0

4
1

文字

分享

0
4
1

TGV 玻璃基板真能取代矽基板?良率、應力與失效解析全揭密

宜特科技_96
・2025/09/24 ・3349字 ・閱讀時間約 6 分鐘

本文轉載自宜特小學堂〈玻璃基板VS矽基板之戰?TGV產品失效真因怎麼找?〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

挑戰矽霸權?TGV(Through-Glass Via)玻璃基板技術因優異的高頻與低損耗特性,廣泛應用於5G、AIoT、車用雷達等領域,成為先進封裝的新選項。然而,業界在推動 TGV 技術導入時,卻頻繁遇到製程良率、封裝機械強度、以及材料熱失配 (CTE mismatch)等問題。該如何找出失效真因,提升良率呢?

半導體產業正迎來基板材料的重大革新!隨著 AI、高速運算(HPC)與電動車等應用日益蓬勃,因低損耗、高頻特性與成本優勢的需求,利用玻璃基板製作玻璃通孔(TGV, Through-Glass Via)在高階封裝技術發展中逐漸被重視,也成為這股 AI 變革浪潮中,有機會取代矽基板製作的矽中介層(Silicon Interposer)技術的明日之星。

根據業界報導,Intel、Samsung、Hana Technology、Nippon Electric Glass(NEG)等多家半導體與材料大廠,已紛紛投入TGV 的開發與試產,並針對 AI 晶片、高頻模組等應用設計新一代封裝架構。根據 Verified Market Reports 的研究,TGV 技術市場規模預計將由 2024 年的 12 億美元提升至 2033 年的 25 億美元,2026–2033 年預測年均複合成長率為 9.5%,顯示其具備高度競爭價值。

什麼是 TGV 玻璃基板技術?TGV 是一種於玻璃基板上製作「金屬導電孔」(vias)的技術。簡單來說,就是在一片玻璃板上鑽孔,再把導電金屬(如銅)填入孔內,讓電氣訊號得以從玻璃的一面傳輸到另一側。像是在玻璃上開出許多高速通道,讓晶片之間的電訊號可以快速且低損耗地傳輸。 

-----廣告,請繼續往下閱讀-----
圖一:TGV結構示意圖 。圖片來源/iST宜特科技

跟「矽」這位老前輩相比,TGV 的關鍵優勢在於高頻傳輸、絕緣性佳,可視為下一世代 2.5D、3D 等先進封裝的重要技術之一,非常適合應用在 AI、5G、車用雷達等高速模組。然而,業界在導入 TGV 技術時,製程良率、封裝機械強度,以及材料熱失配等問題,將是衝擊可靠度驗證結果與拖慢量產進度的重大瓶頸。

本篇宜特小學堂將根據宜特與業界的實務經驗,分享我們如何透過一站式解決方案,四步驟找出產品失效的根本原因。最後也將分享一則實際案例,讓您更深入了解 TGV 技術的應用與潛在風險。

一、目前 TGV 發展遇到的兩大逆風

  • (一) 製造良率與成本挑戰
    • 玻璃鑽孔問題:目前雷射或化學蝕刻仍存在孔徑形狀不一、表面粗糙度高等問題,影響後續導電性與金屬填充均勻性。
    • 銅填充與擴散風險:填充不均導致孔洞電阻變異,銅擴散至玻璃內部則可能造成絕緣劣化與長期失效。
  • (二) 機械強度與封裝應力
    • 玻璃基板脆性高:玻璃雖剛性高但脆性(Brittleness)大,在製程、封裝壓合、測試或使用過程中易受微裂紋影響而造成電氣異常。
    • 銅與玻璃間熱膨脹係數(CTE)差異大:長期熱應力累積易導致界面剝離。
    圖二: TGV中銅與玻璃間脫層異常。圖片來源/iST宜特科技

