗體對腫瘤的精準指向性,將化療藥物直接送到腫瘤身邊,進行毒殺。施宣任醫師進一步解釋,「ADC 藥物的專一性優勢,除了讓治療效果更顯著外,相較傳統化療沒有目標性地作用,ADC 藥物透過單株抗體可達成如同讓淋巴瘤細胞直接把化療吞進去的效果,自然副作用也降低很多,病患比較少感覺噁心、想吐、掉髮等。」

臨床研究顯示,ADC 藥物合併免疫化學治療一起使用後,能夠增加頑固型或復發淋巴瘤病人的整體存活期和完全反應率,並具有更長的療效持續時間。「整體存活期約增加近3倍、達成完全反應的機率則增加2倍以上,對已產生抗藥性的病人來說,這樣的數字實屬難能可貴。」施宣任醫師指出,因此美國 NCCN 治療指引也建議,符合特定條件的 DLBCL 淋巴瘤病人,可優先考慮接受 ADC 藥物的治療組合。

「台灣的醫療基本都是與國際同步,特別會參考美國的作法,因此健保署也於今年(113年)2 月將 ADC 納入 DLBCL 淋巴瘤第三線給付,讓患者能夠在減輕經濟負擔的狀態下,快速接受與國際同步的最新治療。」

ADC藥物或健保給付:提升頑固型或復發DLBCL反應率
圖/照護線上

彌漫性大B細胞淋巴瘤(DLBCL)治療與日常照護小提醒

現今 DLBCL 淋巴瘤的治療已朝多元選擇邁進,但免疫化學治療仍是重要的骨幹治療。施醫師提醒,包括 ADC 藥物等不同治療組合,都會搭配不同的化學藥物,毒性雖有高有低,但都可能造成免疫力低下,因此治療期間,應盡可能降低感染的機會,避免出入人潮較多的公共場所;近期流感、新冠等呼吸道傳染症疾病也較盛行,DLBCL 的病人更應提高警覺,小心預防。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

careonline_96
533 篇文章 ・ 275 位粉絲
台灣最大醫療入口網站