    二、時間就是金錢 四大解析步驟快速找出潛在異常點

    接著,我們將不藏私地分享宜特故障分析實驗室如何找出TGV玻璃基板的故障點。透過以下四大步驟,有效協助客戶快速找出潛在故障點並加以改善,適用於TGV初期導入、材料選型、量產前可靠度驗證等階段。

    • 步驟一:創造環境,誘發潛在異常點現形
      • 透過加速老化可靠度實驗,如HAST(Highly Accelerated Stress Test)與 HTS(High Temperature Storage),可評估 TGV 結構在高溫/高濕/高壓環境下的長期穩定性,藉此誘發出結構中可能存在的異常點。此方法可在短時間內模擬數年壽命,快速誘發銅擴散、玻璃界面剝離或導通異常等潛在問題。宜特可依客戶需求調整測試條件(如85°C / 85%RH / 1000小時),並結合後段破壞分析,提高整體測試效能。
    • 步驟二:非破壞檢測TGV缺陷所在區域,快速定位異常點
      • 當有相關電氣漏電失效發生時,可利用亮點分析儀器 (Thermal EMMIOBIRCH) 進行失效點定位;此外,採用高解析度 X-Ray 系統,進行 2D 平面觀察3D 斷層掃描,無需破壞樣品,即可快速掌握 TGV 電性異常物性狀態或銅填孔的完整性。此技術可識別TGV內部填鍍常見的空洞(void)缺陷。我們也可針對高深寬比結構進行局部放大分析,作為後續精細切片的輔助依據。
    • 步驟四:微觀材料結構分析,有效改善潛在風險
      • 切片後可進一步搭配 SEMTEM 觀察穿孔界面狀態,並利用 EDS / EELS 元素分析確認銅擴散路徑與濃度分布,尤其在檢測玻璃內部的微量銅擴散時,此步驟至關重要,有助於建立完整失效機制模型。亦可搭配 EBSD 分析晶粒大小/方向(Grain size/ orientation)、晶界(Grain boundary)特性與殘留應力,有助改善製程與提升可靠度和電氣特性 (閱讀更多: 揭密 TGV 製程中的隱形殺手:EBSD 如何破解應力難題)。

    三、TGV案例分享

    在宜特的 TGV 異常分析經驗中,導致導通失敗的主因多為 TGV 製程中「玻璃穿孔」的穿孔品質不良與「金屬填孔」(多採用電鍍或化學填鍍)的銅填鍍不均。由於 TGV 基板上的微小通孔需完全且均勻填入銅材,才能確保穩定導電路徑,任何玻璃孔蝕刻異常都可能導致導通中斷。同時,若電鍍參數設定不當,易產生孔內空隙、填充不飽滿或柱狀結構不連續等缺陷,進而造成電氣特性異常與封裝失效。

    -----廣告,請繼續往下閱讀-----

    在這個案例中,我們可利用 2D X-ray 非破壞分析,進行異常點定位,再搭配 精準切片,並以 SEM 觀察發現銅填充空隙不均,導致部分 TGV 產生無法導通或高阻值異常。經分析後,針對鍍銅條件進行優化與調整填鍍時間,最終成功協助客戶提升銅填孔飽和度與導電一致性,得以提升整體良率。

    圖三:從 2D X-Ray 觀察,產品原先有銅填孔不均的問題,沒有連結在一起的通孔表示導通失敗 (左圖以黃圈標出部分失效處);經過鍍銅條件優化與調整後,提升了銅填孔的飽和度(右圖)。圖片來源/iST宜特科技
    圖四:從 SEM 可清楚看出,製程優化和調整後,最終成功提升銅填孔飽和度。圖片來源/iST宜特科技

    儘管矽中介層技術因「製程成熟」與「散熱佳」,仍是目前應用的主力。然而,TGV 玻璃基板低電氣阻抗、高頻率傳輸與卓越的絕緣特性,成為半導體產業在 AI 加速器、高階通訊及毫米波雷達等前瞻技術趨勢下的關鍵材料之一。隨著全球半導體大廠的積極投入,TGV 玻璃基板有望成為先進封裝領域中極具戰略意義的「明日基板」技術。若能透過有效的故障分析手法加速協助提升 TGV 玻璃基板可靠度與其製程良率,將可大大增加 TGV 及早量產化的可能性。若您喜歡這類產業解讀內容,歡迎追蹤宜特科技臉書,掌握第一手科技新知!

    -----廣告,請繼續往下閱讀-----
    文章難易度

    討論功能關閉中。

    宜特科技_96
    20 篇文章 ・ 5 位粉絲
    我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

    0

    1
    0

    文字

    分享

    0
    1
    0
    停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
    鳥苷三磷酸 (PanSci Promo)_96
    ・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

    本文與 PAMO車禍線上律師 合作,泛科學企劃執行

    走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

    這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

    在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

    -----廣告,請繼續往下閱讀-----
    如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

    薪資證明的難題:零工經濟者的「隱形損失」

    過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

    但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

    這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

    施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

    -----廣告,請繼續往下閱讀-----
    PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

    300 萬張罰單背後的僥倖:你的直覺,正在害死你

    根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

    陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

    施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

    數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

    -----廣告,請繼續往下閱讀-----

    陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

    答案是:絕對不行。

    施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

    正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

    保險不夠賠?豪車時代的「超額算計」

    另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

    -----廣告,請繼續往下閱讀-----

    施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

    因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

    這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

    談判桌的最佳姿態:「溫柔而堅定」最有效?

    除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

    -----廣告,請繼續往下閱讀-----

    雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

    施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

    相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

    車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

    在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

    -----廣告,請繼續往下閱讀-----

    PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

    這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

    施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

    平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

    從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

    -----廣告,請繼續往下閱讀-----

    當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

    但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

    PAMO車禍線上律師官網:https://pse.is/8juv6k 

    -----廣告,請繼續往下閱讀-----
    文章難易度

    討論功能關閉中。

    0

    0
    1

    文字

    分享

    0
    0
    1
    當水泥叢林長出了「自主意識」:為什麼智慧建築是人類居住的終極演化? 
    鳥苷三磷酸 (PanSci Promo)_96
    ・2025/12/23 ・3985字 ・閱讀時間約 8 分鐘

    本文為 內政部建築研究所 廣告

    從「死」的殼,到「活」的有機體 

    當我們談論「建築」時,你的腦海中浮現的是什麼?是鋼筋混凝土構成的冰冷牆壁?還是僅僅能遮風避雨的空間? 在過去的數千年裡,建築被視為「被動」的存在。它們靜靜地在那裡,承受日曬雨淋,等待人類去開窗、去點燈、去調整空調。如果這棟房子是一具軀殼,那麼過去的它,是沒有靈魂、沒有神經的「死物」。 

    因此,當我們想要在建築上減少碳排,往往都是些很被動的過程:降低建造時的碳排、減少用電。 

    然而,隨著科技的發展,我們正站在一個歷史的轉折點上 。智慧建築(Intelligent Building)是指藉由導入資通訊系統及設備之手法,使空間具備主動感知(Active Sensing) 的智慧化功能,以達到安全健康、便利舒適、節能永續目的之建築物。這意味著,如果你還認為智慧建築只是裝了自動門或聲控燈的房子,那你可能完全低估了這場演化的幅度。智慧建築正在從一個被動的「殼」,演化成一個具備生命特徵的「有機體」。 

    -----廣告,請繼續往下閱讀-----

    為什麼我們需要這種演化? 首先是為了生存。在全球追求「臺灣 2050 淨零排放路徑及策略」的背景下,建築物作為能源消耗的大戶,必須變得更聰明才能達成節能永續。其次是為了照護。面對高齡化社會的挑戰,建築必須具備「健康管理」的能力,主動守護居住者的生理狀態。最後是為了安全。在氣候變遷導致的極端天氣與地質風險下,建築需要更敏銳的神經系統來預判災難。 

    內政部建築研究所特別訂定《智慧建築評估手冊》,指明智慧建築的評估指標。 只是堆砌昂貴電子設備的,不能再稱為智慧建築,而必須是人類為了回應環境劇變,利用資通訊系統(ICT)作為人工神經,賦予空間「看、聽、思考」的能力,終極目標只有一個:在最節能的狀態下,提供人類最安全、健康、便利的生存環境 。 

    神經系統:光速傳遞的感知網絡 

    一個聰明的生物,首先要有發達的神經系統。在智慧建築的架構中,這被稱為「基礎設施指標」 。這套系統是建構智慧建築中各項系統連結、溝通與傳輸所需的資通信網路架構。 

    建築物內的垂直主幹佈線必須採用「光纖化架構設計」。光纖(Fiber Optics)不僅具備極高的傳輸頻寬,更擁有體積小、易擴容、抗干擾的特性 。這就像是生物演化出粗壯且傳導極快的中樞神經,確保海量數據能在建築大腦與感測器之間順暢流動。 

    -----廣告,請繼續往下閱讀-----

    除了有線的骨幹,智慧建築還佈建了全方位的無線傳輸網絡。這要確保電梯內、地下室等每個角落都有強穩的訊號,這是智慧建築與外界溝通的基本本能。再來,還要建構無線物聯網(AIoT),利用 Bluetooth、ZigBee 或 NB-IoT 技術,將環境中的微小變動——如空氣品質、溫溼度或設備運轉資訊——匯集到數據庫 。 

    物聯網是智慧建築的關鍵。圖片來源:Shutterstock 

    還有,智慧建築的神經系統設計必須考慮「未來」,也就是「擴充性」與「備援機制」。當主路由斷訊時,備援網路必須在毫秒間接管,確保數據不中斷;當新的 AI 技術出現時,現有的光纖架構還要能輕易升級 。這種設計讓建築具備了神經的可塑性,能隨著科技的進步而持續進化,而不是在完工五年後就變成了科技廢墟。 

    此外,為了保護這套脆弱的神經系統,資訊安全也被提升到了基礎設施的核心位階 。這包含了防火牆、雙因子認證,甚至是非對稱的區塊鏈加密機制,確保建築的感知數據不會被外部駭客竄改或截斷 。 

    大腦與意識:從數據到預判的維運智慧 

    有了神經,還需要大腦。智慧建築的維運管理(Operation Management)系統,就是它的核心意識所在。 現在,建築的大腦不再只是被動地接收訊息,而是具備了自我意識的雛形。它透過整合 BIM(建築資訊模型)與數位孿生(Digital Twin)技術,在虛擬世界中建立了一個一模一樣的自我 。 

    -----廣告,請繼續往下閱讀-----

    這份「意識」並非從交屋那天才開始,而是從施工階段就開始孕育。在建造過程中,智慧建築就已經開始記錄自己的成長過程。資材追蹤能確保每一根鋼筋、每一方水泥都符合設計標準 。 這些數據最終匯集成「靜態數據庫」,成為建築一生中最重要的「初始記憶」。 

    當建築進入營運階段,它的大腦開始處理大量的動態數據。最神奇的功能在於預測性維護。傳統建築是等電梯壞了才修,但智慧建築能分析馬達的震動與溫度曲線,在故障發生前兩週就發出預警,通知維修人員進行「預防性治療」。這不僅讓維修成本更低,也讓居住更安全與可靠。 

    免疫與反射:毫秒級的生存本能 

    關鍵來了,在「生物」的定義中,「反應」是一個關鍵要素。當危險來臨時,生物會本能地閃避或應對。智慧建築在「安全防災(Safety & Disaster Prevention)」指標中,演化出了強大的免疫系統與反射神經 。 

    這套系統的核心在於偵知、顯示、連動的鐵三角架構 。 

    -----廣告,請繼續往下閱讀-----
    • 偵知(Sensing):它具備火警感知、地震感測、用電異常偵測甚至漏水偵測的能力 。 
    • 顯示(Display):一旦察覺異樣,它會立即在公共空間、手機 APP 甚至住戶內的影音對講裝置發出告警訊息 。 
    • 連動(Linkage):這是最關鍵的「反射行為」 。 

    假設有一場火災發生。智慧建築的感測器嗅到煙霧的瞬間,它會啟動一連串複雜的生理反射: 

    • 切斷威脅:自動關閉瓦斯閘門,關閉非必要的用電迴路以防二次災害 。 
    • 開闢通路:解除逃生動線上的所有門禁管制,並控制昇降機自動停靠避難層 。 
    • 引導逃生:啟動閃滅型或聲響型避難方向指示燈,主動引導人員往遠離起火點的方向移動 。 
    • 連動影像:防災中心會自動跳出火場即時影像,讓指揮人員能瞬間掌握真相 。 

    這種像是科幻電影中太空船的「毫秒級」連動,能將人為判斷錯誤的可能性降到最低,與時間賽跑,保護生命。 

    除了應對自然災害,建築也具備針對「人為威脅」的免疫力。 透過影像辨識、電子圍籬與防盜警報系統,建築能區分住戶與入侵者 。當發生入侵或求救訊號時,系統會立即連動周遭的照明與廣播設備,進行嚇阻並同步錄影存證 。甚至連地下室的有害氣體(如一氧化碳)濃度過高時,建築也會自動啟動送排風設備進行「排毒」 。 

    智慧建築也能保護「人」的安全。圖片來源:Shutterstock 

    這就是智慧建築的生存哲學:它不僅是一個避難所,它本身就是一個會主動防衛的戰士。 

    -----廣告,請繼續往下閱讀-----

    代謝與恆定:與地球共生的節能哲學 

    作為一個龐大的能量消耗體,智慧建築懂得如何精準地調節自己的能量代謝。這對應的是「節能管理(Energy Management)」指標 。 

    節能不再只是換裝 LED 燈具那麼簡單,而是進入了智慧化管理的層次。 

    • 智慧需量控制:透過能源管理系統(EMS),建築能即時預測用電峰值。當電力負擔過重時,它會主動調降非必要區域的空調或照明強度(卸載),甚至釋放儲能系統中的電量,以達成平滑負載的效果 。 
    • 再生能源與創能:智慧建築會利用太陽能或小水力發電來補充體力,並將這些綠色能量納入整體的能源調度計畫中 。 

    在 AI 時代,這些智慧化管理都迎來了超進化。建築會自動分析過去的用電數據,模擬不同的環境參數(如室外溫度、日照強度、人流量),預測出最省電的運行模式 。這種精準的能耗管理,除了省電費,更是為了達成 2050 淨零排放的生存策略。 

    建築是淨零的重要關鍵。圖片來源:Shutterstock 

    節能的同時,住在裡面的我們也要感到舒適。就像恆溫動物需要維持體溫恆定,智慧建築也致力於維持室內環境的恆定性。這就是健康舒適(Health & Comfort)指標的核心 。 

    -----廣告,請繼續往下閱讀-----
    • 環境狀態偵知:感測器不僅監控溫溼度,還監控二氧化碳濃度、PM2.5、TVOC(總揮發性有機物)以及光環境照度 。 
    • 設施連動控制:當感測到室內二氧化碳過高時,它會主動引進外氣;當窗外日照過強時,它會自動調節遮陽板角度或調光控制燈具 。 
    • 水環境管理:它甚至會監測水箱的水質與酸鹼值,確保流向你手中的每一滴水都是安全的 。 

    這種「以人為本」的調節,讓居住者能處於最舒適、最健康的狀態,讓建築真正成為一個能呼吸、會調節的有機生命體。 

    它不只是建築,它是你的生存夥伴 

    演化從未停止。當建築智慧化程度不斷提高,過去許多我們認為僅與施工階段有關的項目,也可以納入管理,方便我們計算建築完整生命週期的碳排放。例如是否使用預鑄工法來減少施工廢棄物與工時、是否使用到了具備感知與自修復能力的智慧建材、甚至是跨建築的數據群管理的智慧管理雲平台。智慧建築正在打破單一建築的界限,向智慧社區、智慧城市張開聯網。 

    建築是我們遮風避雨、休息的所在。但在這個氣候變遷劇烈、能源稀缺且人口老齡化的時代,傳統建築已經漸漸無法滿足人類的生存需求。我們需要的不再只是一個遮風避雨的洞穴,而是一個有神經、有大腦、懂代謝、且具備強大生存本能的智慧有機體。 

    智慧建築會在你感到悶熱前為你開啟微風,會在危險來臨時為你開闢生路,會在能源短缺時為地球精打細算。它不只是你住的地方,它是你的守護者、你的管家,更是你在這個複雜世界中,最親密、最可靠的生存夥伴。這,就是智慧建築存在的真正意義。 

    -----廣告,請繼續往下閱讀-----
    -----廣告,請繼續往下閱讀-----

    討論功能關閉中。

    鳥苷三磷酸 (PanSci Promo)_96
    242 篇文章 ・ 318 位粉絲
    充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

    0

    0
    0

    文字

    分享

    0
    0
    0
    別讓 X-ray 檢測成為元件早衰的隱形殺手!寄生輻射風險一次破解
    宜特科技_96
    ・2025/06/29 ・3928字 ・閱讀時間約 8 分鐘

    為了精確找出 IC 內部缺陷,非破壞性的 3D X-ray 驗證已成為半導體業界的關鍵手段。然而,經過高劑量輻射處理的 IC,在後續可靠度測試中卻可能提前失效!隨著半導體逐漸應用於 AI、車用、航太與醫療設備等需要超高可靠度的領域,如何有效量測並控制這些寄生輻射對 IC 的影響,已是工程師不得不面對的重大挑戰。

    本文轉載自宜特小學堂〈別讓 X-ray 檢測成為元件早衰的隱形殺手!寄生輻射風險一次破解〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

    圖 / 宜特科技

    X-ray 屬於物理性非破壞檢測,是一項即時且便利的分析實驗,可在故障分析(FA)或產品製程改善過程中快速找出問題;僅在極少數特定製程或產品條件下,才可能影響元件的電氣特性。

    如同人體若長期暴露在輻射環境中,可能導致細胞突變、DNA 受損,甚至增加癌症風險。對於 IC 而言,情況其實類似——當元件在 X-ray 等非破壞性驗證分析中持續累積過高的輻射劑量(TID, Total Ionizing Dose),其內部電晶體特性可能發生變化,造成閘極漏電流上升、閘極氧化層劣化,最終導致IC提前失效。 

    隨著 AI 人工智慧、車規與航太電子標準趨嚴,IC 的長期可靠性要求日益提升,這項過往經常被忽略的潛在風險,如今已不得不正視。因此,JEDEC 於 2023 年 11 月發布 JESD22-B121 標準,明確定義如何評估 IC 在製造、驗證和表面黏著技術 (Surface Mount Technology,簡稱SMT) 等製程中,暴露於輻射照射後的電性變化,並確立其 TID 限制值 (可稱為故障極限值或供應商極限值),以降低潛在失效風險。

    -----廣告,請繼續往下閱讀-----

    本篇宜特小學堂文章將探討X-ray對電子元件造成的電氣故障模式、關鍵測試變數,以及X-ray輻射總電離劑量(TID)測試最終報告內容,跟各位分享如何透過宜特的「寄生輻射劑量沉積驗證平台」,有效預防潛在故障風險。

    輻射劑量對 IC 的電氣影響與故障模式

    為了評估關鍵參數的變化,必須充分理解電子元件在電離輻射環境下,因介電電荷積聚(Trapped Charge)所產生的故障機制。當元件暴露於累積效應明顯的 X-ray 時,其內部的關鍵電性參數可能發生變化,導致潛在的失效風險。因此,輻射評估是確保半導體元件可靠性的重要環節,能幫助工程師判斷其抗輻射能力與安全範圍。

    不同材料的輻射吸收速率不同,因此對電子元件的影響程度也會有所差異。當 IC 暴露在 X-ray 環境下,吸收的能量會沉積形成寄生輻射劑量(TID),而這種累積效應可能會導致不可逆的電氣故障(表1)。

    表一:主要 IC 元器件/單元類型其大部分預期的故障模式。圖表來源 / JESD22-B121

    X-ray 系統設定和變數

    X-ray 成像技術廣泛應用於 IC 和元件的封裝驗證,特別適用於內部結構缺陷的發現,與可觀察表面缺陷的光學驗證技術相輔相成。X-ray 成像技術可在 IC 運輸過程的影像掃描、焊點檢測、材料分析等應用中發揮關鍵作用。然而,這些驗測過程亦會讓 IC 曝露於 X-ray 輻射,累積一定的總電離劑量 (TID),可能影響其電性特性。圖 1 顯示了 X-ray 系統的基本架構。

    -----廣告,請繼續往下閱讀-----
    圖一:X-ray 系統簡化示意圖。圖 / JESD22-B121

    當高速電子束或離子束撞擊金屬靶材 (如鎢) 時,會產生 X-ray 光子。這些光子來自於:

    1. 軔致輻射 (Bremsstrahlung Radiation):入射電子因受原子核電場影響而減速,發射出連續光譜的 X-ray。
    2. 特徵輻射 (Characteristic Radiation):入射電子與靶材內層電子(殼)層發生碰撞,產生離散特徵能量的X- ray。

    當 X-ray 穿透並圍繞樣品時,偵測器會接收來自不同材料的吸收與散射訊號,形成陰影影像 (Radiographic Image)。影像的明暗對比取決於材料的 X-ray 吸收率,吸收率低的區域顯示較亮,吸收率高的區域則較暗。不同的 X-ray系統參數亦會影響影像品質與 IC 所承受的輻射劑量,以 2D X-ray3D X-ray 兩種分析為例,前者為單一角度成像,劑量較低,但可能受多層結構遮蔽影響;後者透過多角度掃描重建 3D 影像,可減少結構遮蔽效應,提高驗證準確性,但也因此增加輻射劑量。

    針對功能性 IC 的輻射影響分析,表 2 定義了不同設定下的臨界最大劑量 (Critical Maximum Dose)。為確保 IC 在 X-ray 檢測過程中不會超過 TID 極限值,透過適當調整 X-ray 系統參數 (如降低電壓、縮短曝光時間、選擇合適的掃描方式),皆可有效降低輻射劑量,並減少 IC 因驗證而導致的電性劣化風險。

    表二:X-ray 的關鍵參數與其對輻射劑量的影響 。圖表來源 / JESD22-B121

    X-ray 輻射劑量的測量

    X-ray 劑量儀這麼多種,我們該如何選擇呢?為達成精準測量 X-ray 劑量的目的,需要 X-ray 檢測系統來產生穩定的輻射,以及X-ray劑量儀來精確測量劑量率。應選擇符合關鍵參數的 X-ray 系統來模擬典型的 X-ray 檢測條件。表 3 顯示劑量儀的類型。

    -----廣告,請繼續往下閱讀-----

    表三:劑量儀的類型。圖表來源 / JESD22-B121

    游離腔和基於半導體的劑量儀為主動設備,可測量輻射引起的電流,因此能即時讀取劑量。而基於發光的劑量儀則是被動設備,會將劑量儲存於設備中,需要經過溫度或光的後處理才能測量劑量,且照射後無法立即讀取資料。因此,使用以發光為基礎的劑量儀時,建議在常溫和正常自然條件下儲存,保護其免受高溫和紫外線影響,並減少儲存與運輸時間,因為這些因素皆會影響劑量的準確度。若已知環境條件會影響劑量儀反應,則應對測量結果進行校正。額外的參考劑量計可用來監測由於不必要或雜散效應所產生的劑量,並將其從 X-ray 校準所用劑量計的讀數中扣除。同時,應考慮能量範圍內的讀取器校準。ISO/ASTM 51956 標準,例如:《練習輻射加工使用熱釋光劑量測定系統 (TLD系統)》,可作為指導方針。

    總電離劑量 (TID) 特徵測試程序

    圖 4 為 X-ray 總電離劑量 (TID) 測試流程示意圖。可以執行兩種特徵分析模式,並記錄在摘要報告中。第一個是超出供應商極限值的特徵,第二個是故障極限值的特徵。

    1. 供應商極限值:

    這是供應商設立的一個輻射劑量的最大限度,指的是元件在接受 X-ray 輻射的過程中能夠承受的最大劑量。在這一過程中,測試會根據預期的最嚴重輻射情況來設定測試參數。如果在測試中需要返工或進行進一步檢查,這段時間的曝露時間也必須計算在內,不能超過設定的供應商極限。

    1. 故障極限值:

    這是指在經受輻射後,元件可能會出現故障的最大輻射劑量。透過對元件的測試,根據「第一個故障參數」來判定,這有助於確定元件在最大輻射劑量下是否仍能正常運作。

    -----廣告,請繼續往下閱讀-----
    圖二:總電離劑量特徵流程圖 圖 / JESD22-B121

    X-ray 輻射總電離劑量 (TID) 測試最終報告有哪些內容呢?

    X-ray 輻射總電離劑量 (TID) 測試的最終報告必須從典型批次的樣品中隨機選擇若干樣品,並包含未遭受輻射的對照樣品。最終報告應包含以下內容:

    1. X-ray 系統描述,包括:
      • 設備、供應商、型號、X-ray靶材類型
      • X-ray的設定和劑量率
      • 如果使用濾光片,濾光片的材料與厚度
      • X-ray燈管與測試元器件之間的距離
      • 相對於X-ray源的方向
    2. X-ray劑量儀的描述:包括供應商、型號、劑量率測量範圍,以及精度範圍的對應公差。
    3. 元器件的描述:包括製程節點 (電子元器件之特徵)、產品名稱、批號、日期代碼等。
    4. 封裝類型和熱界面材料類型 (如果有):如果為非封裝單元(裸晶片或晶圓級)或無蓋/封裝已開蓋(解封裝),則應註明。
    5. 已測試的元器件總數:包括對照 (未遭受輻射) 的元器件數量。
    6. 電氣測試所使用的環境溫度。
    7. 在描述時間效應的影響的情況下,曝露與讀出之間的時間間隔與退火條件。
    8. 每個測試元器件遭受輻射的X-ray總劑量:
      • 空氣中的劑量。
      • 材料中的劑量 (如適用)。
      • 從空氣到材料的劑量轉換因子 (如適用)。
      • 特徵模式:故障極限值或供應商極限值。
    9. 電氣測試的結果。

    小結

    針對金屬氧化物半導體(MOS)、雙極性元件(Bipolar)、非揮發性記憶體(NVM)、快閃記憶體(Flash Memory)/電子抹除式可複寫唯讀記憶體(EEPROM),以及動態隨機存取記憶體(DRAM)等元件,若您擔心在進行 2D/3D X-ray 檢測時可能因寄生輻射導致提早失效,可透過「寄生輻射劑量沉積驗證平台」進行事前驗證。宜特作為 JESD22-B121 標準的 JC 14.1 技術委員會成員,採用高靈敏度 TID 劑量量測技術,依據標準流程精確量化 X-ray 特定條件下的輻射影響,並協助工程師判斷是否超出 IC 設計容許範圍,作為是否進行後續檢測與分析的重要參考。

    本文出自 www.istgroup.com

    -----廣告,請繼續往下閱讀-----

    討論功能關閉中。

    宜特科技_96
    20 篇文章 ・ 5 位粉絲
    我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室